
Plant community data consisting of species
recorded in sample plots can be analyzed using
a variety of numerical techniques. These may
aim to uncover relationships among samples
(normal or Q-mode analysis) or among species
(inverse or R-mode analysis; Williams and Lam-
bert 1961, Wilson et al. 1990, Legendre and
Legendre 1998, McCune and Grace 2002). A
species-based approach yields information on
the degree to which species co-occur or show
correlated abundance in a given set of sam-
ples. Co-occurrence is most easily measured
using indices of association between species
pairs, which can then be used to extract patterns
of association among multiple species (Ludwig
and Reynolds 1988, Bartha 1992, Turner et al.
2004). Species association patterns can be de-

picted using traditional matrix sorting and plexus
diagram techniques (McIntosh 1978, Ludwig
and Reynolds 1988), although these are imprac-
tical for large or complex datasets. Quantita-
tive extensions of these techniques, such as
TWINSPAN (Hill et al. 1975, Gauch and Whit-
taker 1981) and nonmetric multidimensional
scaling (Kruskal 1964), have also been used to
identify and display patterns of species associ-
ation (e.g., Matthews 1978, Tueller and Eckert
1987, Mwasumbi et al. 1994, Exner et al. 2002).

Groups of positively associated species are
essentially equivalent to indicator species of
plant community types (associations, syntaxa,
etc.), except that the former may not corre-
spond to species composition at any specific
location, while the latter are defined by sample
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plots or releves (Ewald 2003, Biondi et al.
2004). The sample-based approach lends itself
well to correlation analyses between commu-
nities and environmental variables, but these
can also be obtained through a species-based
approach, as we demonstrate in this paper.

The technique presented in this paper was
developed partly in response to dissatisfaction
with the results of TWINSPAN analysis of
plant community data from topographically
complex areas. Although TWINSPAN is appeal-
ing for classifying samples and species groups
simultaneously, it often gives inadequate results
for plant communities responding to more than
1 environmental gradient (van Groenewoud
1992, Lee and McDonald 1993, McCune and
Grace 2002). We developed an alternative set
of algorithms for identifying species groups in
a program called RCLUS (R-mode Cluster
Analysis), with versions written in Microsoft
Visual Basic 6.0 (installable version) and Visual
Basic for Applications (spreadsheet version).
The RCLUS algorithms are closely related to
agglomerative and nonhierarchical clustering
techniques (Gauch 1982, Kaufman and Rous-
seeuw 1990, McCune and Grace 2002); hence,
in this paper, we compare RCLUS with these
methods rather than with TWINSPAN.

Two key features of the RCLUS technique
are that it (1) extracts clusters of species that
meet a user-specified level of association with
each other and (2) allows species to be placed
into more than 1 cluster. The 1st feature aligns
RCLUS with statistical tests of species associ-
ation in which a threshold significance level is
designated, e.g., P = 0.05 when χ2 = 3.841;
Ludwig and Reynolds 1988). However, RCLUS
is more broadly construed to show patterns of
species association at any level using any asso-
ciation index. Species not positively associated
with others at a given level are excluded from
RCLUS clusters, unlike conventional clustering
methods that force all species into clusters.

The 2nd feature—the allowance for species
to occur in more than a single cluster—also
differs from conventional clustering methods.
This feature accommodates the possibility that
some species are strongly habitat specific while
others are ecological generalists, occurring with
many species in many communities (Fridley et
al. 2003). Specialist and generalist species can
also be identified using measures of fidelity
obtained through algorithms such as indicator
species analysis (Dufrêne and Legendre 1997)

or COCKTAIL (Bruelheide 2000, Bruelheide
and Chytry 2000). However, these algorithms
require predefined clusters or classes, whereas
RCLUS is a method for generating clusters.

METHODS

Clustering

The RCLUS methodology is related to meth-
ods we previously carried out using matrices
of pairwise species association and ratios of
observed to expected values (McArthur and
Sanderson 1992b). RCLUS uses measures of
species association based on 2 × 2 (pairwise)
contingency tables. The program is currently
configured to calculate the phi coefficient, chi
square, Jaccard index, and Sorensen index
(Ludwig and Reynolds 1988, Jackson et al.
1989). It can also accept similarity or distance
matrices provided by the program user, allow-
ing the use of other measures including those
that incorporate species abundance. The appli-
cations described in this paper are based on
species presence or absence only.

RCLUS forms clusters of positively associ-
ated species referred to as core groups and then
calculates the degree to which the remaining
species of the study are associated with each
core group. We provide 2 clustering algo-
rithms for the formation of core groups: “strict
affinity” and “coalition.” Both require that the
user specify a cutoff affinity level that deter-
mines which species can be included in a core
group. There is also an option for excluding
outright those species with low occurrence in
the dataset (<3 by default). Note that we use
the term “affinity” interchangeably with “posi-
tive association” or “positive correlation” in the
text that follows.

The strict affinity clustering algorithm iden-
tifies species that meet a cutoff level of pair-
wise association with each and every other
species within a core group. A randomly
selected species is used to initiate the 1st core
group, and species are added by proceeding
through each of the other species of the data-
set in random order. If a species is not used
within the existing group, it is used to begin a
new group. On each of several passes through
the dataset, each species is tested to deter-
mine if it fits within any of the existing core
groups; each species is added to as many 
of the core groups as it fits. By specifying 
that only species not yet incorporated in any
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existing cluster can be used to initiate a new
cluster, the algorithm limits proliferation of
clusters. The algorithm is repeated from the
beginning as many times as chosen by the
user (50 by default) using a random species
order each time. A table is generated contain-
ing all the resulting clusters and the frequency
of each.

The strict affinity algorithm is useful for
producing clusters at a fine level of resolution
but has the disadvantage that excessive num-
bers of variant clusters are produced when
incompletely separated species groups are
present. The user is left with the task of decid-
ing which of the clusters are most informative.
Clusters may be sorted according to their fre-
quency of occurrence (in multiple runs of the
program) or their cohesiveness (strength of asso-
ciation of core species), and the user may opt
to screen clusters according to such criteria.

The coalition clustering algorithm is named
for its relation to the “multi-species coalition”
concept discussed by Bartha (1992), referring
to groups of species indirectly linked through
pairwise associations (see also McIntosh 1978).
Similar to the strict affinity algorithm, the coali-
tion algorithm evaluates species in a random
order, adding them to clusters when the cutoff
association criterion is met. A new species is
added to a core group if the mean of its pair-
wise associations with existing core species
meets the cutoff level of association for the
group as a whole, even though it may not meet
this level with every individual species in the
group. Because addition of species to a group
causes the character of the group to change to
some degree, species may come to fit within
the group that did not fit at an earlier time; or
species may need to be removed if they no
longer fit within the constraints of the selected
cutoff level. For this reason, the procedure is
repeated a sufficient number of times so that
the composition of all of the clusters will have
stabilized.

The coalition clustering algorithm also con-
tains a module for testing the clusters against
each other to determine if any of them have
become alike enough that they need to be
combined. The algorithm constructs a matrix
of pairwise associations of the species in one
cluster with the species in another cluster
(including instances in which the same spe-
cies occurs in both clusters). If the mean of all
pairwise associations exceeds the cutoff value

as previously defined, the clusters are merged.
This merging step was originally done after
each cycle through the species list, but consis-
tency was improved by combining clusters
only near the middle of the procedure, after
clusters had time to stabilize. Several more
cycles through the species list are carried out
afterwards, to stabilize any combined clusters.
We also found it best to limit formation of new
core groups to the 1st few passes through the
dataset so that the groups would have time to
mature before other operations were carried
out. The algorithm is currently set to add new
clusters during the first 4 cycles through the
species list, to combine similar clusters on the
9th and 14th cycles, and to continue for a total
of 18 cycles. The program provides a display
of the number of clusters resulting from each
cycle. Those outputs can be used to judge
whether clusters have stabilized.

Once core groups are formed by either of
the clustering algorithms in RCLUS, the affin-
ity (degree of positive association) between
core groups and other species is assessed. This
assessment is made by taking the mean of all
pairwise associations between a given species
and each of the species in a core group. Even
core group species themselves can be assessed
for affinity to their own core group, because
they may differ in mean association with other
members of the group. RCLUS is configured
to display in its output a list of species in de-
scending order of affinity to each core group.
This list can give the user an indication of
which species would likely be added to core
group clusters were the cutoff criteria to be
relaxed.

Another feature in RCLUS calculates and
displays the affinity of each sample plot to
each core group cluster. This is done by taking
the mean affinity to a given cluster of the
species present in the plot. Because plots may
differ in species composition and species may
have multiple affinities, each plot may have a
unique set of affinities to each of the core
group clusters. RCLUS can also display the
number, percentage, or cover of cluster core
species present in each plot. These data offer
alternative ways of assessing the affinity be-
tween plots and clusters. RCLUS also includes
a rudimentary statistical technique for assess-
ing relationships between species clusters and
environmental variables. For each core group
species in a cluster, environmental values of
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plots where the species is present are tabu-
lated; values are also recorded for plots where
the species is absent. The combined data for
all species of a cluster are then analyzed with
a chi-square test for discrete variables or a
Kruskal-Wallace test for continuous variables
(Pollard 1977).

Data

To demonstrate RCLUS, we performed
analyses on a plant community dataset col-
lected on the Beaver Dam Slope of southwest-
ern Utah (McArthur and Sanderson 1992a).
The dataset contains lists of perennial vascular
plant species occurring in 60 circular 0.01-ha
plots. Plots were located at or near cadastral
survey section corners at 1.62-km (1-mi) inter-
vals. Nomenclature of the 56 species in this
dataset follows Welsh et al. (1993).

The study area covered 50 km2 of alluvial
slope between the Beaver Dam Mountains and
Beaver Dam Wash in extreme southwestern
Utah. Elevation across the study area ranged
from 768 m to 988 m. Vegetation was charac-
teristic of the Mojave Desert, with Joshua trees
(Yucca brevifolia) and blackbrush (Coleogyne
ramosissima) at higher elevations. Creosote bush
(Larrea tridentata) and bur-sage (Ambrosia
dumosa) dominated at lower elevations and on
flatter terrain. The study site was dissected by
dry washes that harbored distinctive vegetation
including desert almond (Prunus fasciculata),
wooly bursage (Ambrosia eriocentra), and
Mojave rabbitbrush (Chrysothamnus panicu-
latus). Water is currently piped to stations
throughout the area to support springtime cat-
tle grazing. Based on our familiarity with the
vegetation of this area, we expected species in
the dataset to cluster into groups characteris-
tic of contrasting topographical position and
elevation.

RESULTS AND DISCUSSION

Comparison with 
Hierarchical Clustering

Species clusters resulting from RCLUS were
compared with results of R-mode UPGMA
(Unweighted Pair Group Method with Arithme-
tic Mean) hierarchical clustering of the Beaver
Dam Slope dataset (Figs. 1, 2). UPGMA is a
hierarchical clustering method commonly used
in plant community studies (often for cluster-
ing samples rather than species). Like RCLUS,

UPGMA builds clusters through agglomeration
using a similarity or distance matrix (McCune
and Grace 2002). UPGMA clustering was car-
ried out in SAS using PROC CLUSTER (SAS
Institute 1989). The Jaccard index was used
for both the UPGMA and RCLUS analyses
shown in Figs. 1 and 2. Figure 1 shows the
composition of 15 clusters obtained by run-
ning the strict affinity algorithm at a cutoff
affinity value of 0.25 (Fig. 1, left side). A total
of 44 clusters were generated by this analysis,
but only those containing more than 3 species
and meeting other criteria (see Fig. 1 footnote)
are shown. At this cutoff level, no cluster con-
tained more than 13 of the 57 species in the
dataset. The clusters showed considerable
overlap in composition, e.g., a set of 8 clusters
all containing Ambrosia dumosa, desert rue
(Thamnosma montana), desert marigold (Bai-
leya multiradiata) and wire lettuce (Stephano-
meria pauciflora). Many of the RCLUS clusters
showed a general correspondence to UPGMA
clusters (Fig. 1, right side) but few were exactly
the same. We expected hierarchical clustering
to yield different results than strict affinity
clustering because, in the former, (1) every
species must be used in the analysis regard-
less of the strength of its association with
other species and (2) once a species is placed
into a cluster, it cannot be removed or placed
elsewhere. Strict affinity clustering revealed
species associations that hierarchical cluster-
ing did not, such as Brigham tea (Ephedra
nevadensis)–Anderson’s wolfberry (Lycium
andersonii)–winterfat (Ceratoides lanata) [Clus-
ter K]; goldenhead (Acamptopappus sphaero-
cephalus)–Baileya multiradiata–silver cholla
(Opuntia echinocarpa)–range ratany (Krameria
parvifolia)–rattlesnake weed (Euphorbia albo-
marginata) [Cluster M]; and bush encelia
(Encelia frutescens)–paper bag bush (Salzaria
mexicana)–Prunus fasciculata–burrobush (Hy-
menoclea salsola) [Cluster O].

The coalition clustering method proved
effective at producing a more manageable
number of clusters, with limited overlap in
species composition, for a given cutoff affinity
value. Figure 2 illustrates this result as well as
showing changes in cluster composition at dif-
ferent cutoff affinity values, again compared
against UPGMA cluster composition. At Jac-
card = 0.65 (a stringent affinity criterion) only
2 clusters of 2 species each formed: Ambrosia
dumosa–Larrea tridentata in the upper part of
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Fig. 1. Comparison of RCLUS strict affinity clustering (left) and UPGMA hierarchical clustering (right) of perennial
plant species of 60 plots at Beaver Dam Slope, Utah. Species are ordered according to position on the UPGMA dendro-
gram to the right. Numbers to the right of species names show the number of plots in which the species occurred. Each
letter in the left columns corresponds to a different cluster and indicates the core species of the cluster.
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Fig. 2. Comparison of RCLUS coalition clustering (left) and UPGMA hierarchical clustering (right) of perennial plant
species of 60 plots at Beaver Dam Slope, Utah. Species are ordered according to position on the UPGMA dendrogram
to the right. Numbers to the right of species names show the number of plots in which the species occurred. Numbers
within each column on the left indicate coalition clusters at different cutoff affinity levels and their corresponding core
species (species without a number at a given cutoff level did not meet the criteria for core species).



the cluster dendrogram and Chrysothamnus
paniculatus–Douglas groundsel (Senecio dou-
glasii) in the lower part. At Jaccard = 0.45, the
upper cluster had expanded to include 8 spe-
cies, and an additional cluster (Mojave buck-
wheat [Eriogonum fasciculatum]–Prunus fasci-
culata) formed in the middle. Other small
clusters were added at Jaccard = 0.35 and
Jaccard = 0.25, but as the affinity criteria be-
came less stringent these clusters joined to-
gether to become a single large cluster con-
taining 41 species (nearly three-fourths of the
dataset) at Jaccard = 0.05. Note that species
failing to cluster at this level included those
that are excluded by default because they
occur with low frequency (1–2 occurrences) in
the dataset. The increasing size of species
clusters with decreasing affinity cutoff values
noticeably mirrored the agglomerative pattern
of the UPGMA dendrogram, especially for the
upper cluster (Fig. 2). In the middle and lower
clusters, the cluster joining pattern was dis-
rupted at Jaccard = 0.35 and Jaccard = 0.25,
respectively, before re-emerging at lower cut-
off values. These appear to be transitional
affinity values in which some, but not all, of the
species in these clusters were able to join up
with the emerging single large cluster (note
bottlebush [Eriogonum inflatum] at Jaccard =
0.35 and Hymenoclea salsola at Jaccard =
0.25). This example highlights the program
user’s need to explore different cutoff levels in
order to find cluster variants that are most 
stable and useful.

Comparison with 
k-Means Clustering

The class of clustering algorithms known as
“k-means” identifies a set of nonnested clus-
ters with optimal statistical properties. The
number of clusters k is designated by the user
prior to analysis (Kaufman and Rousseeuw
1990, McCune and Grace 2002). For compari-
son with RCLUS we used the k-means variant
algorithm PAM (Partitioning Around Medoids),
which identifies k representative objects (me-
doids) and clusters other objects with their
closest medoid such that dissimilarity within
clusters is minimized and dissimilarity between
clusters is maximized (Kaufman and Rousseeuw
1990).

We carried out PAM on the Beaver Dam
Slope dataset using the PAM procedure in the 
CLUSTER package of the R Project for Statis-

tical Computing, version 2.0.1 (R Develop-
ment Core Team 2004) at values of k between
2 and 10. Figure 3 shows results at k = 6 com-
pared against the same RCLUS coalition clus-
tering results presented in Fig. 2 (based on the
Jaccard index in both cases). The right side of
Fig. 3 shows not only the PAM cluster to which
each species was assigned, but also the 2nd
closest “neighbor” cluster and a “silhouette
plot” which depicts the affinity of each species
to its assigned cluster relative to its neighbor
cluster. Silhouette bars approaching +1 indi-
cate species that fit well in their assigned clus-
ter, while bars near –1 are poorly classified
and might actually fit better in a different clus-
ter (Kaufman and Rousseeuw 1990).

Some of the RCLUS coalition cluster core
species on the left side of Fig. 3 are subsets of
the PAM clusters on the right side (e.g., the 3
coalition clusters resulting from a cutoff value
of Jaccard = 0.45 are subsets of PAM clusters
1–3). Furthermore, these coalition cluster core
species include the medoids of the PAM clus-
ters as well as other species with high PAM
silhouette values. This correspondence between
coalition clusters and well-classified PAM ob-
jects supports our assertion that RCLUS in-
cludes only the best supported species groups
in its output. However, note that this corre-
spondence between RCLUS and PAM clusters
breaks down at cutoff values less than Jaccard
= 0.45, showing novel clusters that PAM anal-
yses (including others not shown, at values of
k between 2 and 10) did not reveal.

Some of the clusters identified by PAM
(e.g., clusters 4–6 on the right side of Fig. 3)
did not appear in coalition clusters because
their species occurred with low frequency in
the dataset. The high silhouette values assigned
to these species by PAM draw unwarranted
attention to clusters with low statistical support,
a problem which RCLUS takes into account.

Comparison of 
Association Indices

An important step in R-mode community
analysis is the selection of an appropriate mea-
sure of species association or correlation.
Although many association indices are identi-
cal to sample similarity indices used in Q-
mode analysis, the issues surrounding their
use differ for each mode. In the Q-mode, dis-
similarity or distance measures are often used
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Fig. 3. Comparison of RCLUS coalition clustering (left) and PAM nonhierarchical clustering (right) of perennial plant
species of 60 plots at Beaver Dam Slope, Utah. Species are ordered according to their PAM cluster and the size of their
silhouette value (bars at right) within their assigned cluster. Numbers to the right of species names show the number of
plots in which the species occurred. Numbers within each column on the left indicate coalition clusters at different cut-
off affinity levels and their corresponding core species (species without a number at a given cutoff level did not meet the
criteria for core species). See text for further discussion.



in lieu of similarity, and a primary considera-
tion is the degree to which compositional dis-
tance corresponds with environmental dis-
tance (Faith et al. 1987, De’ath 1999, McCune
and Grace 2002). In the R-mode, distance
measures are nonintuitive and have been
avoided in the literature, whereas contingency
table coefficients are much more applicable
despite debate over the ecological meaning of
joint species absences ( Janson and Vegelius
1981, Hubalek 1982, Ludwig and Reynolds
1988, Jackson et al. 1989, Legendre and Le-
gendre 1998, Turner et al. 2004).

In RCLUS, we noted that contingency table
coefficients incorporating joint absence infor-
mation (phi, chi-square) yielded notably dif-
ferent results from association indices that do
not include such information ( Jaccard, Soren-
sen). For our dataset, the phi coefficient tended
to yield a larger number of clusters, with more
even numbers of core species per cluster, than
the Jaccard index (Table 1). This appears to be
related to the tendency of the Jaccard index
(and related indices) to yield clusters in which
species with similar numbers of occurrences
are grouped together ( Jackson et al. 1989). Upon
examination, the larger clusters obtained with
the Jaccard index were found to consist of spe-
cies of frequent occurrence and to represent
vegetation types somewhat similar to those
obtained with the phi coefficient. On the other
hand, smaller clusters obtained with the Jaccard
index, usually 1–3 species each, consisted of
species of few occurrences and did not resem-
ble clusters from phi. We concluded that the
species were grouped primarily according to
number of occurrences and only secondarily
according to association. Although this prop-
erty of the Jaccard index may be useful for some
purposes, we found the more direct associa-
tion information provided by the phi coeffi-
cient to be preferable for our dataset. We do
not consider joint absences to be ecologically
meaningless in this instance because our study
area covered a limited range of environmental
conditions at a spatial scale within which all
species could presumably disperse.

Environmental Correlates 
of Clusters

Our preferred set of clusters for the Beaver
Dam Slope dataset was obtained using the
coalition clustering algorithm with the phi co-
efficient at a cutoff affinity value of 0.18. The 5

clusters resulting from this analysis (Table 2,
left column) agreed with our observations of
species occurring at differing elevations and
topographic settings within the study area.
Correlation tests confirmed that 4 of the 5
clusters could be differentiated based on a
combination of topographic position (upland
or wash affinity) and elevation (positive or
negative correlation) at a significance level of
α = 0.1 (Table 3, upper); hence, we assigned
names to the clusters presented in Table 2.
The 5th cluster, containing 2 species in the
genus Opuntia, was correlated with elevation
but not topographic position. Values of unmea-
sured variables such as grazing history might
be needed to fully explain this cluster.

The right side of Table 2 shows 2 clusters
obtained using a less stringent cutoff affinity
value (phi = 0.08); they could be differentiated
by topographic position but not by elevation
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TABLE 1. Number of clusters and cluster size evenness
generated by the RCLUS coalition clustering algorithm at
different cutoff affinity values of the Jaccard index and phi
coefficient for a dataset of perennial plant species in 60
plots at the Beaver Dam Slope, Utah. Evenness was calcu-
lated using the Simpson index (Ludwig and Reynolds
1988).

Cluster 
Cutoff affinity Clusters evenness

JACCARD INDEX

0.15 1 1.00
0.20 3 0.46
0.25 3 0.54
0.30 6 0.42
0.35 5 0.57
0.40 5 0.53
0.45 3 0.67
0.50 2 0.76
0.55 3 0.93
0.60 3 0.96
0.65 2 1.00
0.70 2 1.00

PHI COEFFICIENT

0.05 1 1.00
0.10 2 0.96
0.15 4 0.80
0.20 6 0.75
0.25 10 0.73
0.30 13 0.72
0.35 15 0.80
0.40 13 0.91
0.45 8 0.89
0.50 4 0.82
0.55 4 0.90
0.60 2 1.00



(Table 3, lower). The coalition algorithm thus
recovered the expected contrast between upland
and wash species composition in 2 clusters of
core species. Interestingly, there was no over-
lap in core species composition between these
2 clusters, suggesting an absence of generalist
species common to both upland and wash
environments. In contrast, the 2 wash clusters
at phi = 0.18 overlap considerably in core spe-
cies composition (Table 2, clusters 3 and 4),
suggesting that wash-adapted species differ in
their degree of specialization along the eleva-

tional gradient of the washes. Although these
patterns may be partially an artifact of the
sampling strategy of this study, they illustrate
insights made possible by allowing species
membership in multiple clusters. Because of
this property, RCLUS may be particularly use-
ful for characterizing fine compositional dis-
tinctions among nondiscrete communities.
RCLUS clustering algorithms have the poten-
tial to detect environmental sorting of species
even in settings where species respond differ-
ently to multiple environmental gradients.

294 WESTERN NORTH AMERICAN NATURALIST [Volume 66

TABLE 2. Coalition cluster core species at 2 cutoff association levels of the phi coefficient for data collected at the
Beaver Dam Slope, Utah. See Table 3 for environmental correlates of clusters.

Coalition cluster core species; Cutoff association value: Phi = 0.18

CLUSTER 1: HIGHER ELEVATION UPLANDS (MEAN PAIRWISE PHI = 0.2544)
Brigham tea Ephedra nevadensis
Anderson’s wolfberry Lycium andersonii
Indian ricegrass Stipa hymenoides
Funnel lily Androstephium breviflorum
Winterfat Ceratoides lanata
Range ratany Krameria parvifolia
Sinuous mariposa Calochortus flexuosus
Anderson larkspur Delphinium andersonii

CLUSTER 2: LOWER ELEVATION UPLANDS (MEAN PAIRWISE PHI = 0.3258)
Bur-sage Ambrosia dumosa
Creosote bush Larrea tridentata
Goldenhead Acamptopappus sphaerocephalus

CLUSTER 3: HIGHER ELEVATION WASHES (MEAN PAIRWISE PHI = 0.2544)
Desert peach Prunus fasciculata
Mojave buckwheat Eriogonum fasciculatum
Three awn grass Aristida purpurea
Thread snakeweed Gutierrezia microcephala
Bush muhly (grass) Muhlenbergia porteri
Paper bag bush Salazaria mexicana
Neolloydia cactus Neolloydia johnstonii
Fluff grass Erioneuron pilosum
Big galleta grass Hilaria rigida
Bush encelia Encelia frutescens
Bottlebush Eriogonum inflatum
Desert marigold Baileya multiradiata
Wire lettuce Stephanomeria pauciflora
Burrobush Hymenoclea salsola

CLUSTER 4: LOWER ELEVATION WASHES (MEAN PAIRWISE PHI = 0.2865)
Burrobush Hymenoclea salsola
Mojave rabbitbrush Chrysothamnus paniculatus
Douglas groundsel Senecio douglasii
Bush encelia Encelia frutescens
Wire lettuce Stephanomeria pauciflora
Desert peach Prunus fasciculata
Indigobush Psorothamnus fremontii
Desert marigold Baileya multiradiata
Paper bag bush Salazaria mexicana

CLUSTER 5: LOWER ELEVATIONS—CACTI (MEAN PAIRWISE PHI = 0.2568)
Beavertail cactus Opuntia basilaris
Silver cholla Opuntia echinocarpa



We consider the clustering algorithms to be
the primary strength of RCLUS, whereas the
RCLUS methods for correlating clusters with
environmental variables have more limited
value. We expect that more sophisticated envi-
ronmental correlation methods such as those
used in habitat modeling (Guisan and Zim-
mermann 2000) could be used profitably in
conjunction with RCLUS clustering methods.

Other Applications

The RCLUS algorithms resemble methods
that were developed in the 1970s for prelimi-
nary clustering of plant community samples.
Janssen (1975) described an algorithm for
placing sample plots in clusters meeting a pre-
defined threshold level of similarity. This is
essentially equivalent to a single run of the
RCLUS strict affinity algorithm, except that it

clusters samples rather than species and allows
each sample to occur in only 1 cluster. Gauch
(1980, 1982) included a similar algorithm, with
additional steps for merging small clusters into
large ones, in his composite clustering rou-
tines. These methods were promoted as tools
for removing outliers and simplifying large
datasets prior to applying other analyses such
as hierarchical classification or ordination. The
latter analyses could be applied either (1) to
clusters in lieu of individual samples or (2) to
samples within individual clusters. RCLUS,
applied to samples rather than species, could
potentially be used for these same purposes,
especially the 2nd (analysis within clusters) in
which the possibility of overlapping clusters
would likely be an asset rather than a draw-
back. The computational restraints that lim-
ited these early methods are now less serious;
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TABLE 2. Continued. 

Coalition cluster core species; Cutoff association value: Phi = 0.08

CLUSTER 1: UPLANDS (MEAN PAIRWISE PHI = 0.1536)
Brigham tea Ephedra nevadensis
Anderson’s wolfberry Lycium andersonii
Range ratany Krameria parvifolia
Indian ricegrass Stipa hymenoides
Funnel lily Androstephium breviflorum
Winterfat Ceratoides lanata
Creosote bush Larrea tridentata
Bur-sage Ambrosia dumosa
Anderson larkspur Delphinium andersonii
Joshua tree Yucca brevifolia
Sinuous mariposa Calochortus flexuosus
Whitestem paperflower Psilostrophe cooperi
Goldenhead Acamptopappus sphaerocephalus

CLUSTER 2: WASHES (MEAN PAIRWISE PHI = 0.1837)
Mojave buckwheat Eriogonum fasciculatum
Desert peach Prunus fasciculata
Three awn grass Aristida purpurea
Neolloydia cactus Neolloydia johnstonii
Thread snakeweed Gutierrezia microcephala
Bush encelia Encelia frutescens
Fluff grass Erioneuron pilosum
Bush muhly (grass) Muhlenbergia porteri
Big galleta grass Hilaria rigida
Paper bag bush Salazaria mexicana
Bottlebush Eriogonum inflatum
California pincushion Mammillaria tetrancistra
Desert marigold Baileya multiradiata
Wire lettuce Stephanomeria pauciflora
Desert rue Thamnosma montana
Grizzlybear pricklypear Opuntia erinacea
Burrobush Hymenoclea salsola
Sinuous mariposa Calochortus flexuosus
Buckhorn cholla Opuntia acanthocarpa
Rattlesnake-weed Euphorbia albomarginata



hence, RCLUS can run its clustering algo-
rithms multiple times in a matter of seconds
(for datasets of the size we have presented),
yielding a better picture of possible clusters
and allowing selection of more optimal ones.

Other potential applications of RCLUS could
employ the species clustering approach that
has been presented here, taking advantage of
the indirect link between sample plots and
species clusters. If species clusters are viewed
as the equivalent of indicator species of plant
communities, then sample plots can be classi-
fied into communities according to their affin-
ity to species clusters. Because a sample plot
may have affinity to more than 1 species cluster,
this type of classification would be “soft” rather
than “hard,” akin to fuzzy classification methods
(Equihua 1990, Nicholls and Tudorancea 2001).
RCLUS could also find application in studies
seeking to characterize species pools or the set
of species that could potentially occur at a site
(Grace 2001, Ewald 2002). In this case, species
clusters with high affinity to 1 or more plots
would indicate the species pool of the plot(s).
As in other types of community analysis, spa-
tial scale and sampling strategy must be con-
sidered because they affect patterns that will
be detected by RCLUS.

The RCLUS program is still in develop-
ment and will likely gain new features and
improvements in the near future. More rigor-
ous tests of the strict affinity and coalition
clustering algorithms are needed to determine
the full extent of their strengths and weak-
nesses. Comparisons with additional methods
of community analysis would also be valuable.
Based on results of our preliminary analyses,
we believe that RCLUS offers unique features

with promising applications for community
studies.
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