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Abstract

Early studies of plant response to ozone (O3) utilized concentration-based metrics, primarily by summarizing the

commonly monitored hourly average data sets. Research with the O3 concentration parameter led to the recognition that

both peak concentrations and cumulative effects are important when relating plant response to O3. The US and Canada

currently use O3 concentration-based (exposure-based) parameters for ambient air quality standards for protecting

vegetation; the European countries use exposure-based critical levels to relate O3 to vegetation response. Because plant

response is thought to be more closely related to O3 absorbed into leaf tissue, recent research has been focused on flux-

based O3 parameters. Even though flux-based indices may appear to be more biologically relevant than concentration-

based indices, there are limitations associated with their use. The current set of flux-based indices assumes that the plant

has no defense mechanism to detoxify O3. This is a serious limitation. In this paper, we review the literature on exposure-

and flux-based indices for predicting plant response. Both exposure- and flux-based metrics may overestimate plant

response. At this time, flux-based models that take into consideration detoxification mechanisms (referred to as effective

flux) provide the best approach to relate O3 to plant response. However, because there is considerable uncertainty in

quantifying the various defense mechanisms, effective flux at this time is difficult to quantify. Without adequate effective-

flux based models, exposure-based O3 metrics appear to be the only practical measure for use in relating ambient air

quality standards to vegetation response.
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1. Introduction

Surface ozone (O3) is an important air pollutant
that affects both vegetation and human health (US
EPA, 1996a). Ozone is routinely monitored
throughout the world and data are mostly recorded
as hourly or half-hourly averages. Over the last 30
years, hourly averaged data have been summarized
in different ways for the purpose of assessing
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vegetation effects (US EPA, 1996a). The develop-
ment of exposure indices to characterize plant
exposure and to quantify the relationship between
O3 exposure and ensuing plant response has been,
and continues to be, a challenge (US EPA, 1996a).
Initially, concentration-based parameters such as
the mean of the hourly concentrations over a
defined period (e.g., daily 7-h average concentra-
tions over a growing season) were used to relate O3

to vegetation response. Subsequently, the hourly
average concentration data were used in cumulative
exposure indices, and more recently in flux models
to predict vegetation effects.

In evaluating O3 metrics for predicting vegetation
effects, it is important to understand some of the
general concepts of concentration, exposure, flux,
and dose. The following definitions (in the mks
system) are used:

‘‘Concentration’’ is the molar density of a specific
air pollutant or the number of moles per unit
volume [molm�3].

‘‘Exposure’’ is the product of the concentration
measured near the vegetation of interest and the
length of time the vegetation is presumably
exposed to the pollutant [commonly expressed
in unit of mol m�3 h or ppm-h]. Explicitly,
exposure is the integral of the instantaneous
concentration over the time period of interest.
Although not necessarily considered exposure,
seasonal average concentrations (e.g., 7- and 12-h
daily average concentrations averaged over a
growing season) have also been referred to as
exposure indices (US EPA, 1996a).

‘‘Stomatal flux’’ is a temporally dynamic measure
of the rate of entry of the pollutant into the leaf
[nmolm�2 s�1].

‘‘Surface flux’’ is the total flux to all surfaces,
including stomatal and non-stomatal surfaces
such as the cuticles, and non-plant surfaces such
as soils [nmolm�2 s�1].

‘‘Effective flux’’ is the balance between stomatal
flux and intra-leaf detoxification, because not all
of the stomatal flux is associated with vegetation
injury or damage [nmolm�2 s�1].

‘‘Dose’’ is the total amount of pollutant that
actually is absorbed into the plant through the
stomata over a period of time. Dose is the
integral over time of the instantaneous stomatal
flux [nmolm�2] (Fowler and Cape, 1982).

‘‘Effective dose’’ is the integral over time of the
‘‘effective flux’’ [nmolm�2].
‘‘Critical level’’ is the concentration, cumulative
exposure, or cumulative stomatal flux of atmo-
spheric pollutants above which direct adverse
effects on sensitive vegetation may occur accord-
ing to present knowledge (Mills, 2004, pII-1).

Others have called what we define as ‘‘dose’’, the
‘‘effective dose’’ (Runeckles, 1974); and referred to
what we define as ‘‘effective flux’’ as the ‘‘effective
dose’’ (Dämmgen et al., 1993; Grünhage and Jäger,
1996; Grünhage and Haenel, 1997; Grünhage et al.,
1999). Our use of ‘‘flux’’ and ‘‘dose’’ indicate the
instantaneous action and that action integrated over
time, respectively; and ‘‘effective’’ specifies the
detoxification component.

In evaluating the potential plant or vegetation
response to a pollutant, it is important to distin-
guish between ‘‘injury’’ and ‘‘damage’’. The defini-
tions here are derived from Guderian (1977):

‘‘Injury’’ is leaf necrosis, premature leaf senes-
cence, reduced photosynthesis, reduced carbohy-
drate production and allocation, reduced growth,
and/or reduced plant vigor. Injury can be visible
or invisible.

‘‘Visible injury’’ is observable as oxidant stipple,
chlorotic mottle, bronzing, or any other visual
leaf necrotic symptom. It can also be premature
leaf senescence. If reductions in growth are
obvious to the observer, this is also considered
visible injury.

‘‘Invisible injury’’ (sometimes referred to as
‘‘hidden injury’’) is that which is not visible to
an observer, such as changes in photosynthesis,
carbohydrate production and allocation, or plant
vigor.

‘‘Damage’’ is a reduction in the intended value or
use of the plant. Included in this definition are
reductions in economic, ecologic, or aesthetic
value.

Injury can be damage, or the consequences of
injury can become damage if the injury can cause a
subsequent impairment of the intended use of the
plant. For example, injury resulting from reduced
carbohydrate production and allocation can lead to
reduced plant vigor and reduced growth. Reduced
growth can lead to damage by reducing crop yield.
Damage to vegetation from pollutants can occur
without visible symptoms of injury, but damage
cannot occur without some form of injury preceding
damage.
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For forest and agricultural crops, damage can be
expressed as a yield loss or a crop loss.

‘‘Yield loss’’ is a reduction in quantity or quality
of the harvestable portion of a plant.
‘‘Crop loss’’ is a reduction in the economic or
monetary value of a forest or agricultural crop.

Yield loss does not always result in crop loss. For
example, yield loss occurring over a region could
cause a decreased supply and result in increased
economic value of the crop.

2. The use of biologically relevant exposure indices

for assessing vegetation effects

For over 80 years air pollution specialists have
explored mathematical approaches for summarizing
ambient air quality information in biologically
meaningful forms that can relate O3 exposure to
vegetation effects (O’Gara, 1922 as cited in Olsen,
1922). Considerable discussion has occurred regard-
ing how well exposure indices perform in predicting
vegetation effects (US EPA, 1986, 1996a; Krupa et
al., 1994; Grünhage et al., 1994; Grünhage and
Jäger, 1994; Legge et al., 1995; Grünhage and Jäger,
1996; Grünhage et al., 1997; Grünhage and Haenel,
1997; Lefohn et al., 1997; Musselman and Mass-
man, 1999; Musselman and Minnick, 2000; Mass-
man et al., 2000; Panek et al., 2002; Kurpius et al.,
2002; Massman, 2004; Uddling et al., 2004). One of
the main concerns in using exposure as an index is
that O3 uptake may be decoupled from the time
period when the highest O3 concentrations occur.
For example, Krupa et al. (1998) indicate that daily
peak (highest) hourly O3 values (X90 ppb) do not
necessarily occur simultaneously with conditions
that promote atmospheric conductivity (O3 deposi-
tion) and plant uptake (O3 absorption). In Section
3, we discuss the synchronization of deposition,
uptake, and defense mechanisms. Grünhage et al.
(1999) likewise cautioned that the use of exposure
indices may provide an overestimate of vegetation
effects and concluded that what is needed to better
predict vegetation effects is a metric that is more
sensitive to plant and ecosystem phenology.

2.1. Response of vegetation to high ozone

concentrations

Key research experiments that evaluate the
importance of the higher O3 concentrations in plant
response have been performed under (1) controlled
conditions in the laboratory and in the field and (2)
uncontrolled conditions in the San Bernardino
National Forest. These studies provide a framework
from which one can develop relevant exposure–r-
esponse models that provide a consistent relation-
ship between O3 conditions and vegetation
biological endpoints.

It has long been recognized that peak O3

concentrations are an important factor when
examining exposure indices and plant injury (Heck
et al., 1966). Stan and Schicker (1982) reported that
plants exposed to a series of successive short periods
with high concentrations suffered more injury than
did those plants that received a continuously
uniform exposure, but at a lower concentration,
with all plants receiving equal total exposure.

In 1996, the EPA proposed the use of a
cumulative exposure index which weighted the
higher hourly average concentrations greater than
the mid and lower values as a secondary O3

standard to protect vegetation from damage (US
EPA, 1997). The EPA (US EPA, 1996b) considered
two specific concentration-weighted indices: the
threshold-based SUM06 (the sum of all hourly
average concentrations X0.06 ppm) and the sig-
moidally weighted W126 exposure index (Lefohn
and Runeckles, 1987; Lefohn et al., 1988). After
reviewing the literature based on controlled fumiga-
tion experiments that investigated yield reduction of
agricultural crops, the Agency concluded that both
indices performed similarly as exposure measures to
predict the exposure–response relationships ob-
served in the National Crop Loss Assessment
Network (NCLAN) crop studies (US EPA, 1996b;
Heck and Cowling, 1997) and initially recom-
mended the threshold-based SUM06 exposure index
for a proposed secondary standard. In its final
recommendation, the Agency concluded that the
new more stringent concentration-based primary
(i.e., human health) standard would be sufficient to
protect vegetation and decided not to establish a
separate exposure-based form and level for the
secondary standard (US EPA, 1997).

When yield or growth is considered, O3 concen-
tration and duration of exposure are both impor-
tant; but the diurnal dynamics of the exposure are
also significant (US EPA, 1986). Controlled fumiga-
tion experimental results (Musselman et al., 1983,
1986, 1994; Hogsett et al., 1985) have been cited by
the EPA (US EPA, 1986, 1992, 1996a) as the
experimental basis for emphasizing the importance
of episodic peak exposures. More recent research by
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Nussbaum et al. (1995), Yun and Laurence (1999a),
Lee and Hogsett (1999), Oksanen and Holopaninen
(2001), and Köllner and Krause (2003) provide
additional support for this concept. Using data
from controlled experimental studies, Lee et al.
(1987, 1988), Lefohn et al. (1988), Musselman et al.
(1988), Tingey et al. (1989), and US EPA (1996a)
concluded that the cumulative effects of peak hourly
O3 concentrations were of greater importance than
seasonal (i.e., long term) mean exposures in
predicting vegetation damage.

Yet, concern has been expressed that the experi-
ments reporting the importance of the higher hourly
average concentrations have been performed under
controlled fumigation conditions not representative
of actual field conditions and the results obtained
from these experiments may not provide realistic
results that are applicable for developing predictive
models for assessing vegetation effects in natural
environments (Krupa et al., 1995; Grünhage and
Jäger, 1994, 2003; Grünhage et al., 1997, 2002;
Krupa et al., 2001). However, comparisons of
chamber results with field results have shown that
O3 uptake in chambers may be similar to that
experienced under field conditions (Unsworth et al.,
1984a, b; Karlsson et al., 2004; Skärby et al., 2004),
thereby alleviating some of these concerns. Uns-
worth et al. (1984a) reported that although deposi-
tion of pollutants would be greater in chambers
than in ambient air, there would be little difference
on rate of pollutant uptake. Canopy resistance to O3

uptake in chambers was similar to those measured
in the field (Unsworth et al., 1984b). Karlsson et al.
(2004) reported that chambers versus open-release
exposure systems had no influence on dose–
response relationships. Skarby et al. (2004) exam-
ined Norway spruce response to O3 using pooled
analysis of several chamber and field experiments.
They concluded that removing the chamber studies
from the analysis resulted in nearly the same
regression equation, and indicated that data from
chambers can be used in risk assessment.

Complementing the controlled fumigation results
are findings from the conifer forest ecosystem of the
San Bernardino National Forest in California.
These findings provide additional evidence for the
greater importance of the higher hourly average
concentrations than the mid and low values. For the
period 1973–1992, a population sample of 219
ponderosa pines in the conifer forest ecosystem of
the San Bernardino National Forest showed that
84% had no change or an improvement in needle
whorl retention (where abscission was due to O3)
(Miller and Rechel, 1999), while peak O3 concentra-
tions decreased during this time period. A wider
area of the San Bernardino National Forest
examined between 1974 and 1988, using a broader
index of injury (Forest Pest Management (FPM)
method), also indicate an improvement of crown
condition coincident with an improvement of O3 air
quality (Miller and Rechel, 1999). Tingey et al.
(2004) reported that reductions in O3 in the San
Bernardino Mountains during the time period
1963–1999 benefited growth of Ponderosa pine.

During the period 1950–1980, extremely high O3

concentrations impacted the San Bernardino Na-
tional Forest (US EPA, 1996a). However, over the
past 25 years, significant reductions in the O3

concentrations have occurred in this area (Lloyd
et al., 1989; Davidson, 1993; Lefohn and Shadwick,
2000; Lee et al., 2003, Tingey et al., 2004). Upon
examination of the reduction in the hourly average
concentrations over the period 1980–2003, several
interesting patterns emerge. Fig. 1a shows that from
1989 to 2003 the 24-h cumulative W126 and SUM06
exposure indices have decreased. Over a 24-h
April–October period, Fig. 1b illustrates a decreas-
ing trend in the number of hourly average concen-
trations greater than or equal to 80, 120, and
150 ppb. For the same period of time, the number of
hourly average concentrations between 50 and
89 ppb increased or remained stable in the most
recent years compared to the early 1980s (Fig. 1c).
Thus, for the period 1980–2003, the reductions of
O3 in the San Bernardino, California area appear to
be associated with reductions in the higher hourly
average concentrations, while those in the range of
50–89 ppb appear to be either stable or increasing.
Other researchers have reported similar observa-
tions for other locations in the United States
(Lefohn et al., 1998). Reynolds et al. (2003, 2004)
have described in detail reasons for the dispropor-
tionate reduction in the higher hourly average
concentrations compared to the lower values.

While other factors may be involved in this
improvement of forest growth in the San Bernardi-
no National Forest, including removal of O3

sensitive genotypes and increased growth from
nitrogen deposition, conifers at high pollution sites
still show severe leaf necrosis from O3, and the
number of whorls retained remains low (Grulke and
Balduman, 1999). Research has suggested that
nitrogen fertilization from deposition has increased
some tree growth and changed species composition
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Fig. 1. Trend in the ozone (a) 24-h cumulative W126 and SUM06

exposure indices, (b) number of hourly average concentrations

greater than or equal to 80, 120, and 150 ppb for the period

1980–2003, and (c) number of hourly average concentrations

between 50 and 89 ppb for the Crestline, San Bernardino, CA

monitoring site, April–October, 0100–2359h. Source: US EPA

AQS database.

Fig. 2. Trend in annual NO3 wet deposition for the period

1982–2002 for the NADP site at Tanbark Flat, California. The

plotted line is the moving 3-year mean value centered over the

middle year. Source: NADP (2004).
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in mixed conifer forests (Grulke and Balduman,
1999; Takemoto et al., 2001, Bytnerowicz, 2002,
Fenn et al., 2003a, b).

Conversely, over the last 20 years, there has been
a fairly steady decline in NO2 concentrations in the
California South Coast Air Basin, with the max-
imum peak 1-h indicator for NO2 in 2001 nearly
half what it was in 1982 (CARB, 2003). A National
Acid Deposition Program (NADP) monitoring site
at Tanbark Flat (NADP, 2004), near the San
Bernardino National Forest, shows that between
1982 and 2002 the annual nitrate wet deposition at
the site did not appear to increase (Fig. 2). Nitrate
components of PM2.5 and PM10, and NOx have
decreased in California’s South Coast Air Basin
(Motallebi et al., 2003). Since the early 1980s, for 12
sites in the South Coast Air Basin of southern
California, annual NOx and PM10-nitrate averages
of the 24-h average concentrations show a down-
ward trend (Fig. 3a). Similar trends are observed for
urban sites closest to the San Bernardino National
Forest, San Bernardino and Riverside (Figs. 3b and
c). Thus, NO2 concentrations, wet annual nitrate
deposition, and PM10 nitrate appear to be declining.
Nitrogen saturation in the San Bernardino National
Forest (Fenn et al., 2003a, b) has likely been present
much longer than the recent reduction in O3

concentrations; thus, most of the changes in
vegetation in the conifer forest ecosystem of the
San Bernardino National Forest in California
appear to be linked with changes in O3 exposure
associated with the higher hourly average concen-
trations.

2.2. The role of plant moisture status in vegetation

response

Water is a strong driving force for plant growth
and health. As the water content of the plant
declines due to high use or low availability, the
stomata tend to close. Thus, either a high vapor
pressure deficit (VPD), which increases water use, or
low soil water content can be used for an indication
of stomatal conductance. Efforts were made to
combine exposure indices and soil moisture mea-
surements to predict vegetation effects. Lefohn et al.
(1997) presented an approach for combining ex-
posure information with potential soil moisture
considerations. The authors interpolated the O3

exposures in many areas but cautioned that the
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Fig. 3. Trend in annual NOx and PM10 nitrate for (a) California’s South Coast Air Basin, 1985–2000, (b) San Bernardino, CA,

1986–2001, and (c) Riverside, CA, 1985–2001. The plotted line in 3a is the moving 3-year mean value centered over the middle year.

Source: N. Motallebi, California Air Resources Board, personal communication.
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hydrologic index used might not represent an
optimum metric to indicate whether a particular
species was experiencing water stress. Recently,
Edwards et al. (2004) investigated O3 exposures
and their implications for vegetation areas of the
central Appalachian Mountains using an approach
similar to that of Lefohn et al. (1997). Chappelka
and Samuelson (1998) commented on what Lefohn
et al. (1997) had discussed: the experimental
database was limited and based on seedling
responses.

2.3. Performance of exposure indices

Identification of a cumulative exposure index
optimum for all plant species and all conditions
does not appear to be possible due to (1) the limited
information for assessing the relative performance
of exposure indices for relating to vegetation effects
and (2) the inherent differences in how plants
respond to O3 (Musselman et al., 1988; US EPA,
1996a). However, some indices have been shown to
be less useful than others. US EPA (1996a)
concluded that indices based on long-term averages
were inadequate to differentiate among the different
types of exposure regimes. Once such index is the
SUM00, or the seasonal sum of all hourly average
concentrations, also called the total exposure index.
The SUM00 divided by the period of accumulation
is defined as the long-term average concentration.
This index weights all concentrations equally, thus
focusing on the more numerous lower concentra-
tions that have been found to be of less biological
importance for assessing vegetation response. Given
the importance of the higher hourly average O3

concentrations, the SUM00 and average concentra-
tion metrics are inadequate for characterizing plant
exposure to O3, except in those areas where
numerous occurrences of high hourly average
concentrations result in a high correlation between
the peaks and the SUM00 index.

However, it is important to note that others have
not necessarily agreed with these findings. For
example, Heagle and Stefanski (2000) reported that
both peak-weighted and non-peak-weighted expo-
sure indices performed similarly. Heagle and Ste-
fanski (2000) ‘‘pooled’’ the data from San
Bernardino (CA) and Riverside (CA) with data
from Amherst (MA), Corvallis (OR), Kennedy
Space Center (FL), Raleigh (NC), and Blacksburg
(VA) and found that high O3 exposures were much
greater at the two California sites (indicated by high
W126, SUM06, W95, and AOT40 values) in
comparison with the other locations. Because the
data from all of the sites were pooled, the large
number of high hourly average O3 concentrations
that occurred at the California sites may have
resulted in the exposure indices being highly
correlated with one another and made it difficult
to separate out the most optimum sets of indices
from the other indices used in the analysis.
Similarly, Arbaugh et al. (1998) reported that the
SUM00 exposure index performed better for
describing injury than the SUM06, W126, number
of hours greater than or equal to 0.08 ppm, and the
number of days between measurement periods. For
areas with numerous high hourly average O3

concentrations, such as southern California, many
different O3 exposure parameters relate well to plant
response (Musselman et al., 1988).

An important concern with using the various
cumulative exposure indices in predicting yield loss
for agricultural crops or trees is that the same value
of an exposure index may relate to different
vegetation responses (Lefohn and Foley, 1992).
Results reported by Yun and Laurence (1999a)
showed that the same SUM06 value resulted in very
different foliar injury when exposure regimes with
different numbers of high concentrations were
applied. Similarly, Hogsett et al. (1985) showed
that the same SUM07 value resulted in different
yield when exposure regimes, some containing peaks
and some without peaks, were used.

To eliminate the concern that the same exposure
value of an exposure index might provide different
vegetation responses, Lefohn and Foley (1992)
recommended that an additional exposure para-
meter, the number of hourly averaged O3 concen-
trations X100 ppb (N100), combined with either the
W126 or the SUM06 exposure indices be used to
modify NCLAN exposure–response equations to
predict yield loss. The N100 modification would
then be used as a surrogate for the frequent number
of peak hourly average concentrations that were
experienced in the chambers with the highest
exposures in the NCLAN experiments. Indepen-
dently, Nussbaum et al. (1995), using identical
AOT40 exposure regimes with some that contained
peaks and some without peaks, suggested that peak
concentrations 40.11 ppm were important for
describing the effect of O3 on total forage yield.

Fundamentally, by focusing too much attention
on the absolute value of the cumulative exposure
index, instead of on the combination of the value of
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Fig. 4. A comparison of the (a) annual SUM06 exposure values and (b) number of hourly average concentrations greater than or equal to

100 ppb (N100) for the period 1991–2001 at a site in the Great Smoky Mountains National Park (gray bars) and at Crestline, San

Bernardino, CA, a site in the San Bernardino National Forest (black bars). Source: US EPA AQS database.
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the exposure index and the number of high hourly
average concentrations included in that exposure
index, inaccurate conclusions can be reached. We
illustrate this point by comparing a site in the San
Bernardino National Forest in southern California
with a site in the Great Smoky Mountains National
Park. Although the SUM06 cumulative exposure
values are similar for both locations for most of the
years between 1995 and 2001 (Fig. 4a), the San
Bernardino site experienced as much as 956 times
more hourly average concentrations X0.10 ppm
than the Great Smoky Mountains National Park
site (Fig. 4b). While foliar symptoms of O3 injury
are observed in the Great Smoky Mountains
National Park, the magnitude of the damage that
is observed in San Bernardino Mountains, in terms
of crown dieback, loss of older needle whorls of
conifers, and death of trees is much greater. This
example illustrates that two areas can have similar
cumulative exposure index (SUM06) but different
numbers of number of peak concentrations (hourly
average concentrations X0.10 ppm, N100). Thus,
assuming similarity of susceptibility of ecosystems
in these two areas because of similar SUM06 values
is inappropriate. Yun and Laurence (1999a) provide
additional evidence that the same SUM06 value
with different numbers of high concentrations can
cause different foliar response. We expect O3 fluxes
may be different between the two sites because of
differences in moisture conditions favoring uptake.
However, flux data differences between the two sites
are not available for comparison; any flux compar-
isons would be limited given the two sites have
different species with differences in their suscept-
ibilities and defense mechanisms.

3. Ozone stomatal flux and effective flux

3.1. Stomatal conductance

Any flux-based index must be based upon
gaseous pollutant movements. In order to determine
actual O3 flux, it is necessary to understand the
movement of O3 from ambient air to plant surfaces,
O3 uptake through stomata, and interactions of O3

within plant tissue. Any reduction in the ability for
O3 to move into the leaf would lead to smaller
effects because of less O3 available for interaction
with leaf tissue. Stomata conductance is the
principal control point of entrance of O3 into the
sensitive leaf tissue and so has been thought for
years to be the most important element to define
flux-based indices (Heath, 1980).

The movement of O3 from the free air (often
called bulk air) environment into the leaf proper is
controlled by three main processes: movement from
the free air into the canopy (canopy conductance),
in which the placement of plants and leaves play a



ARTICLE IN PRESS
R.C. Musselman et al. / Atmospheric Environment 40 (2006) 1869–1888 1877
role; boundary layer conductance in which the flow
of air close to leaves with the air just at the stomata
is governed; and stomatal conductance which
describes how the air at the stomata moves into
the leaf. Ozone concentration in a plant canopy is
influenced by environmental factors such as light,
temperature, and wind speed, and atmospheric
concentrations of NOx and VOC products as well
as the structure of the canopy including the soil
underneath it (Coe et al., 1995; Wang et al., 1995;
Lendzian and Kerstiens, 1991).

Stomatal flux of O3 is controlled by ambient O3

concentration and by canopy and stomatal con-
ductances and so will depend the concurrence (also
referred to as coherence or symmetry or synchrony)
of the diurnal concentration and conductance
phases (Runeckles, 1992; Lee and Hogsett, 1999).
Stomatal conductances are often highest in mid-
morning due to high water content and low VDP
while high ambient O3 concentrations generally
occur in mid to late afternoon. Kurpius et al. (2002)
describe the decoupling of the time period when the
highest O3 concentrations and uptake occur in
natural systems.

Since O3 flux is important in plant response and is
dependent upon both conductance and ambient O3

concentration, the combinations of high conduc-
tance/low concentration in the morning and low
conductance/high concentration in the afternoon
would seem to suggest morning and afternoon to be
somewhat equivalent for total flux. However, this
generalization may be inappropriate. The low
conductance in the afternoon may be more limiting
to flux than the low concentration in the morning.
In addition, generalization on lack of coherence of
conductance and concentration must be made with
caution. Grulke et al. (2002) reported high con-
ductance when O3 concentrations were high under
some conditions.

3.2. Nocturnal conductance

Stomata often remain partially open at night for
most plant species (Musselman and Minnick, 2000),
although conductance at night is at a much reduced
level compared to daytime conductance slowing
possible O3 movement. However, the level of
turbulence at night is often low with resulting stable
boundary layers. Nevertheless, nocturnal turbulence
does intermittently occur and can result in non-
negligible O3 flux into the plants. This nocturnal
uptake can be an important contributor to plant
response (Matyssek et al., 1995; Musselman and
Minnick, 2000; Grulke et al., 2002, 2004; Massman,
2004; Uddling et al., 2004). Grulke et al. (2004)
report that for ponderosa pine in the San Bernardi-
no (CA) National Forest, the stomatal conductance
at night ranged from one tenth to one fourth that of
maximum daytime gas exchange. In June, at a high-
elevation site, 11% of the total daily O3 uptake of
pole-sized trees occurred at night; while in late
summer, O3 uptake at night was negligible. Mass-
man (2004) suggested that nocturnal stomatal O3

uptake accounted for about 15% of the cumulative
daily effective O3 dose that was related to predicted
injury.

In addition, plants may be more sensitive to O3 at
night because there is less production of metabolites
and energy-containing compounds for detoxifica-
tion processes in the absence of photosynthesis
(Musselman and Minnick, 2000; Grulke et al.,
2004). Research has shown that plants exposed to
O3 at night can show greater reductions in growth
than those exposed to O3 in daylight (Matyssek
et al., 1995). In another experiment, Brassica rapa

plants were exposed to O3 during either the day or
night, with little significant difference in amounts of
injury or reduced growth response to treatment even
though the conductance was 70–80% lower at night
(Winner et al., 1989). Lee and Hogsett (1999)
reported that tissue biomass of ponderosa pine
seedlings was significantly reduced when seedlings
were exposed to either daytime or nighttime
episodic profiles; although biomass reductions were
greater with daytime peak concentrations than with
nighttime peak concentrations.

3.3. Ozone interaction within plant tissue

Plant stomatal conductance is central to all
models of O3 deposition. Grünhage and Hanel
(1997) and Emberson et al. (2000), using the Jarvis
(1976) model, have described a multiplicative
algorithm of stomatal conductance of O3. Such
models include functions for the effects of phenol-
ogy, light, temperature, VPD, and soil water
potential on the stomatal conductance of several
species. Models of this type usually describe O3

deposition in terms of resistances associated with
different uptake surfaces. In this paradigm, stomata
are one of several possible deposition routes. To be
useful for setting standards, however, these models,
which are basically one-dimensional (vertical) mod-
els that are applied at a single point, must be scaled
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to include horizontal spatial scales. Grünhage and
Jäger (2003) extend a one-dimensional point model
to horizontal scales by employing a Lagrangian
model to infer information on the horizontal
distribution of deposition. Nussbaum et al. (2003)
and Bassin et al. (2004) describe a one-dimensional
model that uses routinely measured gridded meteor-
ological and O3 data and species distribution
information to estimate O3 deposition at agricultur-
al areas in Switzerland. Others have used adapta-
tions of the Ball–Berry (Ball et al., 1987)
conductance/photosynthesis model approach to
estimate O3 uptake (Zeller and Nikolov, 2000;
Nikolov and Zeller, 2003). These models might be
expected to overestimate O3 effects on vegetation,
since they do not account for the detoxification
potential of vegetation that provides some amount
of natural plant protection from O3. This protection
is not without cost since it consumes energy.

Classical plant physiology defines stomatal flux of
any gas to be its conductance times the difference
between the inside and outside concentrations. For
uptake of O3 this is gO3

½Cb
O3
� Ci

O3
� with O3

stomatal conductance ðgO3
Þ being the major regula-

tory control of uptake of O3 within the leaf
boundary layer ðCb

O3
Þ. The concentration of O3

within the substomatal cavity or inside the leaf is
Ci

O3
. While the total flow of gaseous pollutants into

leaves should include gaseous diffusion through the
leaf boundary layer and from the substomatal
cavity into the interior of the leaf cell, those paths
are difficult to calculate and are generally ignored as
being sites of high conduction. Ozone will attain a
concentration in the cell, dependent upon its entry
speed and its reactivity with the wall and plasma
membrane constituents. In the past, the internal
concentration ðCi

O3
Þ has been set to be zero (Laisk

et al., 1989) due to early studies, which found that
no O3 could pass through a leaf. Moldau and
Bichele (2002) have presented data at very high
concentrations of O3 indicating that the concentra-
tion of O3 inside the leaf is low, but not zero. The
authors (Moldau and Bichele, 2002) show a slow
rise in internal O3 level within the first few minutes
of exposure, suggested to be due to the depletion of
an antioxidant. While Ci

O3
is assumed to be

constant, due to the complexity of the internal
structure of the leaf, the internal concentration of
the pollutant cannot be uniform within the leaf.

In the leaf, O3 is consumed in chemical reactions,
or changed into other species, and therefore O3

within the stomatal cavity drops in concentration.
Each reaction reduces the O3 concentration as it
penetrates deeper to the site where actual injury is
caused. Low levels of O3 are thought to be
counteracted because the amount of detoxifying
agents such as antioxidants is not limited; at high O3

levels the detoxification potentials by antioxidants
can be overwhelmed and so the remaining O3 would
cause more injury. As an antioxidant molecule is
sacrificed reacting with ozone, it must be replaced,
at an energy cost to the plant.

3.4. Plant defenses

Plant defenses include the ability of the plant to
restrict entry of O3 into plant tissue (modifying the
conductance) and to detoxify O3 once it enters the
leaf (general antioxidant behavior). To adequately
predict vegetation impacts associated with O3, it is
necessary to examine both O3 uptake and plant
detoxification (Hogsett et al., 1988; Massman et al.,
2000; Panek and Goldstein, 2001; Fuhrer and
Booker, 2003; Massman, 2004; Matyssek et al.,
2004; Grünhage et al., 2004).

The importance of detoxification processes has
been experimentally demonstrated. For example,
observed nonlinear relationships between O3 uptake
and plant response indicate that additional mechan-
isms beyond uptake are responsible for vegetation
effects (Amiro et al., 1984; Amiro and Gillespie,
1985; Lefohn and Tingey, 1985; Fredericksen et al.,
1995). Amiro et al. (1984) and Bennett (1979) found
that plant response increased nonlinearly with the
O3 exposure duration, suggesting that there is some
degree of internal detoxification. Species having
high amounts of detoxification potential show less
of a relationship of O3 stomatal uptake to
plant response (Musselman and Massman, 1999).
Karlsson et al. (2004) suggested that lack of relation
between O3 uptake and response of trees may be
related to detoxification capacity, since separating
sensitive species from less sensitive provided better
fit of uptake and response.

While any O3 uptake has the potential for causing
a plant response, there may be nonlinear responses
and lag times, which will affect how O3 will trigger a
response from a toxicological perspective. Uptake is
one of many interacting factors, such as time
between episodes, temporal variation, phenology,
canopy structure, physiological and biochemical
processes, environmental conditions, genetics, and
soil and nutrient conditions involved in plant
response to O3. In essence, injury occurs to
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vegetation when the amount of pollutant absorbed
exceeds the ability of the plant to detoxify O3 species
or to repair the initial O3 induced events (Ariens
et al., 1976; Tingey and Taylor, 1982; Tingey and
Andersen, 1991). The magnitude of the response is
determined by the actual amount of the pollutant
reaching the target site and the ability of the plant to
restore homeostatic equilibrium.

Detoxification processes can be constitutive or
inductive (noted as passive or active by Musselman
and Massman, 1999). Constitutive detoxification
processes are those biochemical pathways already
present in the plant tissue, and immediately avail-
able for interaction with O3 (Heath, 1994). Typically
this would involve a reduction of O3 or one of its
early products. Plant species/varieties naturally
differ in the amounts of constitutive antioxidants
available for any type of detoxification; thus some
plants are more able to neutralize an oxidative stress
more than others. Further, the amount of constitu-
tive antioxidants can vary with developmental age
of the tissue and the environmental conditions.
Ozone can react with many compounds within the
substomatal cavity and on the surface of cells of the
leaf to produce a variety of oxidizing and toxic
chemicals. Reactions of O3 are very pH dependent
and can easily form hydrogen peroxide in alkaline
media. While reactions of the gases within the cell in
the water phase at the cell’s surface and the reaction
of other species thus generated with the components
within the wall region of the cell are poorly
understood, some fundamental reactions have been
described (Heath, 1987; Heath, 1988; Wellburn,
1990). Ozone reacts with organic molecules at
double bonds to form carbonyl groups and, under
certain circumstances, generates peroxides. Sulfhy-
dryls are particularly easy targets, with the forma-
tion of disulfide bridges or sulfones (Mudd and
Kozlowski, 1975). In water, the described reactions
are hydrogen peroxide (H2O2), hydroxyl radical
(HO) (Heath and Castillo, 1987), and superoxide
(O2
�). Effective detoxification reactions can occur

via antioxidant metabolites and enzymes, such as
ascorbate, glutathione, and superoxide dismutase, if
they are present at high enough concentrations
(Castillo et al., 1987; Scandalios, 1994).

Ascorbate within the wall declines when the tissue
is exposed to O3 (Luwe et al., 1993; Moldau,1998;
Turcsányi et al., 2000; Zheng et al., 2000); a decline
closely linked to the amount of O3 penetrating the
leaf tissue. Certainly the variation in the types of
biochemicals present in the apoplastic space can
give rise to a multiplicity of reactions with O3, but
the dominant antioxidant species is likely ascorbate.
However, too rapid of O3 entry can overwhelm any
antioxidant response by depleting it. These antiox-
idants produced do vary with stage of development
and are influenced by other environmental stress
pressures on the plant (Tingey and Taylor, 1982).

Inductive detoxification processes are those that
must be formed de novo by the plant; a response to
an O3 exposure would be by an active production of
chemicals/antioxidants that interact with the O3 to
neutralize its effect on plant tissue, often called a
triggered response (Buchanan et al., 2000). The level
of the induced response can be somewhat propor-
tional to the level of the stress, but often, once
triggered, exhibits a ‘‘saturated’’ biochemical pro-
cess. Since the process must be induced, a delay or
lag time occurs between the time of the application
of the O3 stress and the production and activation
of the detoxification process. This lag time will
depend upon the intensity of the O3 loading, the
quantity of constitutive detoxification chemicals
already available, and the initial health and photo-
synthetic capacity of the plant and its ability to react
to the stress. Inductive detoxification processes
require energy for producing or regenerating the
antioxidant or other detoxification biochemicals,
but is difficult to show since it depends greatly upon
the status of the plant.

4. Using effective flux to establish biologically

relevant plant response relationships

Plant defenses are difficult to quantify and to
model, but some research is beginning to evaluate
this component (Massman and Grantz, 1995; Chen
et al., 1998; Plöchl et al., 2000; Barnes et al., 2002;
Massman, 2004). Massman et al. (2000) developed a
conceptual model of a dose-based index to establish
plant injury response to O3 that is based upon the
traditional exposure-based parameters. Most mod-
els to date do not explicitly include plant defense
and, therefore, deal mostly with (simple) dose rather
than effective dose. Furthermore, no existing model
includes any feedback mechanism between O3 dose
and the plant’s ability to detoxify the subsequent O3

taken up through the stomata, by depletion of
reserves or induction of new antioxidants.

Weighting of fluxes has been proposed (Grünhage
and Jager, 1996; Massman et al., 2000; Pleijel et al.,
2002; Danielsson et al., 2003). Massman et al. (2000)
discussed the concept of time-varying-weighted fluxes
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Fig. 6. Average daily cycle of the model estimates for the flux-

based instantaneous ozone dose and the instantaneous effective

ozone dose, at vineyard site during the CODE91. The instanta-

neous effective ozone dose has been multiplied by 1.78 for ease

of comparison between the two flux-based metrics. Source:

Massman (2004).
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that can be used as a surrogate for plant defenses.
Fig. 5 from Massman et al. (2000) illustrates the
relationship at a grape vineyard site between
stomatal conductance ðgO3

Þ, pollution uptake
ðF stom� Þ, and one possible time-varying-flux weight-
ing factor (W). The hypothetical time course of the
weighting function takes into consideration the
ability of a plant to neutralize the pollutant. Similar
diurnal conductance and uptake models have been
presented by others (Cape and Unsworth, 1988;
Runeckles, 1992). Massman et al. (2000) included
the defense mechanism. The model directly states
that flux is not necessarily correlated with plant
injury or damage because time-varying-defense
mechanisms reduce the effectiveness of the fluxes.
Clearly, the plant’s biochemical response to O3 must
be closely linked with stomatal flux and defense
mechanisms in order to adequately predict vegeta-
tion effects.

Massman (2004) reported that the daily max-
imum potential for plant injury, based on effective
dose, tended to coincide with the daily peak in O3

concentration; this observation was attributed to
the diurnal changes in his hypothetical plant
defensive mechanism (Fig. 6). The primary differ-
ence between these two injury metrics is most
obvious between the hours of 0800 and 1200 h.
Relative to the simple dose metric, plant photo-
synthesis (A) tends to reduce the contribution of the
effective dose at this time of day (when the low- and
mid-level concentrations occur) in comparison to
the daily cumulative dose, since plant defenses likely
are greater during the morning to noon hours
Fig. 5. Time-varying ozone stomatal flux (Fstom*) stomatal

conductance (Gstom*) and an empirical weighting factor used as

a surrogate for defense (W). Source: Massman et al. (2000).
because photosynthesis is then maximal (Massman
et al., 2000). Correspondingly, defenses are likely
lower in mid-afternoon when O3 concentrations are
higher. The results reported by Massman (2004)
support the controlled and uncontrolled (i.e., San
Bernardino National Forest) experimental results
that the higher hourly average O3 concentrations
appear to have a greater effect on vegetation than
the mid and low levels.

Again, results reported by Yun and Laurence
(1999b) showed that conductance alone was not
adequate for predicting plant response; the authors
reported similar stomatal conductance in two
cultivars of aspen (Populus tremuloides) resulted in
different levels of injury. These observations and the
work by Massman (2004) indicate that the defense
and repair components are very important in
protecting the vegetation from the mid-level O3

concentrations. Defense mechanisms are less pro-
tective during the latter part of the daytime when
the higher hourly average concentrations occur,
possibly because they are overloaded by peaks or
depleted by earlier exposures. As indicated earlier in
this section, one must consider the effective dose,
which consists of the combination of (1) integrated
O3 flux and (2) detoxification mechanisms to make
adequate predictions.

Pleijel et al. (2002) reported that an O3 uptake
rate threshold of 5 nmolm�2 s�1 performed best for
both wheat and potato. Similarly, Danielsson et al.
(2003) were able to show an improved relationship
between uptake and yield of spring wheat using a
threshold of 5 nmolesm�2 s�1. Pleijel et al. (2002)
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Fig. 7. Changes in fractional cumulative dose over time of day,

using flux thresholds of 0, 3.8, 5.8, or 7.5 nmolm�2 s�1.
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report that an instantaneous flux threshold im-
proved the r2 value from 0.30 to 0.45 for the
relationship between O3 flux and potato yield.
However, their data show that much of the
variability was still not captured in the model.

A problem in using a statistically derived thresh-
old is evident in the work by Pleijel et al. (2002).
Most of the flux was associated with concentrations
below 0.06 ppm because the conductance was high-
est when the concentrations were below 0.06 ppm.
These results associated most of the measured
effects with concentration at the lower end of the
distribution, and do not agree with the results
associated with controlled and uncontrolled experi-
ments showing the importance of the higher O3

concentrations in plant response.
Models that ignore the combination of uptake

and detoxification processes might not provide
sufficient predictive power when applied under
ambient ecosystem conditions. Detoxification pro-
cesses are dynamic and cannot be represented in
response modeling by a constant threshold value.
Defense and repair mechanisms vary diurnally as
well as seasonally and that may make it difficult to
use simple flux thresholds in instantaneous flux
measurements to compensate for detoxification
processes. Flux-based models that use a fixed
threshold do not allow for the temporal (i.e., daily
and seasonal) variability of defense mechanisms and
the predicted results associated with these models
may not provide consistent results. Correspond-
ingly, Grünhage et al. (2004) question the use of
statistically derived constant flux thresholds for O3

uptake as suggested by Danielsson et al. (2003).
To examine the consequences of applying a

(critical) flux threshold, we have employed the
CODE91 vineyard data model (Massman et al.,
1994; Pedersen et al., 1995; Massman, 2004) for
partitioning the measured eddy covariance flux into
stomatal (Fstom) and non-stomatal components to
yield half-hourly estimates of Fstom for the 31

2
weeks

of the experiment. A flux threshold (Fthrsh) can now
be applied to Fstom after which the average daily
time course for the accumulated dose is determined
by separating the data into 1

2
-h time slots and

averaging the data within each of time slot. Only
positive (Fstom�Fthrsh) are included in the accumu-
lated dose.

Fig. 7 shows the average daily time course of the
cumulative dose associated with three different flux
thresholds (3.8, 5.8, and 7.5 nmolm�2 s�1) and the
cumulative dose associated with Fstom only (i.e., no
threshold). The 5.8 nmolm�2 s�1 threshold is ap-
proximately the value of 6 nmolm�2 (PLA) s�1 used
by the participants of the United Nations Economic
Commission for Europe International Cooperative
Program (UNECE ICP) (Harmens et al., 2004).
PLA is the Projected Leaf Area (one-sided) in
the direction of the sun of leaves near the top of
the canopy, which for this study was 3.4. For the
present discussion PLAE1 is assumed for the
vineyard. Comparison of the above with the other
two values for Fthrsh (3.8 and 7.5 nmolm�2 s�1)
demonstrates the sensitivity of the accumulation
curve to the specific value of the Fthrsh.

Fig. 7 shows that employing a flux threshold
preferentially weights the daylight hours between
10 a.m. and 3 p.m. The use of a flux threshold will
reduce the cumulative dose during the morning
hours, during which plant photosynthesis is high
and detoxification chemicals are being produced.
This is in agreement with the expectation that the
morning O3 fluxes should contribute relatively less
to the cumulative total. However, in the afternoon
hours, when photosynthesis is reduced (from stress
or carbohydrate loading) and defenses may become
overwhelmed, additional accumulation of dose is
occurring. The application of a flux threshold does
not address the additional accumulation occurring
during the late afternoon, nighttime and early
morning hours. The application of a flux threshold
underemphasizes or eliminates the fluxes occurring
at these biologically important times.

5. European critical level

In the 1980s, several European countries were
seeking an acceptable, scientific basis for designing
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control strategies to reduce regional and trans-
boundary air pollution. Under the auspices of the
UN Economic Commission for Europe (UNECE)
Convention on Long-Range Transboundary Air
Pollution, it was agreed to adopt the critical levels
approach for O3. A critical level is an exposure- or a
flux-based parameter. Critical levels are set to
prevent long-term injury and damage to the most
sensitive elements of any ecosystem. They are used
to map and identify areas in Europe in which the
levels are exceeded and that information is then
used to plan optimized and effect-based abatement
strategies. As used by the UNECE, they are not air
quality standards in the US sense, but they have
been used as ecological targets for planning reduc-
tions in pollutant emissions.

While the nature of the significant harmful effects
is not specified in the definition, which provides for
different levels for different types of harmful effect
(e.g., visible injury or loss of crop yield), there are
different critical levels established for injury or for
damage that apply to crops, forests, and semi-
natural vegetation. These critical levels are revised
periodically as new scientific information becomes
available. The ‘Level I’ critical levels were used in
the 1990s to map areas which exceed these levels,
but research led to the conclusion that these simple,
exposure-based levels lead to over-estimation of the
effects in some regions and under-estimation in
others (Kärenlampi and Skärby, 1996; Fuhrer et al.,
1997). Different regions with similar AOT40 values
can have considerably different O3 flux values
(Zeller, 2002) and research has shown the inade-
quacy of the AOT40 for estimating crop loss in
Europe (De Santis, 1999; Ashmore et al., 2004;
Uddling et al., 2004). Also, the AOT40 has
additional limitations with mathematical robust-
ness, which may further limit its usefulness (Sofiev
and Tuovinen, 2000).

Therefore a decision was made to work towards a
flux-based approach, with an objective goal of
modeling O3 flux-effect relationships for the three
vegetation types (crops, forests, and semi-natural
vegetation). Current critical levels for O3 utilize
three indices (i.e., exposure-based, modified expo-
sure-based, and flux-based) depending on the crop
and the scientific database available for the index.
The critical levels terminology has now changed,
such that Level I is called exposure-based and Level
II is called flux-based (Harmens et al., 2004).
Current information on Critical Levels is available
online (Mills, 2004).
Flux-based indices are available only for wheat
and potato, reflecting the limited database (Harmens
et al., 2004). The AOT40, referred to as ‘‘concen-
tration-based accumulated over a stated period of
time,’’ is still used to predict effects on most crops
and forest trees (Harmens et al., 2004). The
‘‘modified concentration-based’’ over a period of
time (exposure-based) index uses VPD as the
modifier (Harmens et al., 2004), since O3 uptake
and subsequent plant response is highly dependent
on stomatal uptake as influenced by VPD. The
modified concentration-based parameter is only
used for crop injury, not damage.

6. Additional research needs for replacing exposure

indices with effective–dose indices

Both exposure and effective–dose modeling ef-
forts have their weaknesses in predicting O3 vegeta-
tion effects. Exposure indices do not take into
consideration O3 uptake and detoxification, which
tend to be independent, when used in exposure–
response predictive models. The sensitivity of
vegetation as a function of time of day or period
of growth, as well as edaphic conditions, may result
in plants being exposed to high O3 concentrations
with little resultant injury or damage, while more
moderate levels of O3 exposures result in injury
(Showman, 1991; US EPA, 1986, 1996a). Similarly,
large amounts of O3 uptake, occurring during
periods when detoxification processes predominate,
can result in overestimates of vegetation effects.

In Section 4, we pointed out that plant defenses
are difficult to quantify, but some research is
beginning to quantify this component (Massman
and Grantz, 1995; Chen et al., 1998; Plöchl et al.,
2000; Barnes et al., 2002; Massman, 2004). Clearly,
additional research, especially in relation to diurnal
variation of detoxification processes, is needed in
this area before effective–dose models have the
power that is required to adequately predict
vegetation effects.

Monitoring technology is progressing so that
measuring and analyzing O3 deposition to vegetated
canopies, although difficult and complex, is becom-
ing more routine. Models of O3 conductance into
plant tissue within a canopy also exist (Wesely,
1989; Massman, 1993; Grünhage and Haenel, 1997)
but should be improved. Grünhage et al. (1999)
provide a model of the deposition of O3 on plant
and soil surfaces. Other models that partition O3

uptake into stomatal and non-stomatal components
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are available (Zeller and Nikolov, 2000; Nikolov
and Zeller, 2003).

As new experiments are performed to add to the
previous scientific knowledge base, future research
efforts should focus on the patterns (i.e., combina-
tions) of the hourly average concentrations that are
used in the controlled experiments from which data
are generated. If new experiments use realistic
exposures in flux-based experiments, then the
problems associated with using NCLAN-type data,
which contained numerous peak concentrations, to
determine exposure-effects relationships can be
avoided. In addition, attention should be paid to
the exposure regimes that are used in the control
comparisons. Selecting hourly average concentra-
tions in the control experiments that are too low
could result in data that tend to overestimate effects
(US EPA, 1996a; Tingey et al., 2002).

Other factors, including predisposition time
(McCool et al., 1988; Hogsett et al., 1988) and crop
development stage (Heagle et al., 1991; Tingey et al.,
2002), contribute to variations in biological re-
sponse, which suggests the need for weighting O3

concentrations to account for predisposition time
and phenology. However, the role of biology
influencing plant response varies considerably with
species and environmental conditions, so that
specification of a weighting function for general
use in characterizing plant exposure is not yet
possible.

Both exposure indices and flux-based models
currently have their limitations in predicting vegeta-
tion effects. Routine monitoring in the United
States and Canada for O3 is summarized as hourly
average concentrations. Emission reduction strate-
gies for implementing pollution control plans
involve relating O3 concentrations and exposures
with appropriate reductions in O3 precursors.
Massman et al. (2000) and Massman (2004) stress
that the product of the overlapping mathematical
relationships of conductance, concentration, and
defense mechanisms results in a much different
picture of potential impact to vegetation than just
the use of conductance and concentration in
predicting vegetation effects. The controlled and
uncontrolled experimental results provide the basis
for focusing on the higher O3 concentrations, while
including the mid and lower levels, when estimating
the effects of emission reductions on vegetation.
Results of those studies provide the biological
framework from which relevant exposure–response,
dose–response, and effective dose models can be
developed so as to provide a consistent relationship
between effective dose and vegetation effects. As we
gain further insight into detoxification processes
and other defense mechanisms that will allow us to
develop better relationships between effective dose
and vegetation effects, it is anticipated that more
appropriate links can emerge between exposure,
effective flux, ambient air quality standards, and
emission reduction strategies.

7. Conclusions and recommendations

Determining response of plants to O3 requires
defining the proper O3 summary statistic to relate to
the plant response. Early work-related ambient
hourly average O3 concentration to plant response.
Subsequent work determined that cumulative ex-
posure to O3 and peak O3 concentrations were
important for plant response, so exposure-based O3

parameters were utilized. Since stomata are partially
open at night, the 24-h O3 exposure period of time
should be used for both exposure–response and
effective–dose models.

The effects of O3 on individual plants and the
factors that modify plant response to O3 are
complex and vary with biological and physical
factors such as plant species, environmental condi-
tions, and soil moisture and nutrient conditions.
Researchers recognize that current O3 exposure
indices do not fully characterize the potential for
plant uptake, detoxification, and resulting vegeta-
tion effects (US EPA, 1996a). The exposure indices,
being measures of ambient condition, do not take
into consideration the physical, biological, and
meteorological processes controlling the transfer of
O3 from the atmosphere through the leaf and into
the leaf interior, and subsequent biochemical reac-
tions within the leaf. Experimental results that
identify and quantify defense mechanisms and their
relationship to O3 uptake are an important refine-
ment in the use of flux-based indices to predict plant
response.

Because of a lack of a dose-based index that
includes uptake and detoxification, researchers and
policymakers continue to use concentration- or
exposure-based indices instead of effective–dose
based indices. Until effective–dose models are
developed that integrate O3 uptake and detoxifica-
tion with biological response, we anticipate that
models based solely on O3 flux will overestimate
vegetation effects. Without adequate effective-flux
based models, exposure-based O3 metrics appear
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to be the only practical measure for use in relat-
ing ambient air quality standards to vegetation
response.
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