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ABSTRACT

An intermediate-complexity, quasi–physically based, meteorological model (MicroMet) has been devel-
oped to produce high-resolution (e.g., 30-m to 1-km horizontal grid increment) atmospheric forcings re-
quired to run spatially distributed terrestrial models over a wide variety of landscapes. The following eight
variables, required to run most terrestrial models, are distributed: air temperature, relative humidity, wind
speed, wind direction, incoming solar radiation, incoming longwave radiation, surface pressure, and pre-
cipitation. To produce these distributions, MicroMet assumes that at least one value of each of the following
meteorological variables are available for each time step, somewhere within, or near, the simulation do-
main: air temperature, relative humidity, wind speed, wind direction, and precipitation. These variables are
collected at most meteorological stations. For the incoming solar and longwave radiation, and surface
pressure, either MicroMet can use its submodels to generate these fields, or it can create the distributions
from observations as part of a data assimilation procedure. MicroMet includes a preprocessor component
that analyzes meteorological data, then identifies and corrects potential deficiencies. Since providing tem-
porally and spatially continuous atmospheric forcing data for terrestrial models is a core objective of
MicroMet, the preprocessor also fills in any missing data segments with realistic values. Data filling is
achieved by employing a variety of procedures, including an autoregressive integrated moving average
calculation for diurnally varying variables (e.g., air temperature). To create the distributed atmospheric
fields, spatial interpolations are performed using the Barnes objective analysis scheme, and subsequent
corrections are made to the interpolated fields using known temperature–elevation, wind–topography,
humidity–cloudiness, and radiation–cloud–topography relationships.

1. Introduction

For decades, earth-system scientists have been devel-
oping physically based mathematical models describing
interactions between the atmosphere and terrestrial
surface. These models represent important climate sys-
tem components and have improved our understanding
of climate-related processes and feedbacks. The latest
generations of distributed terrestrial models are being
designed for high spatial resolutions (e.g., 30-m to 1-km
horizontal grid increments) and require scale-appro-
priate atmospheric forcings. For example, models re-
quire spatially relevant driving data to simulate river

discharge and floods (e.g., Jasper et al. 2002; Westrick
et al. 2002), ecosystem processes (e.g., Le Dizès et al.
2003; Vourlitis et al. 2003), snow distributions (e.g., Lis-
ton and Sturm 2002; Winstral et al. 2002), soil tempera-
tures and active layers (e.g., Shiklomanov and Nelson
2002; Taras et al. 2002), and water cycles using soil–
vegetation–atmosphere interaction models (e.g., Lud-
wig and Mauser 2000; Whitaker et al. 2003).

In addition to providing high-resolution information
on terrestrial features and fluxes, high-resolution mod-
els can be used to develop parameterizations of subgrid
features found within low-resolution atmospheric and
terrestrial models (e.g., Randall et al. 2003; Liston
2004). This is accomplished by running the models as
explicit subgrid-process-resolving models, and using the
resulting information to understand the interrelation-
ships among the relatively small and large scales.
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Many spatially distributed terrestrial models require
atmospheric forcings on surface grids having higher
spatial resolution than the available meteorological
data. In the absence of appropriate gridded atmo-
spheric data, these models are forced to employ point
data to represent meteorological conditions across their
simulation domains. In our search for methods to gen-
erate the required distributed atmospheric forcing, we
find that it is computationally prohibitive to run fully
dynamic, regional atmospheric models (e.g., Liston et
al. 1999; Liston and Pielke 2001) over full annual cycles
at subkilometer grid increments, and that simple inter-
polation schemes may not account for naturally occur-
ring meteorological gradients. Thus, computationally
efficient and physically realistic methods must be de-
veloped to take available meteorological datasets (e.g.,
meteorological station observations, and/or regional at-
mospheric model or analyses datasets on, say, 10-km
grids) and generate required high-resolution atmo-
spheric-forcing distributions.

This paper describes MicroMet, an intermediate-
complexity meteorological model designed to produce
high-resolution (e.g., 30-m to 1-km horizontal grid in-
crements) meteorological data distributions required to
run spatially distributed terrestrial models over a wide
variety of landscapes. The following eight variables are
distributed: air temperature, relative humidity, wind
speed, wind direction, incoming solar radiation, incom-
ing longwave radiation, surface pressure, and precipi-
tation. Preliminary, largely undocumented and incom-
plete versions of MicroMet have been used to success-
ful ly distr ibute both observed and modeled
meteorological variables over complex terrain in Colo-
rado, Wyoming, Idaho, Arctic Alaska, Svalbard, central
Norway, Greenland, and Antarctica as part of a wide
variety of terrestrial modeling studies (e.g., Liston and
Sturm 1998, 2002; Greene et al. 1999; Liston et al. 1999,
2000, 2002; Prasad et al. 2001; Hiemstra et al. 2002;
2005, manuscript submitted to Wea. Forecasting; 2006;
Taras et al. 2002; Hasholt et al. 2003; Bruland et al.
2004; Liston and Elder 2005, manuscript submitted to
J. Hydrometeor.; Liston and Winther 2005).

2. MicroMet data preprocessor

MicroMet includes a three-step preprocessor that
analyzes meteorological station data (or model grid-
point data) and identifies and/or corrects deficiencies.
While MicroMet can be run using any time step from 1
min to 1 day, the following preprocessor discussion as-
sumes the raw station data are provided on an hourly
time increment. In addition, as part of the preprocess-

ing steps, each meteorological variable for all stations
must be converted to a common height (e.g., 2.0 or 10.0
m) using appropriate transfer functions, such as the
logarithmic wind profile equation for wind speed. This
decision then defines the height(s) of the MicroMet-
simulated meteorological distributions.

First, the preprocessor fills the variables for missing
dates/times with an “undefined” value (e.g., �9999.0).
This filling is done before any data quality assurance/
quality control (QA/QC) tests because it would be use-
less to compare two adjacent values that are separated
by missing data.

Second, the preprocessor performs a series of QA/
QC data tests following Meek and Hatfield (1994). The
tests consider three conditions/cases: case 1 checks for
values outside acceptable ranges, high/low range limits
(LIM); case 2 seeks consecutive values that exceed ac-
ceptable increments, rate-of-change limits (ROC); case
3 finds constant consecutive values with no-observed-
change within time limits (4 h) (NOC). For example,
unchanging wind directions or repeating zero wind
speeds might indicate an iced or otherwise defective
instrument.

Third, the preprocessor fills in missing time series
data with calculated values. The implemented data-fill
procedures assume that as long as the data of interest
are within a given synoptic cycle, persistence is a rea-
sonable approximation. In general, at a given point, the
weather today is frequently similar to what it was yes-
terday and what it will be tomorrow (Jolliffe and
Stephenson 2003). This assumption is dependent on
time of year and geographic location; it becomes less
tenable as the length of missing data becomes larger, as
we discuss later.

MicroMet fills missing data segments in a variety of
ways. Air temperature, relative humidity, wind speed
and direction, and precipitation, are all assumed to
have diurnal cycles, and the data-fill procedure is dif-
ferent for each of the following three conditions (Fig.
1): Condition 1 contains a single missing data value (i.e.,
one missing hour) where the datum for that hour is
defined to be the average of the values an hour before
and after the missing hour (Fig. 1a). Condition 2 has
missing data segments ranging from 2 to 24 h and miss-
ing values are determined as an average of the values
from 24 h before and after each of the missing hours in
that period (Fig. 1b). This solution has the attractive
feature of preserving the variables’ diurnal cycle. Last,
condition 3 includes missing data segments larger than
24 h (Fig. 1c). For this condition, the time series pre-
diction is made using an autoregressive integrated mov-
ing average (ARIMA) model (Box and Jenkins 1976).
The implemented formulation closely follows the ideas
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presented in Walton (1996). In the MicroMet prepro-
cessor, we use an ARIMA model to forecast into the
missing segment using data preceding the missing seg-
ment and backcast into the missing segment using data
following the missing segment (both using data spans
equal in length to the missing-data span). The two re-
sults are then linearly interpolated across the data gap
(Fig. 1d).

The preprocessor was tested to evaluate the data-
filling procedure. For this task, the National Aeronau-
tics and Space Administration (NASA) Cold Land Pro-
cesses Field Experiment’s (CLPX; Cline et al. 2005,
manuscript submitted to J. Hydrometeor.; Goodbody et
al. 2005, manuscript submitted to J. Hydrometeor.)
Walton Creek meteorological station air temperature
record for 23 September 2002 through 27 September
2003 was selected because it contained no missing data.
This tower is located in a treeless meadow in the Park
Range, Colorado, at 40°24.0�N, 106°38.7�W, and
2950-m elevation. To create missing data for the Wal-
ton Creek data, a random sampling scheme was used to
define 50 different initial start times (date and hour of
day). For each start time, data for 1 through 14, 21, 28,
and 35 days were removed from the dataset (50 � 17 �
850 individual tests). The missing data segments were
then filled using the MicroMet preprocessor.

The filled data periods were compared to the original
measured data and evaluated for goodness of fit using
the Nash–Sutcliffe coefficient (NSC) (Nash and Sut-
cliffe 1970). The Nash–Sutcliffe analysis of generated
(predicted) versus measured (observed) data is pro-
vided in Fig. 2. If NSC is 1, then the model is a perfect

FIG. 2. Results of goodness-of-fit tests for missing data periods
using NSC for different missing data durations. The lines in the
middle of the boxes show the median NSC values for each data-
filling period. The upper and lower bounds of the boxes show the
inner quartile ranges. The whiskers show the ranges of the highest
values that lie within twice the inner quartile ranges. Open circles
show data values that lie outside twice the inner quartile ranges.
The top horizontal dotted line (NSC � 1) represents a perfect fit.
Values falling below the lower dotted line (NSC � 0) indicate
major deviations between modeled and observed data. The inset
shows details of the first 6 days.

FIG. 1. Example MicroMet preprocessor data-filling procedure
for air temperature. (a) Condition 1: 1 h of missing data (data at
the crosses are averaged to fill the missing hour). (b) Condition 2:
greater than one, but less than 25 h of missing data (data at the
crosses, located 24 h before and after each missing hour, are av-
eraged to fill each missing hour). (c) Condition 3: illustrating more
than 24 h of missing data, where the missing time period is filled
(d) by extrapolating forward and backward (in the missing data
section), using an ARIMA model, and linearly weighting the two
results (shown by the open markers).
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fit to the observations. If NSC is between 1 and 0, de-
creasing values represent a decline in goodness of fit,
where 0 represents major deviations between modeled
and observed data. Negative NSC values represent re-
sults where the fit is poor and the average value of the
missing segment represents observations more closely
than modeled values. Each box-and-whisker plot in Fig.
2 represents the results of all 50 trials for each missing
data span except for the few instances where the ran-
domly selected data period fell too close to the dataset
start or finish to perform the ARIMA forecast or back-
cast.

Figure 2 suggests that the preprocessor does well
over short durations of 1–3 days. Many results are sat-
isfactory over longer periods (e.g., up to 6 days), but
problems begin to arise as the length of the prediction
period increases beyond this value, similar to problems
of weather forecasting in general (AMS 1998). Looking
at individual cases, periods of weather where there are
strong diurnal cycles with relatively stable behavior (in
terms of trend, amplitude, etc.) tend to be predictable
for extended durations. The preprocessor typically pro-
duces a poor fit for periods of highly stochastic behav-
ior or for periods that span different synoptic regimes.
Figure 3 shows a series of predictions from a randomly
selected start date with durations ranging from 1
through 6 days. The model clearly performs well at
short durations (less than 7 days), although problems
arise when general model assumptions are not met by
the observations (e.g., when no definite diurnal tem-
perature cycle, such as might occur when a cold front
passes in midmorning). Even at longer durations, for
example, 10 to 21 days (Fig. 4), it can be argued that for
some modeling applications, the modeled data with a
diurnal cycle would be preferable to a continuous mean
value applied across the missing data period. For situ-
ations where more than one meteorological station ex-
ists within the simulation domain, the MicroMet spatial
interpolation scheme (see below) assists in filling large
missing data segments.

As highlighted by Fig. 4c, for the case of large missing
data segments (e.g., between 7 and 35 days) that are
bounded by significantly different trends before and
after the missing segment, the ARIMA procedure can
lead to a significant misrepresentation within the miss-
ing portion (e.g., the model simulation in Fig. 4c is as
much as 10°C greater than the observations). Because
there is still a need to fill these relatively large missing
segments, the MicroMet preprocessor defines two miss-
ing-data-span parameters: the first is the maximum
span that the ARIMA submodel is to be applied, and
the second is the maximum span that is to be filled by
the MicroMet preprocessor. Any missing air tempera-

ture span falling between these two parameters is filled
by calculating the average amplitude of the diurnal
cycle before and after the missing period using a data
span equal to the missing segment span, and then these
two amplitudes are used to create a forecast and back-
cast that are linearly interpolated across the data gap
(Fig. 4d). Our analyses suggest that a value of 3 to 6 is
appropriate for the first parameter, and a value of 14 to
28 is appropriate for the second parameter. If these
parameters are exceeded, MicroMet leaves the values
as missing. Users of the MicroMet preprocessor are

FIG. 3. (a)–(f) Example MicroMet preprocessor air temperature
ARIMA data-filling procedure, for the cases of 1–6 days of miss-
ing data. Also shown are the NSC values. The relatively poor
model performance for the 5-day span in (e) reflects the changing
influence period used as part of the ARIMA forecast and back-
cast.
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encouraged to closely examine their data time series
and the resulting filled data segments to assess the va-
lidity of the generated data relative to their specific
applications.

3. MicroMet model

What follows is a general description of MicroMet
(version 1.0), a quasi–physically based, high-resolution
(e.g., 30-m to 1-km horizontal grid increment) meteo-
rological distribution model. It is designed specifically
to produce high-resolution meteorological forcing dis-
tributions required to run spatially distributed terres-
trial models over a wide variety of landscapes. The
model uses known relationships between meteorologi-
cal variables and the surrounding landscape (primarily
topography) to distribute those variables over any
given landscape in computationally efficient and physi-
cally plausible ways. MicroMet performs two kinds of
adjustments to the available meteorological data: 1) all
available data, at a given time, are spatially interpolated

over the domain, and 2) physical submodels are applied
to each MicroMet variable to improve parameter real-
ism at a given point in space and time. The model dis-
tributes fundamental atmospheric forcing variables re-
quired to run most terrestrial models: 1) air tempera-
ture, 2) relative humidity, 3) wind speed, 4) wind
direction, 5) incoming solar radiation, 6) incoming long-
wave radiation, 7) surface pressure, and 8) precipita-
tion. To calculate these distributions, MicroMet as-
sumes at least one value of each of the following me-
teorological variables are available at each time step of
interest, somewhere within (or near) the simulation do-
main: air temperature, relative humidity, wind speed,
wind direction, and precipitation. For surface pressure
and incoming solar and longwave radiation, MicroMet
has two options: 1) let the MicroMet submodels create
the distributions (in the absence of observations), or 2)
merge available observations with the submodel-gen-
erated distributions, as part of a data assimilation pro-
cedure. This second option produces distributions that
match the observations when and where they exist,
while accounting for higher-resolution information
such as topographic slope and aspect.

a. Spatial interpolation

The model does station (horizontal) interpolations
using a Barnes objective analysis scheme (Barnes 1964,
1973; Koch et al. 1983). Objective analysis is the process
of interpolating data from irregularly spaced stations to
a regular grid. The Barnes scheme applies a Gaussian
distance-dependent weighting function, in which the
weight that a station contributes to the overall value of
the grid point decreases with increasing distance from
the point. The interpolation weights, w, are given by

w � exp��
r2

f�dn�
�, �1�

where r is the distance between the observation and a
grid point, and f(dn) defines a filter parameter whose
value ultimately defines how smooth the interpolated
field will be. The data spacing and distribution objec-
tively determine the filter parameter value (see Koch et
al. 1983).

The Barnes technique employs the method of suc-
cessive corrections, applying two passes through the
station data. Using the weighting function [Eq. (1)] to
assign a value to each grid point creates a first-pass
analysis field. During the second pass, a difference field
is calculated that determines residuals, then, after de-
creasing the influence radius, a difference correction is
applied to the first-pass field. This second pass through
the data restores the amplitude of small wavelength

FIG. 4. Example MicroMet preprocessor air temperature
ARIMA data-filling procedure, for the cases of (a) 7, (b) 10, and
(c) 21 days of missing data. These figures highlight the decreasing
skill (decreasing NSC values) in the ARIMA procedure for rela-
tively long missing-data spans. (d) The results of the alternate
data-filling procedure suggested for missing-data spans greater
than 6 days (see text for details).
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components larger than twice the average observation
spacing (2�n) suppressed in the first pass. Random er-
rors in the station observations can generate spurious
2�n waves (Barnes 1964), so it is important that the
scheme filters these from the analysis. Barnes (1973)
showed that two passes through the data achieve the
desired rapid convergence of the gridded values to the
station observations, while providing scale-appropriate
resolution.

Since the gridpoint values are weighted averages of
the surrounding stations, the gridded values are always
less than the maximum and greater than the minimum
values surrounding the point, resulting in smoothed sta-
tion data. When interpolating precipitation, some
schemes impose budget-conserving constraints on the
applied procedures. While this is appropriate for gen-
eral interpolation, it is not appropriate for extrapola-
tion into data-poor regions not represented by the
available observing stations. MicroMet is designed to
perform extrapolation into, for example, mountainous
regions where data do not exist, and where the precipi-
tation can be much greater than that measured at the
(typically valley) observing sites. For all of the vari-
ables, when only one observation exists at a given time
step, the Barnes interpolation step is omitted, and Mi-
croMet uniformly distributes the observed value over
the domain before performing the MicroMet physically
based adjustments, as described below.

b. Meteorological variables

The following descriptions summarize MicroMet
procedures implemented to adjust each meteorological
variable beyond its initial spatial interpolation. The
wind speed and incoming solar and longwave radiation
descriptions assume top-of-canopy conditions; adjust-
ments to account for the presence of forest canopies
follow Liston and Elder (2005, manuscript submitted to
J. Hydrometeor.).

1) AIR TEMPERATURE

Historically, simple interpolation routines (e.g., Bur-
rough and McDonnell 2000) have been used to spatially
distribute point air temperature data. While these
methods work in flat terrain, they often misrepresent
temperature distributions in areas having significant to-
pographic variability. Recent studies have tried to im-
prove the simulated temperature distributions by tak-
ing advantage of the strong temperature–elevation re-
lationships that are known to exist. Dodson and Marks
(1997) summarize two of the most realistic and general
methods used to distribute point air temperature data
over mountainous terrain: assuming 1) neutral atmo-

spheric stability, and 2) a constant linear lapse rate.
They conclude that the constant linear lapse rate
method most successfully reproduces the natural envi-
ronment, but also note that lapse rates can vary widely
over space and time. In MicroMet, this deficiency is
constrained by defining air temperature lapse rates that
vary monthly throughout the year. Alternatively, the
MicroMet can utilize user-defined lapse rate data.

First, the station air temperatures are adjusted to a
common level, using the formula

T0 � Tstn � ��z0 � zstn�, �2�

where Tstn (°C) is the observed station air temperature
at the station elevation, zstn (m); T0 (°C) is the air tem-
perature at the reference elevation, z0 (m) (sea level,
or z0 � 0.0, is used in MicroMet); and the lapse rate,
� (°C m�1), is given in Table 1 and varies depending on
the month of the year (Kunkel 1989) or calculated
based on adjacent station data.

The reference-level station temperatures are then in-
terpolated to the model grid using the Barnes objective
analysis scheme (Koch et al. 1983). The gridded topog-
raphy data and Table 1 (or observed) lapse rate are
then used to adjust the reference-level gridded tem-
peratures to the elevations provided by the topography
dataset, using

T � T0 � ��z � z0�, �3�

where T0 is now the gridded air temperature at the
reference elevation, z0, and T (°C) is the gridded air
temperature at the elevation of the topographic data-
set, z (m).

2) RELATIVE HUMIDITY

Since relative humidity is a nonlinear function of el-
evation, the relatively linear dewpoint temperature is

TABLE 1. Air temperature lapse rate variations, for each month
of the year, in the Northern Hemisphere (Kunkel 1989), and pre-
cipitation–elevation adjustment factors (Thornton et al. 1997).

Month

Air temperature
lapse rate
(°C km�1)

Vapor pressure
coefficient

(km�1)

Precipitation
adjustment

factor (km�1)

Jan 4.4 0.41 0.35
Feb 5.9 0.42 0.35
Mar 7.1 0.40 0.35
Apr 7.8 0.39 0.30
May 8.1 0.38 0.25
Jun 8.2 0.36 0.20
Jul 8.1 0.33 0.20
Aug 8.1 0.33 0.20
Sep 7.7 0.36 0.20
Oct 6.8 0.37 0.25
Nov 5.5 0.40 0.30
Dec 4.7 0.40 0.35

222 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 7



used for the elevation adjustments. First, we convert
the station relative humidity, RH (%), to dewpoint
temperature, Td (°C), using the air temperature, T (°C).
The saturation vapor pressure, es (Pa), at temperature
T is

es � a exp� bT

c 	 T�, �4�

where for water a � 611.21 Pa, b � 17.502, and c �
240.97°C, and for ice a � 611.15 Pa, b � 22.452, and
c � 272.55°C (Buck 1981). Using Eq. (4), the RH equa-
tion

RH � 100
e

es
�5�

can be solved for the actual vapor pressure, e (Pa). The
dewpoint temperature can then be calculated from

Td �
c ln�e�a�

b � ln�e�a�
. �6�

Now the dewpoint temperatures at the stations can
be adjusted to a common reference level using Eq. (2),
where the temperatures are now dewpoint tempera-
tures and the lapse rate is the dewpoint temperature
lapse rate, �d (°C m�1) (Kunkel 1989),

�d � �
c

b
, �7�

where 
 (m�1) is a vapor pressure coefficient (Table 1)
that varies during each month of the year (Kunkel
1989).

The reference-level station dewpoint temperatures
are then interpolated to the model grid using the Barnes
objective analysis scheme (Koch et al. 1983). The Td

lapse rate is used to take the reference-level gridded
values to the actual topographic elevations using an
equation similar to Eq. (3), where now the tempera-
tures are dewpoint temperatures, and the lapse rate is
the dewpoint temperature lapse rate. These gridded
dewpoint temperature values are then converted to RH
using Eqs. (4) and (5), where e is calculated by substi-
tuting Td for T in Eq. (4).

3) WIND SPEED AND DIRECTION

Because of the problems with interpolating over the
360°/0° direction line, station wind speed, W (m s�1),
and direction, �, values are first converted to zonal, u
(m s�1), and meridional, � (m s�1), components using

u � �W sin���, �8�

� � �W cos���. �9�

The u and � components are then independently in-
terpolated to the model grid using the Barnes objective
analysis scheme (Koch et al. 1983). The resulting values
are converted back to speed and direction using

W � �u2 	 �2��1�2�, �10�

� �
3�

2
� tan�1��

u�, �11�

where north has a direction of zero.
These gridded speed and direction values are modi-

fied using a simple, topographically driven wind model,
following Liston and Sturm (1998) that adjusts the
speeds and directions according to topographic slope
and curvature relationships. To perform the wind modi-
fication calculations, the topographic slope, topo-
graphic slope azimuth, and topographic curvature must
be computed. The terrain slope, 
, is given by

� � tan�1���z

�x�2

	 ��z

�y�2��1�2�

, �12�

where z (m) is the topographic height, and x (m) and y
(m) are the horizontal coordinates. The terrain slope
azimuth, �, with north having zero azimuth, is

	 �
3�

2
� tan�1��z��y

�z��x�. �13�

The curvature, �c, is computed at each model grid
cell by first defining a curvature length scale or radius,
� (m), that defines the topographic length scale to be
used in the curvature calculation. This length scale is
equal to approximately half the wavelength of the to-
pographic features within the domain (e.g., the distance
from a typical ridge to the nearest valley).

For each model grid cell, the curvature is calculated
by taking the difference between that grid cell eleva-
tion, and the average elevations of the two opposite
grid cells a length scale distance from that grid cell. This
difference is calculated for each of the opposite direc-
tions S–N, W–E, SW–NE, and NW–SE from the main
grid cell (effectively obtaining a curvature for each of
the four direction lines), and the resulting four values
are averaged to obtain the curvature. Thus,


c �
1
4 �z � 1�2�zW 	 zE�

2�
	

z � 1�2�zS 	 zN�

2�

	
z � 1�2�zSW 	 zNE�

2�2�
	

z � 1�2�zNW 	 zSE�

2�2�
�,

�14�

where zW, zSE, etc. are the elevation values for the grid
cell at approximately curvature length scale distance, �,
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in the corresponding direction from the main grid cell.
To simplify applying this distribution in the topographic
weighting function described below, the curvature is
then scaled such that –0.5 � �c � 0.5 over the simula-
tion domain.

The slope in the direction of the wind, �s, is


s � � cos�� � 	�. �15�

This �s is also scaled such that –0.5 � �s � 0.5 over the
simulation domain.

The wind weighting factor, Ww, used to modify the
wind speed is given by (Liston and Sturm 1998)

Ww � 1 	 
s
s 	 
c
c, �16�

where �s and �c are the slope weight and curvature
weight, respectively. The �s and �c values range be-
tween �0.5 and 	0.5. Valid �s and �c values are be-
tween 0 and 1, with values of 0.5 giving approximately
equal weight to slope and curvature. It is suggested that
�s and �c be set such that �s 	 �c � 1.0. This con-
straint will limit the total wind weight to between 0.5
and 1.5, but this is not actually required by the model
implementation.

Finally, the terrain-modified wind speed, Wt (m s�1),
is calculated from

Wt � Ww W. �17�

The wind directions are modified by a diverting factor,
�d, according to Ryan (1977),

�d � �0.5
s sin�2�	 � ���. �18�

This diverting factor is added to the wind direction to
yield the terrain-modified wind direction, �t,

�t � � 	 �d. �19�

The resulting speeds, Wt, and directions, �t, are con-
verted to u and � components using Eqs. (8) and (9).

The wind model was tested against an observational
dataset (Pohl et al. 2005, manuscript submitted to Arct.
Antarct. Alp. Res., hereafter PML) from Trail Valley
Creek, a research basin located in the Northwest Ter-
ritories, Canada, at 68°45�N, 133°30�W. The observa-
tions include wind speed and direction data (15-min
averages) from six towers located on and around a low
hill (approximately 50-m high) in the northwestern part
of the basin (Fig. 5a).

The following approach was used to define reason-
able values of �s and �c. First, the wind data were
binned into the eight principal wind directions (N, NE,
E, etc.), and W in Eq. (17) was defined to be the aver-
age wind speed of the six stations, for each directional
bin, at each observation time. Second, we reasoned
that, for northerly and southerly winds, the topographic

slope at stations 1 and 3 were zero (Fig. 1a). For this
case, the second term on the right-hand side of Eq. (16)
is zero. Using this, and by defining Wt to be equal to the
station observations, Eqs. (16) and (17) were combined
to yield �c as the only unknown. The resulting equation
was solved for stations 1 and 3, using both northerly and
southerly winds (n � 919), and an average �c was cal-
culated. This �c value was then applied to Eq. (16) and

FIG. 5. (a) Simulation domain topography (contour interval 10
m), wind weighting factor (color shades), and meteorological sta-
tion locations (adapted following PML). (b) Comparison of mod-
eled and observed wind speed for stations 1 and 5, for both north-
erly and southerly winds; included are the square of the linear
correlation coefficient, r2, and rmse (n � 919).
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the process was repeated to calculate the �s for stations
2 and 5 (which have both slope and curvature). The
resulting values (n � 919) were combined to yield an
average �s. The ratio of calculated �c to �s equaled 0.72,
which, under the assumption that �s and �c sum to
unity, yielded �s � 0.58 and a �c � 0.42.

These values were implemented in the wind model
and used to simulate the wind flow over the hill (Fig.
5a). Comparison of the simulated wind speeds and the
observations at stations 1 and 5, for both northerly and
southerly winds, is presented in Fig. 5b. Figure 5a also
displays the Ww distribution for the case of southerly
winds. Shown are the relatively higher weighting values
on ridge tops and windward slopes, and lower values on
lee slopes and in valley bottoms. PML provided a more
complete comparison of the model and wind observa-
tions.

4) SOLAR RADIATION

The following equations use the model time to cal-
culate the solar radiation for that specific time. In ad-
dition, they consider the influence of cloud cover, direct
and diffuse solar radiation, and topographic slope and
aspect on incoming solar radiation.

Cloud cover is estimated by first taking the surface
gridded T and Td fields described in sections 3b(1) and
3b(2) and the associated lapse rates to calculate T and
Td for the 700-mb level of the atmosphere. These T and
Td surfaces are then used to calculate the relative hu-
midity at 700 mb, RH700, using Eqs. (4) and (5).

Following Walcek (1994), and assuming a minimum
averaging dimension, this RH700 distribution is used to
define the cloud fraction, �c,

�c � 0.832 exp�RH700 � 100
41.6 � �0 � �c � 1�.

�20�

An illustration of this relationship is given in Fig. 6.
Solar radiation striking earth’s surface, Qsi (W m�2),

including the influence of sloping terrain, is given by

Qsi � S*��dir cosi 	 �dif cosZ�, �21�

where the angle between direct solar radiation and a
sloping surface is given by i, and assuming that diffuse
radiation impinges upon an area corresponding to a
horizontal surface. The solar irradiance at the top of the
atmosphere striking a surface normal to the solar beam
is given by S* (�1370 W m�2; Kyle et al. 1985), and �dir

and �dif are the direct and diffuse, respectively, net sky
transmissivities, or the fraction of solar radiation reach-
ing the surface.

The solar zenith angle, Z, is

cosZ � sin� sin� 	 cos� cos� cos�, �22�

where � is latitude, and � is the hour angle measured
from local solar noon,

� � �� h

12
� 1�, �23�

where h is the hour of the day. The solar declination
angle, �, is approximated by

� � �T cos�2��d � dr

dy
��, �24�

where �T is the latitude of the tropic of Cancer, d is the
day of the year, dr is the day of the summer solstice, and
dy is the average number of days in a year.

The angle i is given by

cosi � cos� cosZ 	 sin� sinZ cos�� � 	s�, �25�

and the terrain slope, 
, is given by Eq. (12). The ter-
rain slope azimuth now requires south to have zero
azimuth, �s, so Eq. (13) is used where the first term on
the right-hand-side is now �/2. The solar azimuth, �,
with south having zero azimuth, is given by

� � sin�1�cos� sin�

sinZ �. �26�

To account for scattering, absorption, and reflection
of solar radiation by clouds, the solar radiation is scaled
according to (Burridge and Gadd 1974)

�dir � �0.6 � 0.2 cosZ��1.0 � �c� �27�

for direct solar radiation and

�dif � �0.3 � 0.1 cosZ��c �28�

for diffuse solar radiation, where �c represents the
cloud-cover fraction given by Eq. (20).

If incoming solar radiation observations are avail-
able, they can be combined with the solar radiation

FIG. 6. Cloud-cover fraction as a function of MicroMet-calcu-
lated 700-mb relative humidity.
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model as part of a data assimilation procedure. Here
the point observations are compared with the model-
distributed field at the corresponding model grid cells.
The differences between the observations and modeled
values are computed, and a gridded surface is gener-
ated through those differences using the Barnes analy-
sis scheme. The difference field is then added to the
model-distributed field. This produces distributions
that match the observations when and where they exist,
while including the higher-resolution information pro-
vided by the modeled distributions.

The solar radiation model was compared against ob-
servations provided by the CLPX. Figure 7a provides
an analysis of modeled and observed hourly incoming
solar radiation data from the CLPX Walton Creek me-
teorological station, spanning the time 23 September
2002 through 27 September 2003. The model yielded an
r2 value of 0.87 for the hourly data, and captured the
observed seasonal variations (Fig. 7b).

5) LONGWAVE RADIATION

Incoming longwave radiation is calculated while tak-
ing into account cloud cover and elevation-related
variations following Iziomon et al. (2003). Incoming
longwave radiation reaching earth’s surface, Qli (W
m�2), is given by

Qli � ��T4, �29�

where � is the Stefan–Boltzmann constant, and T (K;
note the change in units) is the air temperature. The
atmospheric emissivity, �, is

� � ��1 	 Zs�c
2��1 � Xs exp��Yse�T��, �30�

where e (Pa) is the atmospheric vapor pressure, and the
coefficients Xs, Ys, and Zs depend on elevation accord-
ing to

Cs � C1 z � 200

Cs � C1 	 �z � z1��C2 � C1

z2 � z1
� 200 � z � 3000

Cs � C2 3000 � z

,

�31�

where z (m) is the elevation of the land surface, and X,
Y, and Z can be substituted for C, with X1 � 0.35, X2 �
0.51, Y1 � 0.100 K Pa�1, Y2 � 0.130 K Pa�1, Z1 � 0.224,
Z2 � 1.100, z1 � 200 m, and z2 � 3000 m. These coef-
ficients represent a combination of those defined by
Iziomon et al. (2003) for elevations below 1500 m; X2

and Y2 were determined by increasing the Iziomon et
al. (2003) coefficients linearly to 3000 m; and Z2 and

� � 1.083 were adjusted to create a best fit to CLPX
observational datasets.

Comparison of longwave radiation simulations with
CLPX Walton Creek observations (Fig. 8) yielded re-
sults similar in quality to those in the solar radiation
comparison. If incoming longwave radiation observa-
tions are available, they can be combined with the long-

FIG. 7. Incoming solar radiation data from the NASA CLPX
Walton Creek meteorological station, 23 Sep 2002–27 Sep 2003
(n � 8880). (a) Comparison of hourly modeled and observed data;
the thin scattering of high-solar-radiation values compared to the
observations is the result of frost and snow on the sensor, etc., that
are not accounted for in the model. (b) Time evolution of daily
average modeled and observed solar radiation. To improve visu-
alization, a 7-day running mean was applied to the daily data.
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wave radiation model as part of the data assimilation
procedure described in section 3b(4).

6) SURFACE PRESSURE

In the absence of surface pressure observations, a
time-independent atmospheric pressure, p, distribution
is given by

p � p0 exp��
z

H�, �32�

where p0 is a reference sea level pressure (101 300 Pa),
and H is the scale height of the atmosphere (�8000 m)
(Wallace and Hobbs 1977). If surface pressure obser-
vations are available, they can be combined with the
surface pressure model as part of the data assimilation
procedure described in section 3b(4).

7) PRECIPITATION

To distribute precipitation over the domain, ob-
served precipitation values are first interpolated to the
model grid using the Barnes objective analysis scheme.
To generate a topographic reference surface, the sta-
tion elevations are also interpolated to the model grid.
The reason interpolated station elevations are used as
the topographic reference surface, as opposed to a ref-
erence like sea level, is that the precipitation adjust-
ment function is a nonlinear function of elevation dif-
ference. The modeled liquid-water precipitation rate, P
(mm h�1), is computed from

P � P0�1 	 ��z � z0�

1 � ��z � z0��, �33�

where P0 is the interpolated station precipitation, z0 is
the interpolated station elevation surface, and � (km�1)
is a factor (Table 1) defined to vary seasonally (monthly
values) (Thornton et al. 1997). Figure 9 illustrates how
the precipitation adjustment function [the term in
brackets to the right of P0 in Eq. (33)] varies with el-
evation difference for � � 0.35 km�1 (a winter value).
Since � is expected to vary geographically, MicroMet
allows the user to modify its monthly values from those
listed in Table 1.

4. Example MicroMet simulations

To test the overall MicroMet implementation, the
model was run for one year starting on 1 September

FIG. 9. Dependence of the precipitation-adjustment factor on
the elevation difference between the precipitation observing sta-
tions and a specific grid cell, for � � 0.35 km�1 (a winter value).

FIG. 8. Incoming longwave radiation data from the NASA
CLPX Walton Creek meteorological station, 23 Sep 2002–27 Sep
2003 (n � 8880). (a) Comparison of hourly modeled and observed
data. (b) Time evolution of daily average modeled and observed
longwave radiation. To improve visualization, a 7-day running
mean was applied to the daily data.
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2002, over a 30 km by 30 km area, using an hourly time
step and 200-m grid increment (Fig. 10a). The simula-
tion domain covered the CLPX Rabbit Ears mesocell
study area located at 40°27�N, 106°22�W in north-
central Colorado (Cline et al. 2005, manuscript submit-
ted to J. Hydrometeor.), and is characterized by mod-
erate topographic relief. Meteorological data for the
simulations included a collection of gridded atmo-
spheric analyses data (nine grid points) from the Na-
tional Oceanic and Atmospheric Administration’s

(NOAA) Local Analysis and Prediction System
(LAPS) (Liston et al. 2005, manuscript submitted to J.
Hydrometeor.) and eight independent meteorological
station datasets provided from a variety of sources
(Table 2; Fig. 10a).

Four simulations were performed: case 1 used all of
the available meteorological data, data from 17 sites;
case 2 used 12 sites; case 3 used 7 sites; and case 4 used
2 sites. The site elimination order was determined ran-
domly, and the resulting distributions are shown in Fig.
10b.

An initial requirement of the model is that it closely
reproduces the observations at the observation point.
Figure 11a compares the hourly station 9 temperature
observations (n � 8760) with the model simulation at
the coincident model grid point. Also shown is a com-
parison of the observations with the case 4 simulation at
that grid point. Figure 11b displays the daily average
temperature evolution of the observations, case 1, and
case 4. The model behaves as expected.

A second requirement is that the model produces
reasonable spatial distributions of the modeled vari-
ables, and that these distributions maintain their viabil-
ity as the number of meteorological observations is re-
duced. Figure 12a shows the simulated January-average
air temperature, and Fig. 12b shows case 4 minus case 1
for this field. The reduction of observing sites from 17
to 2 yields January-average temperature differences of
1°C or less. Looking at the hourly data that make up
this figure shows that the individual fields have similar
differences (the Fig. 12b difference field is not the result
of larger positive and negative hourly values canceling
each other). The Fig. 12b spatial pattern is the result of
two factors. First, the differences are greatest along the
eastern and western areas of the domain. These are
areas of greatest elevation change between the two re-
maining case 4 data locations (A and 8, in Fig. 10a) and
the simulation domain topography (Fig. 10a). There-
fore, the simulated distributions in these areas are
strongly dependent upon model factors such as the as-
sumed lapse rate. Second, since the case 4 data loca-
tions are relatively near to each other, there is little
regional information contained in the case 4 simulation.
This leads to a difference field with a change of sign
from the east to the west part of the domain (to repro-
duce the case 1 simulation using only case 4 data, dif-
ferent lapse rates would have to be applied to the east
and west parts of the domain).

Figures 13a and 13b provide the same information
as Fig. 12, but for relative humidity. In addition to
the reasons for the Fig. 12b spatial pattern, the depen-
dence of relative humidity on temperature leads to
a similar relative humidity difference field (Fig. 13b).

FIG. 10. (a) Colorado simulation domain and topography (m),
and meteorological data sites comprised of LAPS atmospheric
analysis data (black dots) and meteorological stations (white
dots). Table 2 provides site descriptions. (b) Data sites used in the
four model simulations: cases 1, 2, 3, and 4 included 17, 12, 7, and
2 sites, respectively.
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The r2 and root-mean-square-error (rmse) calculations
displayed in Figs. 12 and 13 were also performed for
cases 2 and 3, and for July; the results are presented in
Table 3.

An analysis of the time evolution of domain-average
air temperature (Fig. 14) and relative humidity (Fig. 15)
was also performed. Table 4 presents the statistical in-
formation from these simulations. The figures and table
highlight the general decrease in simulation quality as
the number of data sites is reduced. The reduction from
17 to 2 stations produced a change in rmse values from
0.1° to 0.8°C and 0.6% to 5.5%, for air temperature and
relative humidity, respectively.

5. Discussion

a. Applications

MicroMet’s development was necessary to define
physically appropriate atmospheric forcings to drive a
wide variety of terrestrial (e.g., hydrology and ecosys-
tem) models. Historically, this merging of atmospheric
and hydrologic sciences has been hampered by the in-
herent mismatch in spatial scales between the two dis-
ciplines. Atmospheric scientists have studied the atmo-
sphere at global, synoptic, and regional scales. Their
models typically have a strong focus on the atmospheric
dynamics occurring over these scales and, as such, the
models have been formulated to operate on grid incre-
ments spanning from roughly 100-km (global) to 1-km
(regional) grid increments.

In contrast, hydrologic models have generally oper-
ated over well-defined watersheds using grid incre-
ments ranging from 30 m to 1 km. Models used to simu-
late hydrologic processes usually include moisture flow
dynamics and descriptions of physical and vegetation-
related processes that influence moisture transport
within the basin and associated interactions with the
atmosphere. To realistically (physically) represent
these basin moisture-transport processes, terrestrial
models are required to run at grid increments as small
as 30 m. Thus, there is a significant mismatch in scales
between atmospheric and terrestrial approaches.

MicroMet was developed to serve as an interface be-
tween the relatively coarse-resolution atmospheric data
(available as either station observations and/or gridded
atmospheric data, e.g., 1–100-km grid increment) and
fine-resolution (e.g., 30-m to 1-km grid increment) hy-
drological and ecological models. This lack of available
high-resolution atmospheric forcing data has hindered
the development of spatially and physically realistic
hydrologic and ecologic models. Evidence of this can
be found by looking at the growth of intermediate-
scale (e.g., 10–15-km grid increment) land surface hy-
drology models over the last 10–15 yr (Wood et al.
1997; Mitchell et al. 2004). These models have com-
monly had to adopt the atmospheric modeling ap-
proach of “parameterizing” the subgrid-scale physics
within the terrestrial system they are attempting to
model. MicroMet converts available atmospheric forc-
ing data to the sufficiently high spatial resolution re-

TABLE 2. Meteorological data sites used in the spatially distributed model simulations (Fig. 10).

Station ID Site description Easting (m) Northing (m) Elevation (m) Variablesa

A Buffalo Pass-CLPX 351 126 487 974 2804 T, R, W, D
B Spring Creek-CLPX 357 887 488 407 3233 T, R, W, D
C Walton Creek-CLPX 360 335 473 447 2950 T, R, W, D
D Columbine-SNOTELb 362 779 473 410 2794 T
E Rabbit Ears-SNOTEL 352 863 469 933 2911 T
F Tower-SNOTEL 358 815 488 253 3219 T
G Dry Lake-RAWSc 348 990 488 445 2515 T, R
H Storm Peak Laboratory-DRId 352 450 479 159 3210 T, R, W, D
1 LAPS 346 979 468 801 2477 T, R, W, D, P
2 LAPS 357 033 468 819 2837 T, R, W, D, P
3 LAPS 367 086 468 831 2714 T, R, W, D, P
4 LAPS 346 955 478 818 2430 T, R, W, D, P
5 LAPS 357 017 478 837 2852 T, R, W, D, P
6 LAPS 367 075 478 848 2782 T, R, W, D, P
7 LAPS 346 933 488 842 2573 T, R, W, D, P
8 LAPS 356 999 488 861 2913 T, R, W, D, P
9 LAPS 367 067 488 873 2704 T, R, W, D, P

a Meteorological variables available at each site: T � air temperature, R � relative humidity, W � wind speed, D � wind direction, and
P � precipitation.

b SNOTEL � snow telemetry.
c RAWS � Remote Automated Weather Station.
d DRI � Desert Research Institute.
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quired to drive terrestrial process models operating at
realistic spatial scales.

b. Limitations

As part of our MicroMet development, we recog-
nized many limitations in the model formulation. Two
things are clear from the preceding MicroMet descrip-
tion: 1) the finescale adjustments to the observed or
analyzed meteorological fields are largely driven by

simple topographic relationships, and 2) the adjust-
ments are completely one-way. This one-way coupling
means there are no feedbacks between the land and
atmosphere in the calculations of the near-surface at-
mospheric conditions. We also understand that land
surface conditions can have a substantial impact on
near-surface atmospheric properties (Pielke 2001).
Thus, there is an opportunity for additional improved
physical realism in the MicroMet spatial interpolations

FIG. 11. (a) Comparison of station 9 (see arrow in Fig. 10b)
hourly air temperature observations with case 1 and case 4 model
simulations at the corresponding grid point (n � 8760). Case 1 has
been offset by 5°C to help distinguish those data from the case 4
data. (b) Comparison of station 9 daily average observations with
case 1 and case 4 model simulations.

FIG. 12. (a) Case 1 simulated January-average air temperature
(°C), and (b) case 4 minus case 1 for this field.
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and distributions. We use three examples to illustrate
why the MicroMet approaches are an oversimplifica-
tion of the natural system, and suggest how later ver-
sions of MicroMet might be modified to correct those
limitations.

1) WET VERSUS DRY SOIL

Consider a flat domain with one meteorological
tower observation. MicroMet will distribute the tower

temperature observation to be constant over the do-
main. This distribution is probably appropriate under
conditions of constant soil moisture and uniform veg-
etation type, but, to consider a more realistic example,
let us assume that part of the domain is dry and another
part is wet. In this case, we expect the underlying sur-
face will influence the resulting air temperature (the air
above the drier surface will be warmer, while that
above the wetter surface will be cooler). To account for
this variability, MicroMet could calculate a surface en-
ergy budget under the assumption that the air tempera-
tures above the two surfaces are initially the same (but
the soil moistures are different), and then use the re-
sulting sensible and latent heat fluxes to adjust the as-
sumed air temperatures. Note that implementing these
enhancements requires coupling MicroMet to an en-
ergy-balance/land surface hydrology model, thus sig-
nificantly increasing the complexity, and potentially in-
creasing the biases, of the current modeling system.

2) NORTH VERSUS SOUTH SLOPES

Consider a topographically variable domain with
only one meteorological station. MicroMet will distrib-
ute the station temperature observation over that do-
main under an assumed lapse rate. A contour plot of
the resulting temperature field will look like a topo-
graphic map of the area, but with units of temperature
instead of elevation. In the natural system, we expect
the temperature to vary as a function of slope and as-
pect, and their relationship to the incoming solar radia-
tion. For example, in the Northern Hemisphere we ex-
pect that reduced solar radiation on north-facing slopes
will have lower air temperatures, and south-facing
slopes will experience greater temperatures. To com-
pensate for this oversimplification, MicroMet could
perform a surface energy budget calculation, under the
assumption that the air temperatures above the two
surfaces are initially the same (but incoming solar ra-
diation levels are different), and the resulting combina-

FIG. 13. (a) Case 1 simulated January-average relative humidity
(%), and (b) case 4 minus case 1 for this field.

TABLE 3. Statistical information (square of the linear correla-
tion coefficient, r2, and rmse) corresponding to the simulations
represented by Figs. 12 and 13 and the cases identified in Fig. 10
(n � 151 � 151 � 22 801). Shown are comparisons of cases 2, 3,
and 4 with case 1, for hourly simulation data averaged over Janu-
ary and July. Highlighted is the degradation in model solution
with a reduced number of meteorological stations in the domain.

Case 2 Case 3 Case 4

r2 Rmse r2 Rmse r2 Rmse

Tair (°C): Jan 0.96 0.2 0.91 0.4 0.87 0.6
Tair (°C): Jul 0.94 0.5 0.93 0.9 0.88 1.5
RH (%): Jan 0.93 1.6 0.85 2.8 0.84 4.1
RH (%): Jul 0.55 3.2 0.74 3.6 0.47 7.3
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tion of surface net radiation and sensible and latent
heat fluxes could be used to modify initial air tempera-
tures. This accounting also requires implementation of
a coincident energy-balance/land surface hydrology
model.

3) PRECIPITATION

Consider a simulation domain within the topographi-
cally complex western United States. With one meteo-
rological tower, MicroMet will distribute the tower pre-
cipitation observation over the domain under an as-
sumed precipitation adjustment factor (a precipitation

lapse rate, of sorts). In contrast to the current model,
the natural system includes significant orographically
induced precipitation variability from western to east-
ern mountain slopes. MicroMet could resolve this by
implementing a high-resolution orographic precipita-
tion submodel (Hay and McCabe 1998; Pandey et al.
2000; Smith and Barstad 2004). In addition to oro-
graphic precipitation, other precipitation mechanisms
and structures are not currently accounted for within
MicroMet. For example, this version of MicroMet will
not simulate the magnitudes and distributions of pre-
cipitation associated with convective storms that are

FIG. 14. (a) The time evolution of daily average case 1 domain-
average air temperature. (b) Domain-average air temperature,
case 2 minus case 1, case 3 minus case 1, etc.

FIG. 15. (a) The time evolution of daily average case 1 domain-
average relative humidity. (b) Domain-average relative humidity,
case 2 minus case 1, case 3 minus case 1, etc.
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not captured by the station-observing network. It is
clear that MicroMet’s precipitation representation is its
greatest weakness. Unfortunately, a viable solution
(high resolution, computationally efficient, accurate,
and valid for both large-scale, orographic, and convec-
tive precipitation systems) has not been found. As part
of future MicroMet development efforts, improve-
ments to its precipitation representation will be a top
priority.

6. Conclusions

MicroMet interpolates irregularly distributed station
observations to a regularly spaced grid using the Barnes
objective analysis scheme. In addition to the station
interpolations, MicroMet employs corrections based on
known temperature–elevation, wind–topography, and
solar radiation–topography relationships. The resulting
procedures produce much-improved temperature, hu-
midity, wind, and incoming solar and longwave radia-
tion distributions when the spatial scale of topographic
variability is smaller than the distance between stations
or analyses-model grid points. In natural systems, this is
nearly always the case.

The development of a model designed to take avail-
able, relatively coarse-resolution atmospheric datasets
(e.g., meteorological station observations and/or atmo-
spheric analyses) and convert them, in physically real-
istic ways, to high-resolution forcing data, is expected to
lay the groundwork for substantial improvements to
existing hydrologic and ecologic models. This need is
particularly acute in regions where topographic varia-
tions lead to substantial variations in winter snow pre-
cipitation, snow-depth distribution, spring snowmelt,
spring and summer runoff rates, evaporation, transpi-
ration, and the wide range of associated energy and
moisture fluxes.
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