
www.elsevier.com/locate/rse
Remote Sensing of Environ
Comparison of regression and geostatistical methods for mapping

Leaf Area Index (LAI) with Landsat ETM+ data over a boreal forest

Mercedes Berterretchea, Andrew T. Hudakb,T, Warren B. Cohenc, Thomas K. Maierspergera,

Stith T. Gowerd, Jennifer Dungane

aDepartment of Forest Science, Oregon State University, 321 Richardson Hall, Corvallis, Oregon 97331
bRocky Mountain Research Station, USDA Forest Service, 1221 South Main Street, Moscow, Idaho 83843

cPacific Northwest Research Station, USDA Forest Service, 3200 SW Jefferson Way, Corvallis, Oregon 97331
dDepartment of Forest Ecology and Management, University of Wisconsin, 1630 Linden Drive, Madison 53706

eNASA Ames Research Center, MS 242-4, Moffett Field, CA 94035-1000

Received 14 February 2003; received in revised form 20 January 2005; accepted 29 January 2005
Abstract

This study compared aspatial and spatial methods of using remote sensing and field data to predict maximum growing season leaf area

index (LAI) maps in a boreal forest in Manitoba, Canada. The methods tested were orthogonal regression analysis (reduced major axis,

RMA) and two geostatistical techniques: kriging with an external drift (KED) and sequential Gaussian conditional simulation (SGCS).

Deterministic methods such as RMA and KED provide a single predicted map with either aspatial (e.g., standard error, in regression

techniques) or limited spatial (e.g., KED variance) assessments of errors, respectively. In contrast, SGCS takes a probabilistic approach,

where simulated values are conditional on the sample values and preserve the sample statistics. In this application, canonical indices were

used to maximize the ability of Landsat ETM+ spectral data to account for LAI variability measured in the field through a spatially nested

sampling design. As expected based on theory, SGCS did the best job preserving the distribution of measured LAI values. In terms of spatial

pattern, SGCS preserved the anisotropy observed in semivariograms of measured LAI, while KED reduced anisotropy and lowered global

variance (i.e., lower sill), also consistent with theory. The conditional variance of multiple SGCS realizations provided a useful visual and

quantitative measure of spatial uncertainty. For applications requiring spatial prediction methods, we concluded KED is more useful if local

accuracy is important, but SGCS is better for indicating global pattern. Predicting LAI from satellite data using geostatistical methods

requires a distribution and density of primary, reference LAI measurements that are impractical to obtain. For regional NPP modeling with

coarse resolution inputs, the aspatial RMA regression method is the most practical option.
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1. Introduction

1.1. Predicting Leaf Area Index (LAI)

Leaf area index (LAI) is a significant ecological attribute

that controls physical and physiological processes in

vegetation canopies (Landsberg & Gower, 1997; Waring

& Running, 1998) and is widely used as input to
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biogeochemical process models that predict net primary

production (NPP) over extensive terrestrial areas (Running

et al., 1999, 1989; Running & Gower, 1991). For such

purposes, LAI predictions are often needed as maps, which

can be derived from remotely-sensed data using empirically

derived regression relationships based on spectral vegetation

indices (SVIs).

SVIs are calculated from reflectance data and, through

regression, often related to field-based LAI measurements of

the dominant canopy (Fassnacht et al., 1997; Peterson et al.,

1987; Spanner et al., 1990a,b; Tucker, 1979; Turner et al.,
ment 96 (2005) 49–61
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1999). The most commonly applied SVIs are the normalized

difference vegetation index (NDVI) and the simple ratio

(SR) (Chen & Cihlar, 1996; White et al., 1997). These and

other ratio-based indices, although important, utilize only a

fraction of the spectral information available in many image

datasets (Cohen et al., 1995) and thus may limit the power

of predictive relationships. For situations where understory

reflectance and canopy closure are variable (Loechel et al.,

1997; Spanner et al., 1990a), and where the understory and

background materials contribute substantially to the reflec-

tance signal received by the sensor (Huete et al., 1985;

Nemani et al., 1993), the use of shortwave–infrared wave-

lengths has improved predictive power (Loechel et al.,

1997; Nemani et al., 1993). One convenient and powerful

means of incorporating multiple spectral bands into a single

predictive index is canonical correlation analysis (CCA)

(Cohen et al., 2003).

Most commonly, ecologists have estimated variables

such as LAI and NPP without much regard for location, and

used them in non-spatial compartment ecosystem models

(Milne & Cohen, 1999). Among the input variables relevant

to canopy processes that can be derived from remote sensing

data are land cover type and LAI (Reich et al., 1999). Other

spatial surfaces such as temperature and evapotranspiration,

or accurate digital elevation models, are also commonly

required as model inputs (Running & Nemani, 1987; Wilson

et al., 2000). In a few instances, geostatistical methods are

used to derive or improve such data layers (Goovaerts,

2000; Kyriakidis et al., 1999). Dungan (1998) compared

regression and geostatistical methods for mapping vegeta-

tion variables, but using synthetic rather than actual

vegetation data.

The goal of this study was to use remote sensing data and

field LAI and tree cover data to obtain a maximum growing-

season LAImap that could be input into an ecological process

model for boreal evergreen needleleaf forest. The work

presented is drawn from Berterretche (2002), where a larger

set of comparisons was made. These included aspatial

methods such as ordinary least squares (OLS) regression,

inverse OLS regression, reduced major axis (RMA) regres-

sion (Curran & Hay, 1986), and spatial methods such as

kriging, cokriging, kriging with an external drift (KED), and

sequential Gaussian conditional simulation (SGCS) (Deutsch

& Journel, 1998; Goovaerts, 1997). For the sake of economy,

we selected from Berterretche (2002) three instructive

approaches: RMA, KED, and SGCS to report here.

1.2. Regression methods

Ordinary least square (OLS) regression methods are

commonly used to predict LAI from SVIs. OLS regression

assumes that the errors are (spatially) independent and that

there are no measurement errors in the bindependentQ
variable (X). OLS regression is designed to estimate the

bdependentQ variable (Y), by minimizing the sum of squares

errors in Y with respect to X.
Curran and Hay (1986) described the major measurement

errors that should be accounted for in remote sensing

variables, and that are generally ignored when using OLS

regression. A host of orthogonal regression models exist that

take into consideration errors in the measurement of all

variables used (Van Huffel, 1997). One in particular, RMA

regression, has exhibited promising results in studies by

Curran and Hay (1986), Larsson (1993) and Cohen et al.

(2003). Cohen et al. (2003) compared traditional OLS (Y on

X), inverse OLS (X on Y), and RMA regression models for

predicting LAI in an agro-ecosystem and cover percentage

at the boreal forest system used in this study; they

determined that RMA regression maintained the variance

of the observations in the predictions, whereas OLS

regression and inverse OLS regression reduced and inflated,

respectively, the variance in the predictions. Preserving the

variance structure of observed LAI is important if predicted

LAI is to be used to drive an ecological process model, as in

this study.

1.2.1. Reduced major axis (RMA)

The RMA method minimizes the sum of the cross-

products of the differences on both axes, accounting

simultaneously for the errors in both dependent and

independent variables (Curran & Hay, 1986; Davis, 1986;

Miller & Kahn, 1962). The RMA model was developed

using the equation Y=(a +bX+ e), where the coefficients a
(intercept), b (slope), and c (error) are estimated. In OLS, a
and b are determined by least squares, whereas with RMA,

a = Ȳ� (rY /rX)X̄, and b =rY /rX. Here, Ȳ and X̄ are the

means of Y and X and rY and rX are their standard

deviations.

1.3. Geostatistical methods

Geostatistics is concerned with a variety of techniques

aimed at understanding and modeling spatial variability

through prediction and simulation (Deutsch, 2002; Jour-

nel, 1989; Journel & Huijbregts, 1978; Goovaerts, 1997).

Geostatistics exploits the presence of spatial autocorrela-

tion and joint dependence in space and time that occur in

most natural resource variables (Myers, 1997). In an

ecological context, geostatistics have been used to

describe the scale and pattern of spatial variability

(Burrows et al., 2002; Legendre & Fortin, 1989; Rossi

et al., 1992; Woodcock et al., 1988), to characterize

canopy structure (Cohen et al., 1990; Hudak & Wessman,

1998; St-Onge & Cavayas, 1997; Wulder et al., 1998), to

estimate continuous (Hudak et al., 2002) and categorical

variables (Milne & Cohen, 1999; Rossi et al., 1993), and

to assess risk (Myers, 1997; Saito & Goovaerts, 2000).

Unlike aspatial regression techniques mentioned above,

geostatistics predicts values of a primary variable of interest,

in this case LAI, using both measured values of that primary

variable and a model of its spatial structure. Several

geostatistical techniques exist to bring in information about
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a related secondary variable or variables, in this case

information from remote sensing, to help predict the primary.

Along with this different formulation of the prediction

approach come expanded models uncertainty that depend

on the data values in addition to data configuration (Deutsch

& Journel, 1998). Stochastic simulation is an example of a

probabilistic geostatistical approach that provides a distribu-

tion of possible values for each cell of the surface, character-

izing uncertainty. These uncertainty measurements can

improve ecological interpretation, help assess error in a

spatial context, and decrease losses and risks in policy and

management decision-making (Rossi et al., 1993).

1.3.1. Kriging with an external drift (KED)

KED is a variant of kriging that allows for the use of

secondary information known at every location (exhaustive),

which is assumed to reflect the local spatial trend of the

primary variable (Deutsch & Journel, 1998; Goovaerts,

1997). In a landscape, spatial variation can be decomposed

into two components: large-scale variation and small-scale

variation. The KED trend represents the large-scale varia-

bility of the primary variable. The residuals from the trend

represent the small-scale variability, and the final KED result

combines both. KEDmodels the trend under the assumptions

of a linear relationship between primary and secondary

variables and smooth variation in the secondary variable. The

distinctive feature of KED is that the algorithm employs a

non-stationary random function model, where stationarity is

limited within each search neighborhood, yielding more local

detail than with ordinary kriging (Deutsch & Journel, 1998).

The KED estimator is

ZKEDT uð Þ ¼
Pn uð Þ

a¼1 kKEDa uð ÞZ uað Þ

where ZKEDT (u) is the KED estimator at location u, ka
KED(u)

are the KED weights corresponding to the n samples at

location u, and Z(ua) are the sample values within the search

neighborhood.

1.3.2. Sequential Gaussian conditional simulation (SGCS)

Stochastic simulation is a probabilistic approach that

provides a distribution of multiple, equally probable

realizations of the joint distribution of one or more

variables in space, generating a model of spatial uncer-

tainty (Goovaerts, 1997; Rossi et al., 1993). The collocated

simple cokriging estimate of the primary variable (in this

case, LAI) is

ZSCKT uð Þ ¼
Xn1 uð Þ

a1¼1

kSCKa1 uð Þ Z1 ua1ð Þ � m1½ �

þ kSCKa2 uð Þ Z2 uð Þ � m2½ � þ m1;
where ZSCKT (u) is the collocated simple cokriging estimator

at location u, kSCKai are the collocated simple kriging

weights, and m1 and m2 are global means of the primary

and secondary variables, respectively.

Collocated cokriging uses the lag correlation function

between the primary and secondary variables, following

the Markov-type approximation, q12(h)cq12(0)*q11(h)

where q12(h) is the lag cross-correlation function of the

primary and secondary variables, q12(0) is the correlation

coefficient between the primary and secondary variables,

and q11(h) is the lag correlation function of the primary

variable. In collocated cokriging, the dependence of the

secondary variable on the primary one is limited to the

collocated data, to avoid matrix instability problems

caused by highly redundant secondary information and

to speed up the process (Goovaerts, 1997).
2. Methods

2.1. Study site

The site is an approximately 1 km2 area centered

around the eddy covariance flux tower at the northern old

black spruce (NOBS) site within the Boreal Ecosystem-

Atmosphere Study (BOREAS) (Sellers et al., 1997), near

Thompson, Manitoba, Canada. It is typical of the extreme

northern boreal forest, having gentle terrain, containing a

few lakes, and with abundant permafrost. The soils are

derived from parent material deposited by Glacial Lake

Agassiz. Vegetation consists primarily of black spruce

(Picea mariana), with scattered tamarack (Larix laricina),

balsam poplar (Populus balsamifera), and jack pine (Pinus

banksiana). Canopy closure is highly variable, but gen-

erally less than 60% (Cohen et al., 2003). Stand ages are

variable, up to 80 years old. A distinctive feature of the

site is the abundance and diversity of bryophytes covering

the soil (e.g., feathermoss, Pleurozium spp.; reindeer

lichen, Cladina mitis), and a variety of grasses and shrubs

(e.g., willow, Salix spp.; Labrador tea, Ledum groenlandi-

cum). A more complete description of this site is given by

Gower et al. (1997).

2.2. Sampling design

This study used a systematic spatial cluster sampling

design based on Clinger and Van Ness (1976). The design

was a spatial application of unequal but periodic intervals

from a discrete time series that distribute pairs of plots at all

separation distances (lags) (Burrows et al., 2002). The

design maximizes information about the spatial variability

of vegetation in heterogeneous landscapes by decreasing

redundant measurements at constant lags (Burrows et al.,

2002), and is more efficient than random samples (Fortin et

al., 1989). The lags sampled in this nested design ranged

from 25 to 500 m.



Fig. 1. Sample plot locations (dots) surrounding the eddy flux tower (not shown) at NOBS. Background image is a black and white transformation from a color

composite (5,4,3) of the Landsat ETM+ image.
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LAI and cover were measured at each of 86 plots (Fig. 1).

Each plot was 25 m�25 m with multiple sub-plots, over

which measurements were averaged to produce a unique

value per plot. All plots were geolocated using a real-time

differential GPS with an accuracy of b0.5 m in both the x

and y directions.

2.3. Field measurements

LAI of a vegetation canopy is the one-sided green leaf

area per unit ground area; LAI is a critical parameter for

modeling canopy gas and energy exchange with the

atmosphere (Monteith & Unsworth, 1990). In this study,

LAI was based on tree diameter-at-breast-height by density

measurements and allometric equations developed by

Gower et al. (1999). LAI was measured in a 5 point pattern

like that on a die and cover in a 9 point (3�3) pattern. In

both cases, spacing among plots was maximized and edges

avoided by one-half the distance between sub-plots. Tree

cover was quantified with an upward-looking, digital true-

color camera fixed to a 1.70 m high monopod. Nine

photographs were taken at each plot at a 308 view angle.

The digital photos were enhanced with adjustments for color

balance, contrast and saturation using standard, commer-

cially available software. On each photo a reticular grid with

96 intersection points was used for cover determination. At

each intersection point presence or absence of live tree cover

was noted, the results transformed into percent live tree

cover, then averaged over the nine non-overlapping photos

per plot (Cohen et al., 2003).
2.4. Satellite image processing

Image processing was performed using ERDAS Imagine

software (Atlanta, GA). This study used a Landsat ETM+

image (path 33/row 21) acquired on July 10, 1999; it had

level 1 G processing, a 30 m cell size, and was projected in

UTM coordinates (WGS84 datum). A 1 m panchromatic

IKONOS image acquired on May 20, 2000 was georectified

with the same projection parameters, using GPS points

collected in the field with real-time differential correction

and accurate to b0.5 m. This IKONOS image served as the

base image for the ETM+ image, coregistered with a root

mean square error b7 m using an automated routine

(Kennedy & Cohen, 2003), then radiometrically resampled

to 25 m using cubic convolution. The ETM+ raw digital

numbers were transformed to percent reflectance using the

COST model developed by Chavez (1996).

2.5. Canonical index calculation

Single pixel values were extracted from the six ETM+

reflectance bands at the 86 plots, and CCAwas performed to

develop spectral-based canonical indices (Cohen et al.,

2003). Two canonical indices were developed: one relating

LAI to the ETM+ bands and the other relating cover to the

ETM+ bands. Each canonical index represented the linear

combination of ETM+ bands having the greatest correlation

with either LAI or cover (Johnson, 1998; Ramsey & Shafer,

1997), which facilitated subsequent RMA regression mod-

eling (Cohen et al., 2003).
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Maps of the two canonical indices (CILAI and CIcover)

were created based on the equation

CIm ¼
X

SCCbx

bx � b̄x

sbx

where CIv is the canonical index for variable v (LAI or

cover), sbx
is the standardized canonical coefficient for band

x, b̄x is the mean of the band x values at 86 plots, and sbx
is

the standard deviation about this mean. The linear regres-

sion model used to predict LAI from CILAI by the RMA

method (Fig. 2) was LAI=(4.19�1.68*CILAI).

2.6. Geostatistical modeling

Geostatistical procedures were performed with GSLIB

software (Deutsch & Journel, 1998). Data were transformed

to normal scores prior to geostatistical analyses. The normal

score transformation is non-linear and rank-preserving,

matching the original data to a standard normal distribution

(zero mean, unit variance). The purpose of assigning normal

scores is to transform potentially skewed data distributions

into Gaussian distributions to improve the applicability of a

multi-Gaussian assumption in geostatistical modeling

(Deutsch & Journel, 1998; Goovaerts, 1997). Prior to map-

ping results, predictions were back-transformed to approx-

imate the original data distribution; that the predictions only

approximate the original data is a caveat of the back-

transformation, which unfortunately introduces bias (Saito &

Goovaerts, 2000). Given that the original data in this study

were not strongly skewed, the bias is not considered serious,

but predictions must be interpreted with this caveat.

Location maps for LAI and cover measurements, histo-

grams, scatterplots, semivariograms, cross-correlograms and

Pearson’s correlation coefficients for all variable pairs were

explored to reveal important spatial and aspatial properties

of the data. Directional semivariograms of the LAI normal

scores were computed at 0, 10, 30, 50, 70, 90, 100, 120,

140, and 1608. The rose diagram (Fig. 3), a plot that

indicates the distances at which directional semivariograms
reach a predetermined semivariance in selected directions,

shows directions of maximum and minimum continuity and

was used to construct anisotropic models.

Experimental semivariograms were modeled with pos-

itive linear combinations of three effects: nugget, spherical,

and hole (Deutsch & Journel, 1998; Goovaerts, 1997).

Geostatistical algorithms preferentially weight data closer to

the location being predicted, within a specified search

neighborhood. These local search neighborhoods limit the

stationarity assumption to small areas, allow the calculation
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of local trends and means required for some of the methods,

and decrease computational time. GSLIB allows the user to

manage search neighborhoods by changing their size, shape,

and the amount of data to be used in the calculation.

2.6.1. Kriging with an external drift (KED)

The procedure for KED consisted of three steps

(Goovaerts, 1997, page 197). First, the trend coefficients

a0* and a1* of the trend model mKEDT (u) were evaluated

within the search neighborhood from the n(u) data pairs

(z1(u), z2(u)), where z1(u) were the primary (LAI) sample

data and z2(u) were the secondary (CIcover) data. These
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Then, the trend components m(u) were estimated at all

primary sampled locations and at all other locations. Finally,

simple kriging was performed on the residuals of the trend:

ZKEDT uð Þ � mKEDT uð Þ ¼
Xn uð Þ

a¼1

kSKa uð Þ Z uað Þ � mKEDT uað Þ½ �

where mKED* (u) was the trend component, estimated as

mKEDT uð Þ ¼ a0T uð Þ þ a1T uð Þz2 uð Þ _ a ¼ 1; . . . . . . ; n uð Þ

where Z(ua) are the sample data and ka
SK are the simple

kriging weights. The anisotropic model used for the KED
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Table 1

Summary statistics for field LAI and cover data (N =86 plots)

Variable Min Max Mean Median SD

LAI (m2 m�2) 0.98 9.98 4.19 4.26 1.68

Cover (%) 0.00 63.89 38.55 38.77 16.10

Table 2

Pearson correlation coefficients between Landsat ETM+ reflectance data

and LAI and cover at 86 plots, and canonical weights of Landsat ETM+

bands on CILAI and CIcover

Variable LAI Cover CILAI CIcover

Band 1 �0.29 �0.33 �0.05 �0.07

Band 2 �0.60 �0.73 �0.08 0.17

Band 3 �0.58 �0.70 �0.12 0.06

Band 4 �0.63 �0.74 �0.05 0.25

Band 5 �0.73 �0.78 1.15 0.20

Band 7 �0.69 �0.78 0.09 0.41

CILAI �0.73 �0.77 – –

CIcover �0.70 �0.80 – –
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was given by the combination of one model at azimuth 708
(minimum direction of continuity) and the other at azimuth

1608 (maximum direction of continuity) (Fig. 4):

cLAIKED hð Þ ¼ 0:05þ 0:95Tsph h min¼90; h max¼135ð Þ

2.6.2. Sequential Gaussian conditional simulation (SGCS)

SGCS with simple collocated cokriging of one secondary

variable was performed using CIcover as the secondary

variable. The same anisotropic model used in KED (see

above) was used in the SGCS algorithm to model LAI and 51

realizations were generated. A variance reduction factor of

0.85 was applied to ensure that the LAI normal score variance

was close to one, to match the normal score variance of the

KED model and thus facilitate their comparison.

The SGCS model produced a set of joint realizations of

the spatial distribution of LAI, conditional to both the

primary and collocated secondary variables. A Markov-type

approximation for the linear model of coregionalization was

used, so that only the semivariogram of the primary variable

needed to be modeled. The cross-semivariogram model was

derived as a linear rescaling of the primary variable

semivariogram model, using the correlation coefficient

between LAI and cover (r =0.83).

2.7. Model evaluation

Sample data values are preserved at their measured

locations in geostatistical predictions, but are not preserved

in the RMA regression. Therefore, summary statistics of

the predictions cannot be used to directly compare the

different methods. Also, partly because of the efficient

field sampling design, there were an insufficient number of

sample values to withhold for testing purposes. To check

the consistency of the methods, we used cross-validation, a

procedure in which each sample value is removed one at a

time from the data set, and that location is predicted from

the remaining data (Deutsch & Journel, 1998; Isaaks &

Goovaerts, 1997; Srivastava, 1989; Wackernagel, 1998).

For RMA and KED, cross-validation results were assessed

with scatterplots of the observed versus predicted values,

and of residuals versus predicted values to check for

unbiasedness and homoscedasticity.

Cross-validation of the SGCS method was too cumber-

some due to the many realizations (51), so the evaluation

of the SGCS predictions was handled differently. Condi-

tional variance was calculated to assess uncertainty. The

conditional variance r2(u1) measures the spread of the
conditional probability distribution around its mean zE*(ui),

where

r2 uið Þ ¼
X

l¼1

N zl uið Þzl uið Þ
� �

N
�

X
l¼1

N zl uið Þ
N

� �2

and zl(ui) refers to a single realization of N realizations.

Uncertainty increases as the spread of the probability

distribution increases. The uncertainty of a probabilistic

model was defined by Deutsch (2002) as the average

conditional variance of all n locations in the area of

interest

e ¼ 1

n

X
i¼1

n
r2 uið Þ; e

is between 0 and 1 in normal space.

In summary, no single metric sufficed for comparing the

RMA, KED and SGCS methods, yet a desirable overall

evaluation was achieved by combining three approaches.

First, the basic statistics of the predicted LAI distributions

were compared to those from the measured LAI distribu-

tion. Second, omnidirectional and directional (708 and

1608) semivariograms were used to assess anisotropy and

global variance. Third, the two spatial methods (KED and

SGCS) were compared for how well they preserved the

degree and pattern of spatial uncertainty.
3. Results

Measured LAI values ranged from 1 to 10 (Table 1).

Mean LAI was 4.2, relative to a median of 4.3, indicating

only a slight positive skew in the data. Tree cover ranged

from 0% to 64% with a mean and median of 39%. The

spatial distribution of LAI and cover values revealed a

slight north–south trend in these attributes (Figs. 3 and 5).

Incomplete canopy closure permitted a high influence of

non-tree cover components in the Landsat ETM+ reflec-

tance signal. This, combined with the reflectance properties

of black spruce crowns and shadows, yielded negative linear

relationships for observed LAI and cover with all ETM+

reflective bands and canonical indices, CILAI and CIcover



Fig. 5. Location and magnitude of (a) LAI, and (b) cover, for each plot.
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(Table 2). ETM+ bands 5 and 7 had the strongest

correlations with LAI and cover and consequently the

heaviest influence on CILAI and CIcover (Table 2).
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Table 3

Summary statistics of LAI predictions from the RMA and KED models (Fig. 7), a single SGCS realization (Fig. 7), and across all 51 SGCS realizations

Method Min Max Mean Median SD RMSE r2

RMA 0.37 6.94 4.19 4.42 1.65 1.23 0.72

Anisotropic KED 0.33 9.98 4.15 4.36 1.69 1.44 0.63

SGCS (1 realization) 0.07 10.00 4.19 4.25 1.68 – –

SGCS (51 realizations) 0.74 9.98 4.16 4.09 1.27 – –
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model was asymptotic, whereas the KED model was

extremely variable. Summary statistics for these predic-

tions (Table 3) indicate that both models retained the mean

LAI (4.2) and standard deviation (1.7) of the field

measurements (Table 1). The median values were within

0.2 of the field-measured median. Minimum values were

somewhat lower than the field-measured minimum value,

but only RMA had a reduced maximum. Simulation data

at plot locations from a randomly selected SGCS realiza-

tion (and for the mean of all 51 realizations) were used for

comparison, yielding quite similar statistics to those of the

other two methods (Table 3).

LAI surfaces were developed for each model (Fig. 7) by

applying the equations described in Section 2.5. For

comparison, the CILAI surface is shown. In terms of overall

patterns observed, KED best exhibited the observed global,

north–south trend in the LAI data (Fig. 5). All three methods
Fig. 7. Maps of the (a) Canonical Index for LAI (CILAI) image and LAI surfaces p

an External Drift (KED), and (d) Sequential Gaussian Conditional Simulation (SG

(meters) and helps for visually assessing the patterns in the predicted LAI surfac
revealed anisotropy, as observed in field-measured LAI

(Fig. 3) and the CILAI semivariograms (Fig. 8). However,

KED showed a reduced anisotropy and lower global

variance (i.e., lower sill), relative to RMA and SGCS. The

SGCS and RMA surfaces more closely reflected the actual

anisotropic pattern evident in the CILAI surface (Fig. 8) and

the original image (Figs. 1 and 7).

The SGCS model run using an anisotropic semivario-

gram model and CIcover as a secondary variable resulted in a

mean LAI uncertainty of 0.39. To illustrate the different

variance behaviors between predicted and simulated surfa-

ces, an east–west transect that goes through 10 field plots

was sliced from both the KED and SGCS surfaces (Fig. 9).

Consistent with theory, the KED estimated error variance

was dependent on the data configuration only, where the

variance decreased when approaching the sample locations,

and increased away from them. In contrast, SGCS condi-
redicted using: (b) Reduced Major Axis (RMA) regression, (c) Kriging with

CS). The CILAI image indicates the UTM X and Y extent of the study area

es.
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tional variance depended on the data configuration and the

data values, as is also predicted by theory. Conditional

variance was greater when two adjacent samples had

dissimilar LAI values, and smaller when adjacent values

were more alike.
4. Discussion and conclusions

4.1. Relationship of field and remote sensing data

Chen and Cihlar (1996), Loechel et al. (1997) and

Turner et al. (1999) stated that when canopy closure is

low, LAI and near-infrared reflectance have virtually no

relationship. In this study, bands 3 and 4 both showed a

negative relationship with LAI, thus limiting the utility of

common SVIs like NDVI and SR. The canonical indices

improved markedly the ability of the spectral data to

account for the variability observed in LAI over SR and

NDVI; e.g., the R2 improved from b0.01 for LAI and

NDVI to 0.54 for LAI and CILAI. Both geostatistical

models used CIcover as a secondary variable and repro-

duced an acceptable pattern, suggesting that the informa-

tion provided by CIcover was useful in accounting for LAI
spatial variability. We conclude that canonical indices are

much more useful than SVIs for empirical modeling

strategies as were tested in this study.

4.2. Model comparison

Comparing the basic statistics of the predicted LAI

distributions was not a very useful evaluation technique in

this study. All three methods preserved the basic statistics of

the field measurements (i.e., mean, median, and standard

deviation), but this contradicted theory in the case of KED,

which would normally lower the standard deviation. The

minimum value was under-predicted by all three methods

and RMA under-predicted the upper range of LAI. Both the

RMA and KED models provided acceptable RMSE values

and correlations, but SGCS could not be evaluated in the

same way. From these statistics alone, it is not clear that

there are meaningful advantages and disadvantages among

the methods for deriving LAI surfaces to be used as input to

NPP models. For that, we must examine the spatial

properties of the surfaces.

Simulations were developed initially to provide meas-

ures of spatial uncertainty, but these have increasingly

been used as maps of the variable of interest in cases
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where the reproduction of the spatial variability is more

important than local accuracy and where sample and

exhaustive data are available (Deutsch, 2002). A good

spatial uncertainty map should depend on the values of the

samples, the distances among them and their geometry.

The conditional variance of the whole set of realizations

(Fig. 9, right) provided a visual and quantitative spatial

uncertainty measure. While kriging may be useful in cases

where local accuracy is important, simulation was better

for this application where global continuity was more

important.

4.3. LAI maps for NPP models

The production of LAI surfaces as inputs for NPP

modeling requires a reliable mean and variance reproduction

for each biome. The sampling design plays a relevant role in

this task and we strongly recommend a basic a priori

anisotropy analysis of the data, such as a rose diagram, and

an unsupervised classification and/or a feature space

analysis to evaluate the representativeness of the sampling

design as first steps in similar studies.

This study tried to match the ground-based measurement

support to Landsat ETM+ pixel size. Averages over the

support surface were used, which bregularizesQ the semi-
variograms. The effects of regularization are the same as

those for aggregation: the variance is reduced, the range

increases, and the mean remains unchanged (Isaaks &

Srivastava, 1989; Woodcock et al., 1988). The reduction of

the variance may be the most important aspect among these

three, and the choice to use prediction or simulation to

produce the LAI surfaces would consequently play an

important role in the final quality of the NPP surfaces.

The semivariogram sills are associated with variability in

the spatial patterns of the LAI surfaces derived from the

three models (Fig. 8). RMA and SGCS did a better job of

preserving the anisotropy and variance structure of the data,

because of the smoothing effect KED has on the variance

(Figs. 8 and 9). As a result, RMA and SGCS appear more

promising for scaling up from Landsat ETM+ (30 m) to

Moderate Resolution Imaging Spectrometer (MODIS, 250–

1000 m) spatial resolutions. The set of SGCS realizations

could also serve as input for sensitivity analysis to assess

how LAI variability affects NPP process models.

Looking at the semivariogram ranges (Fig. 4), processes

regulating LAI at this particular forest are relevant at

distances up to 150 m. Aggregating Landsat-based LAI

maps to MODIS resolutions (250 to 1000 m) would imply a

certain amount of unknown error that would need to be

quantified to assess the relevance of the final NPP maps.
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This would depend on adequate support in the observations

(Heuvelink, 1998), which is problematic for two reasons.

First, it would be impractical to replicate beyond the NOBS

tower footprint the density of adequately distributed LAI

observations required to use geostatistical methods. Second,

the controls on LAI variability are heavily localized to sub-

pixel (MODIS) areas, so attempting to predict LAI directly

from MODIS imagery using SGCS or any other geo-

statistical approach would result in a pure nugget effect,

leaving RMA regression as the best alternative. For

characterizing spatial pattern in LAI it is necessary to

model at the intermediate resolution of Landsat before

aggregating LAI predictions to predict NPP using the coarse

resolution of MODIS.
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