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ABSTRACT

Differences in the transport rate and size of bedload exist for varying levels of flow in coarse-grained channels. For
gravel-bed rivers, at least two phases of bedload transport, with notably differing qualities, have been described in the
literature. Phase I consists primarily of sand and small gravel moving at relatively low rates over a stable channel surface.
Transport rates during Phase II are considerably greater than Phase I and more coarse grains are moved, including material
from both the channel surface and subsurface. Transition from Phase I to Phase II indicates initiation and transport of
grains comprising the coarse surface layer common in steep mountain channels. While the existence of different phases
of transport is generally acknowledged, the threshold between them is often poorly defined. We present the results of
the application of a piecewise regression analysis to data on bedload transport collected at 12 gravel-bed channels in
Colorado and Wyoming, USA. The piecewise regression recognizes the existence of different linear relationships over
different ranges of discharge. The inflection, where the fitted functions intersect, is interpreted as the point of transition
from Phase I to Phase II transport; this is termed breakpoint. A comparison of grain sizes moved during the two phases
shows that coarse gravel is rarely trapped in the samplers during Phase I transport, indicating negligible movement of
grains in this size range. Gravel larger than about D16 of the channel surface is more consistently trapped during Phase
II transport. The persistence of coarse gravel in bedload samples provides good evidence that conditions suitable for
coarse grain transport have been reached, even though the size of the sediment approaches the size limits of the sampler
(76 mm in all cases). A relative breakpoint (Rbr) was defined by the ratio between the discharge at the breakpoint and
the 1Ð5-year flow (a surrogate for bankfull discharge) expressed as a percentage. The median value of Rbr was about
80 percent, suggesting that Phase II begins at about 80 percent of the bankfull discharge, though the observed values
of Rbr ranged from about 60 to 100 percent. Variation in this value appears to be independent of drainage area, median
grain size, sorting of bed materials, and channel gradient, at least for the range of parameters measured in 12 gravel-bed
channels. Published in 2002 by John Wiley & Sons, Ltd.
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INTRODUCTION

Bedload transport in coarse-grained channels has been described as occurring in phases (e.g. Jackson and
Beschta, 1982; Carling, 1988; Ashworth and Ferguson, 1989; Warburton, 1992), whereby transport rates are
relatively low until a certain flow level is reached (Phase I). Transport rates increase substantially once this
flow is exceeded, typically accompanied by an increase in the size of material moved (Phase II). Phase I
transport consists primarily of sand moving over stable bed particles while Phase II consists of both sand and
gravel movement over a stable or semi-mobile bed. Phase I likely represents remobilization of finer materials
deposited from a previous transport event in pools and tranquil areas of the bed (Paola and Seal, 1995;
Lisle, 1995), whereas Phase II transport represents initiation and transport of grains from the coarse surface
layer common in steep mountain channels. The larger surface grains, dislodged at higher flows, release finer
grains from the subsurface layer, producing a rapid increase in the bedload transport rate that is significantly
different from Phase I (Milhous, 1973; Jackson and Beschta, 1982; Emmett, 1976; Beschta, 1987; Ashworth
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and Ferguson, 1989). The point at which this shift in phase occurs is important for defining the magnitude
of flows needed to move the wide range of sediment sizes in and delivered to coarse-grained channels. The
beginning of Phase II is thought to occur at or near the ‘bankfull’ discharge (Parker, 1979; Parker et al.,
1982; Jackson and Beschta, 1982; Andrews, 1984; Andrews and Nankervis, 1995), but the threshold may be
poorly defined. While a substantial amount of sediment is moved during Phase II, the duration is relatively
short and so a considerable amount of the total sediment load may be moved during Phase I transport prior
to general mobilization of the channel surface (Andrews and Smith, 1992; Wilcock and McArdell, 1993;
Lisle, 1995).

Speculatively, the relative discharge at which there is a change in phase may vary with the character of the
channel and the nature of sediment supply (Laronne and Carson, 1976; Andrews and Nankervis, 1995; Lisle,
1995; Dietrich et al., 1989). Here, we define relative discharge as the flow at which Phase II begins relative
to the discharge with a 1Ð5-year return frequency, a surrogate that commonly corresponds to bankfull flow.
There are a number of factors particular to coarse-grained channels that control the initiation of transport and
may influence the discharge at which a change in phase occurs; these include differences in relative roughness
(Church, 1978; Bathurst, et al., 1983), clustering of individual grains (Reid and Frostick, 1984; Laronne and
Carson, 1976; Reid, et al., 1985), geometry of bed particles (Kirchner et al., 1990; Buffington, et al., 1992),
imbrication (Mantz, 1980), and compaction or packing of surface grains (Church, 1978; Reid et al., 1985;
Hassan and Reid, 1990). For instance, the change in phase may occur at a lower relative discharge in more
distal, flatter, finer-grained channels where, observationally, the grain size of the bedload is closer to that of
the channel bed (e.g., Lisle, 1995). However, we are unable to test this hypothesis without clear definition of
the flows at which the change in phase occurs.

In this paper, we evaluate phases of bedload transport in coarse-grained channels and present an objective
statistical procedure for determining the discharge at which the transition from Phase I to Phase II transport
occurs. Specifically, we use a piecewise regression model, where two or more continuous functions are
fitted to measured bedload transport rates, to identify the inflection (or breakpoint) formed where the fitted
functions intersect. The breakpoint is interpreted as the discharge at which the change in phase takes place.
The hypothesis is that distinctly different statistical characteristics and sedimentological factors are associated
with flows that are less than or greater than the breakpoint discharge. The fitted line for flows that are less
than the breakpoint discharge (Phase I transport) is expected to have a lower slope and less variability due
to the fact that bedload at these discharges consists primarily of small quantities of sand-sized materials. In
contrast, the fitted line for flows greater than the breakpoint is expected to have a significantly steeper slope
and more variability in transport rates due to the physical breakup of the armour layer, the availability of
subsurface material, and subsequent changes in both the sizes and volumes of material in transport.

Generating a breakpoint with piecewise regression requires a large number of measurements of bedload
transport collected over a wide range of flows, including the 1Ð5-year (bankfull) and greater discharges. Ideally,
there should be no substantial gaps in the distribution of samples, particularly at higher flows. There are,
however, few sets of bedload data that meet these stringent criteria. We present and demonstrate the application
of the piecewise regression procedure for transport rates measured at eight sites on the Fraser Experimental
Forest near Fraser, Colorado, where 100 to 200 samples per site were collected between 1992 and 1997. Flow
measurements range from 0Ð1 to nearly two times the bankfull discharge. The piecewise regression model is
evaluated further using data from four streams in Colorado and Wyoming with comparable ranges of flow
and numbers of observations.

OBJECTIVES

The objective of this paper is to demonstrate the best-fit functions between measured bedload and discharge
and provide support for the selection of a two-piece linear regression model with a distinct breakpoint that can
be bounded with confidence limits by applying bootstrapping techniques. Though piecewise linear regression
is applied only to total rates of transport, we also evaluate differences in the grain sizes captured at discharges
greater than and less than the breakpoint to demonstrate distinctions in the sizes of particles moved under
different phases. Finally, the breakpoint estimates for several coarse-grained sites are compared to determine
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DEFINING PHASES OF BEDLOAD TRANSPORT 973

whether differences in basin and channel characteristics explain variation in the relative discharge associated
with the onset of Phase II transport.

SITE DESCRIPTION

St Louis Creek is a single-thread, fourth-order, perennial stream located within the subalpine environment
of the Fraser Experimental Forest (Figure 1). East St Louis and Fool Creeks are second-order tributaries to

Figure 1. Map of study sites at Fraser Experimental Forest near Fraser, Colorado. Numbers on the main stem of St Louis Creek
correspond to those in Table I. Lines with labels ‘E. St. Louis’ and ‘Fool Creek’ indicate location of sampling sites relative to gauges

and diversions
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based on Guy (1969)

St Louis Creek. Channels are characterized by moderate to steep slopes (0Ð02 to 0Ð05), with beds composed
largely of gravels, cobbles, and boulders (Figure 2) derived from Quaternary glacial outwash and tills. The
median grain size (D50) of the channel surface ranges from 38 to 146 mm (Table I). The D50 of the surface
is between 3 and 11 times that of the subsurface (Table I) indicating the channels are strongly to very
strongly armoured. The basin is underlain by granite, gneiss, and schist bedrock. Mass wasting processes
in the region are relatively limited and bedload in subalpine streams, in general, is derived primarily from
bank erosion and channel scour (Caine, 1986). Channel banks are stable over a wide range of flows and have
dense to moderately dense vegetative cover composed of: (1) subalpine tree species Engleman spruce (Picea
engelmannii ), subalpine fir (Abies lasiocarpa), and, to a lesser extent, lodgepole pine (Pinus contorta); (2)
willows (Salix species); and (3) numerous herbaceous species (i.e. Carex species and grasses).

The average yearly temperature recorded at the Fraser Experimental Forest is 2 °C, with a mean January
temperature of �9 °C and a mean July temperature of 13 °C. The average annual precipitation is 610 mm,
ranging from 380 to 760 mm; two-thirds falls as snow. Ninety-five per cent of the total annual runoff occurs
during snowmelt in spring (Gartska et al., 1958). Water is diverted from the St Louis system at several points
(Figure 1); three of the studied sites are located in channels from which an average of 40 per cent of the
total annual flow is diverted (Ryan, 1994). However, water was rarely diverted at high flow during bedload
sampling periods.

METHODS

Collection and analysis of field data

Data on water and bedload discharges were collected at eight sites at the Fraser Experimental Forest,
including three boulder-bed (step–pool) and five cobble-bed (pool–riffle or plane bed) channels (Figure 1,
Table I). Sites were selected using slope, particle size, channel topography, and valley floor constraint cri-
teria and are typical of channels in a subalpine riparian forest environment (Ryan, 1994). Cross-sections in
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step–pool channels were located at the downstream end of a pool in an area largely free of large boulders.
Cross-sections in pool–riffle and plane bed channels were located in straight or meander cross-over locations.

Bedload transport was sampled on a near-daily basis during several weeks between May and July in 1992,
1993, and 1995. Samples were collected less frequently in 1996 and 1997, except at sites 4 and 4a when
bedload was sampled on the order of once every 4 hours in 1996 (Ryan, 1999). Bedload was collected using
a hand-held Helley–Smith sampler (Helley and Smith, 1971) while wading in 1992 and from platforms
suspended above the channel in later years (Martinez and Ryan, 2000). The sampler is constructed of 16
gauge sheetmetal, has a 76 ð 76 mm orifice, 3Ð22 expansion ratio, and a 0Ð25 mm mesh catch bag. The upper
size limit of the samples is therefore restricted to grains smaller than about 76 mm. We and others (e.g.
Leopold, 1992; Lisle, 1995; Whiting et al., 1999) have observed that a substantial portion of the material
moved as bedload in coarse-grained channels is sand and small gravel, the majority of which will pass
through the 76 mm orifice. Moreover, an analysis of sediment taken from settling ponds at sites on the Fraser
Experimental Forest and Medicine Bow National Forest indicates that 85–95 per cent of the total load would
pass through the Helley–Smith opening (Wilcox et al., 1996; Ryan and Porth, 1999). Hence, while there are
limitations on the grain sizes capable of entering the Helley–Smith sampler, cobbles (>64 mm) generally
constitute a relatively small proportion of the total bedload transported in these systems.

Cross-channel measurements from nine to 14 equally spaced verticals were combined to determine the
mean rate of bedload transport through the cross-section. Spacing between verticals ranged from 0Ð3 to
0Ð7 m, and the sampler was held in place for either 1 or 2 minutes at each position; importantly, sampling
time per vertical was the same on any given traverse. Each composite sample, therefore, represents a spatially
and temporally averaged rate measured over 20 to 30 minutes. Transport rate was calculated using the total
weight of the sample (in kg) divided by the total sampling time and width of the sampler to obtain the unit
bedload transport rate (in kg m�1 s�1). This value is multiplied by the width of the channel to obtain the
mean transport rate (in kg s�1) through the cross-section. Flow was estimated for each sample using the mean
discharge during the sampling period from the stage–discharge relationship, or by discharge measurement
immediately following the bedload measurement. Mean velocity was measured at each vertical with Price
AA or pygmy current meters. Discharge was calculated from the average velocity, interval width, and total
depth measurements for channel subsections, using standard methods (Buchanan and Somers, 1969; Nolan
and Shields, 2000).

Bedload samples were dried and sieved using standard sedimentological methods (Folk, 1968). Large
organic matter was picked from the sample during processing and excluded from the total sample weight.
Samples were separated into grain size classes using full phi sieves ranging from 0Ð25 to 64 mm. Rates of
transport for particles finer than 4 mm are not discussed separately.

Determining breakpoints using piecewise regression

In exploring a relationship between an independent variable (x) and a dependent variable (y) (in this case,
discharge and bedload transport, respectively) it is often apparent that a linear model is not appropriate for
the entire range of values, but a non-linear function may not fit best either. One possibility is that different
linear relationships occur over different ranges of x. Breakpoints (c) are values on the x-axis where a change
in the slope of the different linear relationships can be defined; these breaks may or may not be known before
the analysis. While the regression functions so determined may be discontinuous, the model can be written in
such a way that the function is continuous at all points, including the breakpoint. We assume that, given what
is understood about the nature of bedload movement in natural channels, the function should be continuous.

When there is only one breakpoint (at x D c) the model can be written as:

E[y] D a1 C b1x for x � c

E[y] D a2 C b2x for x > c

In order for the function to be continuous, the two equations for E[y] need to be equal when x D c:

a1 C b1c D a2 C b2c ) a2 D a1 C c�b1 � b2�
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The function can be rewritten as follows, substituting for a2:

E[y] D a1 C b1x for x � c

E[y] D fa1 C c�b1 � b2�g C b2x for x > c

This can be extended to cases where there appears to be more than one breakpoint. The functions for the
combination of 2 breakpoints and 3 linear segments would be:

E[y] D a1 C b1x for x � c1

E[y] D fa1 C c1�b1 � b2�g C b2x for c1 < x � c2

E[y] D fa1 C c1�b1 � b2� C c2�b2 � b3�g C b3x for x > c2

The actual number of breakpoints may vary, and both physical and statistical criteria should be considered
in determining the number of breaks in slope. An exploratory view of the data using a smooth regression
curve can be used to provide insight into the number of breakpoints needed. Models using 1, 2, or more
breakpoints are then compared to see if the goodness-of-fit improves by increasing the number of inflections.

RESULTS

Hydrograph

Bedload was collected over a wide range of conditions during several relatively wet years (recurrence
intervals up to five years). Sustained high flow, defined as the period of time when flow was at or exceeded
bankfull stage, lasted between one and two weeks in years 1993, 1995, 1996, and 1997, providing ample
opportunity to collect bedload under conditions of relatively high flow and transport (Figure 3). Runoff was
below average in 1992, the year this study was initiated; peak flow was about 60–80 per cent of the bankfull
discharge (Ryan, 1994; Ryan and Troendle, 1996). Only five sites on the main stem of St Louis Creek were
sampled that year.

Data suitability

Bedload data from sites on St Louis Creek and its tributaries represent a compilation of samples collected
over several years. One might suspect, however, that estimates of transport rates for individual years could
be different due to factors such as changes in annual or seasonal accumulation of sediment (e.g., Sidle, 1988;
Hassan and Church, 2001) or, to a lesser extent, collection by different persons (Ryan and Porth, 1999). The
similarity between samples collected in different years is assessed to determine whether the data measured
over a similar range of flows appear to have been drawn from the same population. Bedload data collected at
all sites exhibit linearity, normality, and heterogeneous variance problems, requiring transformation of the data
that would permit testing with the commonly used ANOVA model. However, there was no one transformation
which corrected all of the problems, so a generalized additive model (GAM) was used to test for differences
between different years. The GAM uses a smooth, non-parametric fit to the data and tests for differences
between the smoothed fits to determine whether they are significant (Hastie and Tibshirani, 1990). We used
a Lowess (a locally weighted, least squares regression using the k nearest neighbours) smoothing procedure
because it most closely approximates trends in the data for all sites (Figure 4).

Discharge and year were included as predictors in the GAM because we are interested in evaluating
both flow and annual difference in the data. Year or the year ð flow interaction was significant at six sites
indicating that there was at least one year that differed from the others. No significant differences were detected
at sites 4a and 5 (Table II). Subsequent tests to determine specifically which years differed were conducted in
chronological order, starting with data from 1993 and 1995. If there were no significant differences in the first
two years, the data were pooled and tested for similarity against successive years. In this manner, similarity
between earlier and supplementary sets of data is tested in the order in which they were collected. Bonferroni
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Table II. Results of a generalized additive model (GAM) indicating
years with similar bedload data

1993 1995 1996 1997

St Louis Creek, Site 1 1 1 2 2
St Louis Creek, Site 2 1 2 1 2
St Louis Creek, Site 3 2 1 1 1
St Louis Creek, Site 4 2 1 1 1
St Louis Creek, Site 4a 1 1 1 1
St Louis Creek, Site 5 1 1 1 1
East St Louis Creek 1 1 1 2
Fool Creek 1 2 1 1

Number indicates groups with similar data at individual sites.

corrections, reflecting the number of tests in a set, were applied to p-values to determine significance level for
each comparison. If there were significant differences in the first test, we concluded that there were at least
two groups and subsequent tests were performed on both groups. Data from five sites measured in 1992 were
not included in these comparisons because the range was restricted to low flows. However, it was apparent
from plots that the values are comparable to those collected in other years, so we include data from 1992 in
the piecewise regression, described later.

We found the GAM procedure to be sensitive to small differences between annual sets of data. Often only
a few points changed the fit of the curve, making the whole year appear significantly different, while the
majority of the datapoints overlapped with the existing data. The results from the GAM (Table II) indicate
which years were similar and different for each site. The results are varied and there was no one year that
differed at all sites. In six cases, there were no differences or only one year that differed from the main group.
Two years differed at sites 1 and 2, but the differing years were themselves similar, indicating that there were
only two, not three, groups. There was, however, no obvious cause for the differences between years (such
as a pulse of sediment from hillslope failure). There was also no consistency in the years that are different
that would suggest an operator effect. We therefore decided that the full dataset expresses the natural range
of variability inherent in bedload transport at any one site and until we understand better the nature of this
variability, it would be imprudent to exclude data at this point in time. With this in mind, the piecewise
regression model was applied to both the full and the censored data to determine whether they gave different
results. We found that while the value of the generated breakpoint was not substantially different, the width
of the confidence limits on the breakpoint estimate was greater using the uncensored dataset. We report only
the results of the fits to the full datasets, with the exception of site 1 where the model results were greatly
improved by excluding data measured in 1996.

Breakpoint analysis

The piecewise regression model was fitted using several approaches, including generalized least squares
(GLS), iteratively reweighted least squares (IRLS), and least absolute deviation (LAD) (Neter et al., 1989).
The latter two methods are less sensitive to outliers, which are common in bedload data. However, the
estimated equations were nearly identical using the three approaches. Because the methods produced similar
results, only those from the analysis using GLS are presented.

Data were fitted using a single linear function, a power function, and a third or fourth order polynomial to
determine if any of these worked better than the piecewise linear regression. The linear model was typically
poorer than the non-linear models, as may be expected. However, the model standard errors (MSE) using
the power, polynomial, and piecewise regression functions were quite similar, indicating the models are
comparable for estimating the mean rate of transport for a given discharge. However, the breakpoint generated
by the piecewise regression function identifies a threshold at which there is a substantial change in the rate of
transport, and therefore provides an objective means for detecting changes in phase. When accompanied by
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grain size data (described later), the breakpoint analysis provides compelling evidence distinguishing between
at least two phases of bedload transport. Hence, we choose the breakpoint model for further examination
based on ‘scientific reasons’ rather than exclusively on goodness-of-fit comparisons (Bates and Watts, 1988).

One of the difficulties encountered in using the piecewise regression procedure on bedload data is that
typically the residuals are not homogeneous and so the standard error of the estimates for each of the
parameters (a1, b1, b2, and c) is suspect. In order to correct for these problems, we applied a bootstrapping
procedure to calculate non-parametric estimates of standard errors of the parameters and confidence intervals
(Efron and Tibshirani, 1993). Bootstrapping involves resampling from the original dataset with replacement,
meaning a datapoint may be selected more than once in order to obtain a secondary dataset. The piecewise
regression model is then fitted to this secondary dataset and the parameters from this equation are retained.
The procedure is repeated a specified number of times (in our case, we used 1000 iterations, meaning 1000
secondary datasets were generated) and the standard deviation of the parameters for the bootstrap estimates are
used to determine the 95 per cent confidence limits on each of the parameter estimates (Efron and Tibshirani,
1993). The confidence limits generated by the bootstrapping procedure help characterize the reliability of the
breakpoint estimate (Table III).

One breakpoint and two linear, continuous functions were generated for each site (Figure 5, Table III);
the intercept (a1) was negative in all cases. This makes physical sense because bedload movement becomes
undetectable (or goes to near zero) before flow becomes zero. While the piecewise regression model will
usually converge to produce a breakpoint, one needs to evaluate the confidence limits of the parameters and
the variance accounted for by the model to determine if it is an appropriate fit. In some cases, the breakpoint
was well-defined with relatively narrow confidence limits (Figure 5e). In other cases, the breakpoint was less
distinct and the confidence bands were relatively wide (Figure 5c). Occasionally, the piecewise regression
procedure produced a lower breakpoint than might be picked visually. This is likely due to the scatter of
the data observed during the second phase of transport (e.g. Figure 5d). Here, one linear model fitted the
data nearly as well as two linear models with a breakpoint, indicating that the breakpoint determined by the
analysis may be suspect for this particular site. More generally though, the piecewise regression fit appeared to
properly identify the approximate discharge at which substantial increases in bedload transport rates manifest
themselves.

Rates of fractional transport at varying flow levels
The primary constituent of all the bedload samples was sand and fine gravel (<4 mm) that ranged from

40 to 100 per cent of the total sample weight (crosses on Figure 6); the predominance of sand in bedload
is typical for channels with very coarse beds (Leopold, 1992; Lisle, 1995). Transport rates for grains sizes
between 4 mm and 64 mm were calculated by proportioning the total transport rate by standard classes
(full phi). Rates of fractional transport were then plotted against discharge to determine whether there were
differences in grain sizes transported at flows greater than or less than the value of the breakpoint discharge
(Figure 6).

Coarse gravel (defined below for individual sites) was rarely trapped at flows less than the breakpoint.
Fewer than 3 per cent of the samples contained large grains, indicating their movement over this range of
flows is essentially negligible. Instead, bedload consisted primarily of sand with minor contributions of fine
to medium-sized gravel. Fine gravel frequently behaves similarly to sand for streams in the St Louis Creek
catchment and together they are the principal constituents of Phase I transport. The source of material trapped
at less-than-breakpoint flow is most likely from more mobile patches and interstitial areas and does not
represent widespread entrainment of the channel surface.

Samples collected at greater-than-breakpoint flows are notably more coarse than those measured at less-
than-breakpoint discharges (Figure 6). While the majority of even high flow samples consist of sand and
fine gravel, coarser gravel that is largely absent from samples at low flows becomes common in samples
collected at high flows. Grain sizes larger than 32 mm appear in samples at St Louis sites 1, 2, 3, 4, 4a, and
5; grain sizes 16 mm and larger appear in samples from Fool Creek and East St Louis Creek at the same
relative level of flow. Notably, the D-values of grains 32 mm in diameter represent approximately D16 of
the surface at the St Louis sites (ranging from D11 to D22); the D-values of 16 mm grains at Fool Creek
and East St Louis Creek are D22 and D19, respectfully. Hence, the surface D16 (or an approximation thereof)
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Figure 6. Fractional transport rates observed at three sites at the Fraser Experimental Forest. Grey square symbols indicate gravel that
is ‘coarse’ at a particular site (>32 mm on the main stem and >16 mm for Fool Creek). Value of the discharge at the breakpoint is
shown by the short solid line while longer lines indicate the confidence limits on this estimate. The discharge at which coarse gravel

begins to appear in the samples more or less coincides with the value of the breakpoint
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appears to be an important grain size whose capture in samplers represents mobilization of grains from the
coarse surface layer. In addition, D16 of the surface layer in natural sediments is roughly equivalent to the
D50 of the subsurface grain size distribution (e.g. Bathurst et al., 1987; Thorne and Hey, 1983) and so the
increasing presence of this grain size in bedload samples is likewise a useful indicator of mobilization of
the subsurface once the coarse surface layer is disrupted. There is typically an order of magnitude difference
between the rate of transport for sand and small gravel at greater-than-breakpoint flows relative to lower flow
which supports the notion that once the coarser surface layer is disturbed, there is an accompanying increase
in the availability of fines from the subsurface.

As a caveat, reliance upon the presence of coarse gravel in bedload samples could conceivably produce
estimates for the onset of transport that are greater than ‘actual’ conditions. This is because gravel transport
is irregular (e.g. Parker and Klingeman, 1982), consisting of only a few particles moving at a point in
time, characterized by brief periods of motion followed by longer periods of rest. Hence, the likelihood
of entrapping coarser gravel is relatively low, particularly at conditions near onset (e.g. Emmett, 1980;
Dietrich and Whiting, 1989). However, in light of low probability of capture, the presence and persistence
of some coarse gravel in bedload samples at high flows provides good evidence that conditions suitable
for gravel transport have been reached, though the estimate of the rate of transport may be a conservative
one. The fact that coarse gravel appears in samples beginning at about the breakpoint reinforces the concept
that the rapid increase in transport at the onset of Phase II transport can be attributed to the break-up and
transport of coarse grains from the channel surface, accompanied by an increase in fines availability from the
subsurface.

Relative breakpoint
In order to compare breakpoints in channels with differing conveyance capacities, a relative breakpoint

(Rbr) was generated by dividing the breakpoint from the piecewise regression model (Qbr) by the 1Ð5-year
return interval flow (Q1Ð5) and expressing as a percentage:

Rbr D 100�Qbr/Q1Ð5�

Return frequency was estimated for flows at sites 1, 2, and 3 through regression analysis with discharge
data from the United States Geological Survey (USGS) gauge on St Louis Creek (no. 09026500). A strong
linear correspondence exists between discharge measured at the site and that recorded at the gauge for the
same time period; R2 values were 0Ð96, 0Ð96, and 0Ð94, respectively. Return frequency was calculated on
data from the St Louis gauge using the Log Pearson type III method (US Interagency Advisory Commit-
tee on Water Data, 1982) on annual maximum discharge between 1935 and 1955, a period when flow at
this gauge was unaffected by trans-basin diversion. Similar computations were made for sites 4, 4a, and 5
using the gauge record from East St Louis Creek for the period 1943–1996 (United States Forest Service
(USFS), unpublished gauge records). Here, good, though less strong, linear correspondence exists between
gauged discharge and that measured at the sampling sites (R2 values were 0Ð94, 0Ð86, and 0Ð84, respec-
tively). Discrepancies are due to the studied sites being in a different watershed from the gauge resulting in
slightly mismatched runoff regimes. Estimates of the 1Ð5-year instantaneous flow are less than that estimated
by the ‘bankfull’ discharge in the field at sites 4 and 4a (4Ð00 m3 s�1); the latter is more comparable to
the two-year return interval flow (Ryan and Troendle, 1996). The 1Ð5-year flows for Fool Creek and East
St Louis Creek were determined using Log Pearson type III analysis on flow records from nearby gauges.
Because there were differences in discharges measured at the sampling cross-section and that estimated by
the gauges for a given stage, the 1Ð5-year flow calculated for the gauged record was adjusted to flows mea-
sured at the cross-section; this was done using regression analysis with the two flow records. Estimates of
the 1Ð5-year return interval of flows at the sampling locations and their relative breakpoints are listed in
Table III.

The Rbr for the Fraser sites ranged from 57 per cent at site 4 to 95 per cent at site 2. The median value of
the breakpoint was 80Ð8 per cent, indicating a tendency for the change in the flow/sediment relationship at
about 80 per cent of the 1Ð5-year discharge. The median values of the 95 per cent confidence limits for the
relative breakpoint were between 68 and 97 per cent (Table III).
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For comparative purposes, the piecewise regression model was applied to data from four additional gravel-
bed streams in the Rocky Mountain region. Three of the sites (Coon Creek, Upper East Fork Encampment,
and Little Granite Creek) are in Wyoming, USA, and one site (South Fork Cache la Poudre) is in north-central
Colorado, USA. The datasets were collected for a variety of purposes, including monitoring (Little Granite;
Nelson et al., 1991; Leopold, 1994; Emmett, 1999; Ryan and Emmett, 2002), support for instream flow claims
(South Fork Cache la Poudre; Leopold, 1992), and for detecting changes in sediment yield following timber
harvesting (Coon Creek and Upper East Fork Encampment; Troendle et al., 1996, 2000; Wilcox, et al., 1996).
All sites are located near presently or historically operating gauging stations monitored by either the USGS or
the USFS. Flow frequencies were calculated using Log Pearson type III on the annual maximum series for the
periods of record. The value of the 1Ð5-year flows at Coon Creek and East Fork Encampment were adjusted
using regression analysis to reflect differences in flows measured at the cross-section where bedload was
measured and that gauged at the long-term station. All of the datasets contain previously published data that
have been augmented with additional samples since original publication (USDA Forest Service, unpublished
data). Each consists of approximately 90 datapoints with the exception of Little Granite Creek where there are
in excess of 250 data points (Ryan and Emmett, 2002). Both sediment samples and discharge measurements
were collected from relatively low flows to flows in excess of bankfull. Hence, all meet the criteria needed
for generating a breakpoint using the piecewise regression model.

The results of the piecewise regression analysis at the supplementary sites show that the relationship between
the 1Ð5-year flow and the breakpoint is similar to that observed at the St Louis Creek sites (Table III). While
the Rbr is typically greater than the median of 80Ð8 per cent at the supplementary sites, the range of values for
these four sites generally falls within the range of observations at sites on the Fraser Experimental Forest, with
the exception of the East Fork Encampment River, which is slightly higher. Overall, the range of observed
values of Rbr at all sites is between about 60 and 100 per cent of Q1Ð5. The variation in Rbr may be due
to several factors, including: (1) intrinsic differences in the systems; (2) the difficulties of optimizing the
breakpoint on data with high variance; or (3) reliability of the estimate of the 1Ð5-year flow.

Channel characteristics and differences in relative breakpoints

The hypothesis that variation in the relative breakpoint is due to differences in the nature of the channel
from which the data were measured was tested by regressing the relative breakpoint (y) against a number of
basin and channel parameters, including: slope; median grain size of the channel bed; dimensionless grain
size (D50/w) where w is the channel width; drainage area; relative roughness (D84/H1Ð5) where H1Ð5 is the
mean depth at bankfull; and a sorting index (�) for the channel surface (Andrews, 1983), defined by:

� D 1

2

(
D84

D50

)
C

(
D50

D16

)

A linear fit to the data from 12 sites was used in this series of comparisons. There was, however, no significant
trend between the relative breakpoint and any of the channel parameters; R2 values and p-values are shown
in Figure 7a–f. All fits are essentially flat lines with y-intercepts near 80. From this we conclude that the
variation in relative breakpoints cannot be attributed to differences in the characteristics of the channels,
but is more likely due to the variation in procedures used to calculate Rbr , such as the reliability of the
breakpoint or the 1Ð5-year flow estimates. The initial motion of the streambed and the onset of Phase II
transport at the study sites occurs at about 80 per cent of the 1Ð5-year flow, the range being between 60 and
100 per cent.

Presence of a second breakpoint

Theoretically, a second breakpoint may exist at some point above the bankfull discharge. As flow increases
and moves out of the channel, forces acting on the particles (specifically, shear stress) level off because the
water surface slope remains about the same while the rate of increase in depth flattens as flow moves onto
the floodplain. The presence of a second breakpoint and third linear function would suggest a levelling of
transport rates, coincident with the levelling off of shear stress. However, no second breakpoint could be
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Figure 7. Relationship between the relative breakpoint (Rbr) and an number of channel parameters, specifically: (a) drainage area;
(b) slope of the water surface; (c) median grain size (D50); (d) dimensionless grain size; (e) sorting index; (f) relative roughness. Error
bars are the confidence limits on the relative breakpoint. No statistically significant trends exist between the relative breakpoint and any
of the aforementioned parameters. Abbreviations are as follows. On St Louis Creek: 1, Site 1; 2, Site 2; 3, Site 3; 4, Site 4; 4a, Site
4a; 5, Site 5. ESLC, East St Louis Creek; Fool, Fool Creek; LGC, Little Granite Creek; SFCP, South Fork Cache la Poudre; EFE, East

Fork Encampment River; Coon; Coon Creek
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Figure 7. (Continued)

defined using the piecewise regression model as described. This could be due to the irregularity of the pattern
of transport rates at flows greater than bankfull that make it difficult for the fitting procedure to detect the
presence of a third linear segment and second breakpoint. Generally, transport rates increase rapidly between
80 and 100 per cent of bankfull and that portion of the line is fairly well defined. Then as flow increases
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to discharges with five- to ten-year return frequencies, transport rates remain high (and variable) but they
do not necessarily continue to increase at the same rate as that observed at close-to-bankfull flow. Because
transport rates at high flows exhibit exceptional variability, additional data at still higher discharges are needed
in order to define the flattening of the line somewhere above bankfull, if transport rates in the channel do
indeed ‘level off’ during overbank flows. Transport rates may remain within the range of values observed at
bankfull (assuming no new sources of sediment are introduced) until about twice the critical discharge when
presumably stable banks begin to erode (Parker, 1979). Transport was measured at flows only up to about
1Ð5 times the critical discharge at the sites described herein.

DISCUSSION AND CONCLUSIONS

In this paper, we present the application of piecewise linear regression to rates of sediment transport and
discharge measured at eight stream sites on the Fraser Experimental Forest where between 100 and 200 sam-
ples of bedload have been collected at each site. Measurements cover a wide range of flows, including many
exceeding bankfull. The piecewise regression model was also successfully applied to data from additional
sites in Colorado and Wyoming, indicating broader application of the procedure to sites outside of the Exper-
imental Forest. We found that the breakpoint generated by the piecewise regression procedure objectively
defines a discharge at which there is an apparent shift from low to moderate transport of sand and fine gravel
atop a stable streambed (Phase I) to a disruption of the streambed and higher rates of transport that include
larger particles (Phase II). When the level of flow at the breakpoint is tied to the bankfull discharge, one finds
that the shift occurs typically at about 80 per cent of bankfull. This appears to be surprisingly consistent,
even though the studied channels have varied slope, size, roughness, and bed topography; the confidence
limits on the breakpoint estimates are also largely comparable. This suggests that these gravel-bed channels
are adjusted so that the onset of transport of grains (about D16) from the channel surface begins at a flow that
occurs relatively frequently (nearly annually) and almost fills the banks. In this respect, there is a fundamental
link between process and form whereby the channel reflects a roughness configuration or morphology for the
type of sediment supplied to the system and the predominant flow regime. A shift in either supply may result
in change to the form of the channel as it adjusts to a new regime.

One might argue, however, that strict thresholds for gravel initiation do not exist and that the transition
between phases is more gradual. Granted, there may be a few coarse grains in motion at relatively low
discharges and this process might not be detectable using the described methods for sampling bedload. The
fact that a few coarse grains were trapped at relatively low flows in this study suggests this possibility.
However, this motion likely reflects grains that occupy ideal locations such that they are moved relatively
easily. In terms of maintaining the channel, these exceedingly low rates of gravel motion are likely to be of
minor consequence. The identification of a breakpoint in the studied channels indicates that there is a flow
above which there is a substantial change in the nature of sediment moved in gravel-bed channels. From a
land management perspective, knowledge of the discrete flows needed to move different sized particles in
streams is useful for determining discharges required to maintain the form and function of the channel and
aquatic habitat.
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