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ABSTRACT 

We used field data, topographical information (elevation, slope, aspect, landform), and Landsat Thematic Mapper 
imagery to model forest vegetative types to a lO-m resolution on the Kaibab National Forest in northern Arizona. 
Forest types were identified by clustering the field data and then using a decision tree based on the spectral 
characteristics of a Landsat image and topographical information to predict the forest types. Significant variables in 
the models included raw basal area and proportion of basal area by species. Use of additional variables (canopy 
closure, understory vegetative height, seedling/sapling presence, and proportion of ground covered by vegetation) 
did not improve the model. Forest types described by the model included pinyon-juniper, ponderosa pine, 
ponderosa pine-fir mixes, spruce-dominated mixes, deciduous-dominated mixes, and clearings. Sample-based 
accuracy assessment accounted for 92.9% of the variability in the vegetation model. Error rates (post-stratified) 
were weighted by the proportion of area each forest type occupied. Independent validation using double sampling 
with post-stratification accounted for 74.5% of the estimated variability in the model. Ponderosa pine comprised the 
largest proportion (55.5%) of vegetative area and contributed the highest accuracy estimate (sample-based: 98.0%; 
cross-validation: 90.8%) to the overall forest model. Identified sources of error included (I) differentiating between 
pine-fir and spruce-dominated forest types (sample-based assessment) and (2) distinguishing openings in the forest 
from deciduous-dominated mixes (double sampling). This model has been used to describe forest structure (basal 
area, canopy cover, maximum understory vegetative height, presence of seedlings and saplings, and proportion of 
pine, aspen, spruce and fir basal areas) on the Kaibab National Forest to a lO-m resolution. Models of forest 
composition and structure will be linked with point-process models and a ranking of territories of northern goshawks 
with the purpose of identifying determinants of goshawk habitat quality. 

Keywords: Classification, Landsat Thematic Mapper, double sampling, forest composition, northern goshawk 
habitat, Accipitergentilis, Kaibab National Forest. 



INTRODUCTION
 

• 

Habitat changes due to forest management are thought to be responsible for declining populations of northern 
goshawks (Accipiter gentilis atricapillus) in the southwestern United States (Reynolds, 1983, 1989; Crocker­
Bedford 1990, Reynolds et al. 1992). However, in a review of past studies, Kennedy (1997) found little evidence 
that goshawk populations have declined throughout North America. Either declines have not occurred or the spatial 
and temporal scales offield studies were insufficient to detect population declines. Alternatively, impacts of habitat 
change due to management may be measured more appropriately in terms of demographic performance on 
territories. Animals in populations are thought to fill landscapes by occupying high-quality habitats first, and then 
progressively settling into less suitable habitats as the population expands (Brown, 1969; Fretwell and Lucas, 1970). 
In poor or sink habitats, individuals often lack sufficient reproduction and survival to sustain the population in the 
absence of immigration from outside sources. Stable breeding populations therefore depend on the presence of 
adequate quantities of high quality or source habitats (Wiens, 1985). An accurate description of habitat is, therefore, 
paramount to understanding the relationship between demography and habitat. This is often a difficult endeavor 
when the study area is large and diverse and complete sampling is unrealistic. Traditional land classification 
techniques incorporate information derived from remotely sensed data, such as those provided by satellites [e.g., 
Landsat Thematic Mapper (TM) sensors] to develop models ofland cover, and are limited to the resolution of those 
data (e.g., 30 m). In addition, land cover classifications are frequently driven by (supervised classification) or 
defined by (unsupervised classification) the interpretation of photography or by incidental knowledge of the study 
area. The former requires a high level of skill to reduce interpretation error, while the latter may not provide 
comprehensive coverage of the study area. In traditional classification methods, ground sampling at select points is 
used to validate the classification and/or compute an error rate. In this paper, we describe a method that uses field 
data to drive a classification of Landsat 5 TM imagery to a lO-m resolution in an attempt to characterize northern 
goshawk habitat on the Kaibab National Forest (KNF), in northern Arizona. The result of this study will be used to 
parameterize a comprehensive dynamic spatial simulation model (developed for grassland systems; Reich et aI., 
1997) that will take into account interactions among goshawk demographic performance, the spatial distribution and 
arrangement of goshawk territories, and habitat composition and structure. 

STUDY AREA 

The Kaibab Plateau, in northern Arizona, is an oval-shaped (95 km x 55 km), limestone plateau that rises from a 
shrub-steppe plain at 1750 m above sea level (as£) to its highest point at 2800 m. Surface weathering has produced 
gentle drainages and moderately sloping valleys that appear across the Plateau. The Plateau is bounded by 
escarpments of the Grand Canyon of the Colorado River on its south side, by steep slopes on the east, and gentle 
slopes on the north and west sides that descend to the plain. The Kaibab National Forest (KNF), managed by the 
North Kaibab Ranger District (NKRD), occupies the northern two-thirds of the Plateau (Fig. 1). 

The study area includes all of the KNF above 2,182 m asl, or about 1,285 km2 [estimated from digital elevation 
models (OEM) using ARC/INFO® (ESRI, 1995)]. Pinyon (Pinus edulis)-juniper (Juniperus spp.) woodlands occur 
where elevations are below 2075 m asl on the study area. Ponderosa pine (P. ponderosa) forests occur between 
2,075 and 2,450 m asl, mixed-conifer (P. ponderosa, Pseudotsuga mensiesii, Abies concolor, and Picea pungens) 
forests from 2,450 and 2,650 m asl, and spruce (Picea engelmannii)-fir (A. lasiocarpa) forests between 2,650 and 
2,800 m asl (Rasmussen, 1941; White and Vankat, 1993). At transition zones offorest types, adjacent forest types 
typically intermix because of differences in slope and aspect. On south-facing slopes, pinyon-juniper forests extend 
into ponderosa pine, and on north-facing slopes, ponderosa pine extends into pinyon-juniper. The same 
relationships hold between ponderosa pine and mixed-conifer, and mixed-conifer and spruce-fir (White and Vankat, 
1993). A series of narrow meadows occur on the Plateau that contains grasses and herbaceous vegetation. Each 
forest type has been altered by some form of management: livestock grazing, fire suppression, thinning, 
shelterwood, seed-tree and sanitation cuts, and clearcuts. 

Prior to the introduction of livestock grazing (late-1800s), fire suppression (beginning in the early 1900s), and 
extensive logging (beginning in the 1980s), many ponderosa pine trees were in mature size classes, occurred in 
groups or were widely spaced on the Plateau. Understories were dominated by grasses (Poa, Sitanion, and 
Muhlengergia spp.) and were typically free from shrubs and smaller trees (Rasmussen, 1941; Merkle, 1962). 



Currently much of the ponderosa pine type understory is dense with pine reproduction and, in upper elevations, with 
white fir reproduction. 

Figure 1. 1997 Landsat TM image (bands 4, 3, and 2) of the Kaibab Plateau, Arizona, above 2,182 m in elevation, 
denoting the Kaibab National Forest and Grand Canyon National Park. 

METHODS 

Classification of Forest Cover Type 

To generate a classification of forest types we sampled 272 plots consisting of nine 10-m x 10-m subplots on the 
KNF. Each plot corresponded to a 30-m x 30-m pixel of Landsat TM imagery, the location of which was verified 
using a Trimble Navigation Pathfinder" Asset Surveyor Global Positioning System with an estimated accuracy of 
1-3 m Plots were located on the ground using enlarged digital maps, USDI Geological Survey (USGS) 7.5 min 
quadrangles (1:24,000), and knowledge of the area. Enlarged digital maps of the sample plots were made by 
merging (ARC/INFO®; ESRl, 1995) 22 DEMs (provided by USGS; 1:24000; 30-m resolution) overlaid with digital 
line graphs of KNF roads (provided by R. Crawford, NKRD, Arizona). Each enlarged digital map contained 4-12 
plots . 

Three sets of field data were collected. 

Spectral-derived Plots: To capture the spectral possibilities on the KNF, we performed an unsupervised 
classification (IMAGINE® version 8.3, Classification function; ERDAS, 1997) on a 1994 Landsat TM scene 
[16 July ; centered on Path 37and Rows 34 and 35; obtained from the Earth Observation Satellite Company] of 



the study area using an ISODATA (Iterative Self-Organizing Data Analysis Techniques A) algorithm (Tou and 
Gonzalez, 1974). The algorithm computes the minimum distance between spectral signatures to identify 
clusters of pixels with similar spectral characteristics. Fifty spectral classes were generated . To sample the 
vegetative characteristics in the field, we generated two random coordinates per spectral class (IMAGI1\TE®, 
Evaluate Classification function ; ERDAS, 1997). Each coordinate represented the center of a 3 x 3 pixel 
"window" oflike spectral class. Due to difficult terrain, we sampled 98 of the 100 plots. 

Goshawk Nest Plots: Among breeding years, a northern goshawk pair may use more than one "alternate" nest 
within its territory. To measure the range of vegetative characteristics found at goshawk nest areas, one plot 
(centered on the nest tree) was established at one randomly-selected, alternate nest within 95 goshawk territories 
(i.e., all known territories on the KNF in 1997). Due to errors in field sampling, 92 of the 95 plots were used in 
analyses. 

Random Plots : One hundred random plots were generated to capture the remaining variability in the study area. 
Randomly located plots were establ ished irrespective of territories and nests. Due to time constraints 85 of 
these plots were measured . The majority of unmeasured plots were located at the edge of the study area where 
access was difficult. 

Measurements of field plots occurred between August and September 1997. Each plot was established in a north­
south, east-west fashion with the coordinate systematically assigned to either the center (spectral-derived plots and 
nest plots) or lower left comer (random plots) of the plot. Vegetative characteristics and measurements were 
recorded on each of the nine 10-m x 10-m subplots and included : I) canopy closure (measured with a concave, 
spheric al densiometer [Lemmon, 1956; 1957]),2) overstory species and basal area (measured with an angle gauge), 
3) understory species, height, and overall percent cover, and 4) presence of seedlings and/or saplings . Each plot was 
also photographed. In developing our model of forest composition, we used only the central subplot (Fig. 2). 

Figure 2. Plot layout for sampling of forest types to a 10-m resolution . 
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Following vegetative sampling, a new (1997), cloud-free, TM image (22 June; Path 37, Row 35) of the study area 
was obtained that corresponded in time as closely as possible to the field work. These data included Landsat bands 
1-5 and 7 in band sequential format (W. Krausman, USDA Forest Service). Band layers were exported (Export tool; 
IMAGINE®; ERDAS, 1997) as ARC/INFO® (ESRI, 1995) grid coverages and resampled (resample, nearest 
neighbor; ARC/INFOIl'J; ESRI, 1995) to 10 m corresponding to the resolution of the field data. The value of each 
pixel was averaged (Focalmean function, ARC/INFOIl!l; ESRI, 1995) by passing a 3 x 3 moving window over the 
resampled grids. This resulted in a grid with a continuous surface where every 1O-mx 1O-mpixel represented the 
average of the surrounding 30-m x 30-m pixel. 

Elevation, slope, aspect, and landform (McNab, 1989) were also determined for each plot. Landform (McNab, 
1989) is an index that expresses surface shape as a measure of surface concavity or convexity (computed as the 
mean slope gradient from the original cell to adjacent cells in 4 directions) creating a continuous variable. Prior to 
extracting the cell values, each grid was resampled to 10m as described above, but not averaged. 

To identify forest types, vegetative measurements were grouped into like classes using a hierarchical clustering 
algorithm in S-PLUS© (1995; hclust function, "average" method) (Reich and Davis, 1998). The resulting clusters 
were assigned modified Anderson Level II or ill (Anderson et al., 1976) land cover classes (Table 1). S-PLUS© 
(1995) was then used to generate a stepwise decision tree (Breiman et al., 1984; Friedl and Brodley, 1997) that 
determined which independent variables (Landsat bands, elevation, slope, aspect, or landform) were important in 
discriminating among forest types. The decision tree initiates with one variable at the root node and then recursively 
partitions the data according to a decision framework that maximizes the distance between attributes assigned to 
each subsequent node. Subdivisions of spectral characteristics that were too refined were "pruned" These data 
were then used as ''training'' statistics (i.e., they train the computer to recognize mathematical patterns) to aid in 
classifying the 1997 image. 

Table 1. Modified land cover classification system (Anderson et al., 1976) for forest types on the Kaibab National 
Forest. Characteristics at higher levels are nested within the lower level. 

LAND COVER 

LEVELl LEVEL II LEVEL ill 

Forest 

" 
Non-Forested 

Coniferous 

l 
Deciduous•Mixed 

~ 
Opening 

Ponderosa pine 

Ponderosa pine-fir 

~ 
Deciduous-dominated mix

•Pinyon-Juniper 

Spruce-dominated Mix 

Accuracy Assessment 

A sample-based assessment of accuracy (i.e., that based on the same data used to generate the classification) for the 
decision tree was calculated by weighting the classification error associated with a given forest type proportional to 
its area (i.e., post-stratification) (Cochran, 1977a). To independently estimate the accuracy of the final cover types, 
we used Arc Macro Language (ARC/INFOIl'J, ESRI, 1995) to generate 498 random plots using simple random 
sampling. We identified forest type at the 498 independent plots and at 269 of the 272 field plots (ancillary data 
were not available for 3 plots) through the interpretation of ancillary photographic data (see below). At each sample 
location, forest class was estimated for an area corresponding to a 1O-mx lO-m plot. Double sampling (Czaplewski, 
1992; K.alkhan et al., 1996; K.alkhan et al., 1998; Czaplewski, 1999) with post-stratification (Cochran, 1977b) was 
used to correct for classification errors associated with the photographic interpretation. An error matrix of the 



overall classification accuracy and Kappa statistic for a stratified random sample (Stehman, 1996) was calculated to 
measure the difference between classified and ground-verified themes and the agreement contributed by chance. 

Ancillary data used to assess the classification accuracy included: color aerial photography (I:12000, 1991; 
NKRD), infrared National High Altitude Photography (NHAP) (l :58,000, 1980, USGS), and Digital Orthophoto 
Quadrangles (DOQs) (1:12,000, 1992, USDA Forest Service Geometric Service Center, USGS), and photographs 
taken during field sampling. Information on forest management activities [Resource Information System (RIS) data] 
aided in identifying management treatments that occurred subsequent to the acquisition of the photography and was 
provided by the NKRD (K.. Fuelling, D. Steffensen, pers. comm.). 

RESULTS 

Sample-based Accuracy 

Using total basal area, we were able to distinguish stands of pure ponderosa pine from all other forest types with an 
accuracy of 98.0% (Table 2). To improve the accuracy estimates of non-ponderosa pine forest types, we separated 
the non-pine types and repeated the cluster analysis using the proportion of basal area by species (Table 3). 
Proportions among species were transformed by taking the arcsin of the square root of the proportion to ensure that 
the data fell within the bounds 0-1. We also consolidated one forest type (fir-dominated mix; Table 2) into other 
forest types (ponderosa pine-fir and spruce-dominated mixes; Table 3). The estimated overall sample-based 
classification accuracy (post-stratified) for the model was 92.9% (Table 4). The use of auxiliary variables (canopy 
cover, understory vegetation height, seedling/sapling presence and proportion of ground covered) did not improve 
the model. 

Table 2. Classification error rate of the decision tree for forest types using total basal area by species. 

Misclassified Total Classification 
Forest Cover T~ Plots Plots Error Rate 
Pinyon-Juniper 5 15 0.33 
Ponderosa Pine 3 151 0.02 
Ponderosa Pine-Fir Mix 12 23 0.52 
Fir-dominated Mix 4 10 0.40 
Spruce-dominated mix 8 22 0.36 
Deciduous-dominated Mix 17 28 0.61 
Opening 7 23 0.30 
Column Totals 56 272 
OveraU Post-stratifted Error 0.21 

Table 3. Classification error rate of the decision tree for non-pine forest types using proportion of basal area by 
species. 

Misclassified Total Classification 
Forest Cover T~ Plots Plots Error Rate 
Pinyon-Juniper 2 16 0.12 
Ponderosa Pine-Fir Mix 4 33 0.12 
Spruce-dominated mix 4 31 0.13 
Deciduous-dorn:inated Mix 2 20 0.10 
Opening 5 22 0.23 
Column Totals 17 122 
Overall Post-stratifted Error 0.14 



Table 4. Weighted classification error rates for the model of forest types (ordered by proportion of area) . 

Pixels/Class Proportion of Classification Post-stratified 
Forest T~e (10mxIOm) Total Area Error Rate Error Rate 
Ponderosa Pine 7137947 0.555 0.020 0.011 
Ponderosa Pine-Fir Mix 1454207 0.113 0.121 0.014 
Spruce-dominated Mix 1300085 0.10 1 0.129 0.013 
Deciduous-dominated Mix 1124891 0.088 0.100 0.009 
Pinyon-Juniper 1055726 0.082 0.125 0.010 
Opening 778865 0.061 0.227 0.014 
Column Totals 112851 721 1.000 0.071* 
* Overall Classification Error 

Ponderosa pine occupied the majority (55.5%) of the study area at lower elevations, with ponderosa pine-fir (11.3%) 
and spruce-dominated mixes (10.! %) at higher elevations (Fig. 3). Pinyon-juniper (8.2%) was found predominantly 
along lower elevational edges of the study area and where crown-destroying fire and intensive management (e.g., 
shelterwood and seed-tree cuts) had occurred at lower elevations. Deciduous-dominated mixes (8.8%) and openings 
(6.1%) occurred throughout the study area. 

Figure 3. Dominant Forest types on the Kaibab National Forest, Arizona , modeled to a 10-m resolution . 
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Model Validation 

The accuracy of the model when compared to the photo interpreted data was 62.8%, with a Kappa of 32.9% (Table 
5). The low value associated with the Kappa statistic suggests that there is a poor relationship between the 
classification derived from the decision tree and the photo interpreted classification. Low accuracy estimates 
associated with some forest types (Table 5) contributed largely to the low overall accuracy and were due to the 
difficulty in distinguishing among pine, fir, spruce, and aspen where they were mixed, packed densely, or occurred 
in small patches. Photo interpretation of these forest types was difficult using mid-summer, true color aerial 
photography and black and white OOQs. Openings were also misclassified at a relatively high rate and may have 
resulted from post-harvest regeneration or management activities and fire creating openings subsequent to collection 
of the ancillary photographic data. In addition, spectral similarities between deciduous and open forest vegetation 
may have contributed to the error estimate. A series of narrow « 800 m) meadows comprised of grasses and forbs 
were classified predominantly as deciduous-dominated vegetation, rather than as clearings. 

Table 5. Joint probability error matrix for forest types derived from remote sensing (Landsat bands 1-5 and 7, 
elevation, slope, aspect, and landform) (columns) and photographic interpretation (rows) using a simple random 
sample of 498 points and 269 field plots with post-stratification. 

ForestT~ 

Row 
Forest Type PJ PP PFM SDM DDM OPN Totals Accuracy 
Pinyon-Juniper (PJ) 0.0313 0.0222 0.0000 0.0000 0.0000 0.0078 0.0613 0.5106 
Ponderosa Pine (PP) 0.0222 0.4003 0.0117 0.0104 0.0261 0.0078 0.4785 0.8365 
Ponderosa Pine-Fir Mix (PFM) 0.0026 0.0561 0.0469 0.0130 0.0143 0.0039 0.1368 0.3429 
Spruce-dominated Mix (SDM) 0.0000 0.0209 0.0326 0.0717 0.0169 0.0026 0.1447 0.2687 
Deciduous-dominated Mix (DDM) 0.0013 0.0378 0.0104 0.0052 0.0235 0.0091 0.0873 0.4955 
Opening (OPN) 0.0052 0.0430 0.0091 0.0078 0.0117 0.0143 0.0911 0.1571 
Column Totals 0.0626 0.5803 0.1107 0.1081 0.0925 0.0455 0.9997 

Overall Accuracy =62.82% (Overall Standard Error = 0.99%) 
KaP.E.a =32.90% 

When double sampling was used to adjust the error matrix associated with the model to reflect differences in the 
photo interpretation at the 498 independent plots and 269 field plots used to develop the model, the estimated 
accuracy for the overall model increased to 74.5% (Table 6). All classes except openings had an estimated accuracy 
of greater than 50%. The Kappa for the overall model was approximately 50%, which indicated good agreement 
between the model and what is actually on the ground. 

Table 6. Joint probability error matrix relating the forest types derived from remote sensing (Landsat bands 1-5 and 
7, elevation, slope, aspect, and landform) (columns) to the field data (rows) using double sampling with post­
stratification to correct for errors in the photographic interpreted classes. 

ForestT~ 

Row 
Forest Type PJ PP PFM SDM DDM OPN Totals Accuracy 
Pinyon-Juniper (PJ) 0.0374 0.0133 0.0000 0.0000 0.0000 0.0115 0.0622 0.6014 
Ponderosa Pine (PP) 0.0149 0.4956 0.0100 0.0035 0.0118 0.0102 0.5460 0.9076 
Ponderosa Pine-Fir Mix (PFM) 0.0000 0.0308 0.0667 0.0192 0.0046 0.0000 0.1213 0.5499 
Spruce-dominated Mix (SDM) 0.0000 0.0179 0.0197 0.0736 0.0139 0.0010 0.1261 0.5017 
Deciduous-dominated Mix (DDM) 0.0000 0.0261 0.0100 0.0038 0.0402 0.0000 0.0801 0.5838 
Opening (OPN) 0.0000 0.0163 0.0055 0.0089 0.0057 0.0279 0.0643 0.4333 
Column Totals 0.0523 0.6000 0.1119 0.109 0.0762 0.0506 1.0000 

Overall Accuracy =74.47% (Overall Standard Error = 1.56%) 
KaP.E.a = 49.87% 



DISCUSSION
 

The objective of this study was to model the composition of goshawk habitat on the Kaibab National Forest to a 10­
m resolution using a non-parametric, supervised approach based on field data, physiographic information, and 
Landsat TM imagery. Forest types were identified by clustering the field data and then using a decision tree based 
on the spectral characteristics of a Landsat image, elevation, slope, aspect, and landform to predict the forest types. 
Dominant forest types included pinyon-juniper, ponderosa pine, ponderosa pine-fir mixes, spruce-dominated mixes, 
deciduous-dominated mixes, and openings. Significant variables in our models were per species raw basal area and 
proportion of basal area. Stands of pure ponderosa pine were identified with high (98.6%, Table 4; 90.8%, Table 6) 
accuracy. Differentiating between pine-fir and spruce-dominated forest types was difficult due to their spectral and 
physical similarities. Auxiliary variables (canopy closure, understory vegetative species and height, proportion of 
ground covered by vegetation, and seedling/sapling presence) did not improve the model perhaps because they were 
strongly correlated with basal area. The sample-based estimated classification accuracy of the model was 92.9%. 
However, the overall estimated accuracy decreased to 74.5% when validated using an independent sample of plots. 
In the latter estimate, the error matrix associated with the model was used to correct for differences in the photo 
interpretation of random plots and the field plots used to develop the model. Sample-based accuracies tell us how 
well a decision tree classifies the field data; while, independent assessment of accuracy better reflects the accuracy 
estimate associated with a model (i.e., it provides a less-biased estimate of the error rate). This is especially relevant 
when dealing with classification trees where splitting minimizes the classification error. 

Northern goshawks occur in a wide range of forest types and structures that vary considerably in quality. 
Qualitative differences among habitat characteristics may be measured in terms of the fitness of the individuals who 
occupy the habitat (Fretwell and Lucas, 1970; Van Home, 1983). To understand how goshawks are affected by their 
environment, we are linking their demographic performance on territories and their spatial arrangement in the 
landscape to an accurate description of their habitat. The model of forest composition generated here is one 
component of an overall effort to characterize goshawk habitat on the KNF. The model has been used successfully 
(Suzanne M. Joy, Dept. of For. Sci., CSU, unpublished data) as an auxiliary variable in (I) describing forest 
structure (basal area, canopy cover, maximum understory vegetative height, presence of seedlings and saplings, and 
proportion of pine, aspen, spruce and fir basal areas) to a lO-m resolution and (2) predicting the probability of 
goshawk nest tree locations on the KNF. 

ACKNOWLEDGMENTS 

We are grateful to the following persons for their assistance in the field: Carrie M. Erickson. Matthew A. Gavin, 
Luke J. H. Hunt, Amy M. Iniguez, Jose M. Iniguez, Mohammed A. Kalkhan, Donna C. Laing, Jeffrey S. Lambert, 
Joanna L. Nelson, Susan S. Salafsky, John C. Seyfried, Geroge S. Stamatellos, Rebecca A. Steffensen, Vernon L. 
Thomas, J. David Wiens, Laura E. Williams. Vernon L. Thomas provided Avenue code and guidance on GIS 
manipulations. We thank Donna C. Laing for the interpretation of photographic images. Raymond L. Czaplewski, 
Coots H. Flather, Mohammed A. Kalkhan, and Rudy M. King provided helpful reviews of the manuscript. The 
North Kaibab Ranger District (NKRD, Fredonia, AZ) kindly provided housing and logistical support. Special 
thanks to Rick Crawford, Karl Fuelling, and Dave Steffensen of the NKRD for support in acquiring RIS data, 
DOQs, and road coverages of the KNF, and to William (Bill) Krausman for providing the 1997 raw Landsat TM 
image. This study was funded by Region 3 (Albuquerque, NM) and the Rocky Mountain Research Station (Fort 
Collins, CO), USDA Forest Service. 



REFERENCES 

Anderson, J. R., E. Hardy; J. Roach, and R. Witmer. (1976). A land use and land cover classification 
system for use with remote sensor data. Geological Survey Professional Paper 964. U. S. Government 
Printing Office, Washington, D.C., pp. 1-28. 

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. (1984). Classification and regression trees. 
Wadsworth Ind. Group, Belmont, CA, pp. 1-58. 

Brown, J. L. (1969). Territorial behavior and population regulation in birds. A review and re-evaluation. 
Wilson Bulletin, 81:293-329. 

Cochran, W. G. (1977a). Samplingtechniques. John Wiley & Sons, New York, pp. 134-135. 

Cochran, W. G. (1977b). Samplingtechniques. John Wiley & Sons, New York, pp. 327-335. 

Crocker-Bedford, C. (1990). Goshawk reproduction and forest management. Wildlife SocietyBulletin, 
18:262-269. 

Czaplewski, R. L. (1992). Accuracy assessment of remotely sensed classifications with multi-phase 
sampling and the multivariate composite estimator. In: Proceedings of the 14th International Biometric 
Conference, Hamilton, New Zealand, December 7-11, Volume 2. International Biometrics Society, 
Hamilton Ruakura Agricultural Centre, p. 22. 

Czaplewski, R. L. (1999). Accuracy assessment and areal estimates using two-phase stratified random 
sampling, cluster plots, and the multivariate composite estimator. In: Quantifying spatial uncertainty in 
naturalresources: theory and applications/or GIS and remotesensing, H. T. Mowrer and R. G. 
Congalton, eds., Ann Arbor press, Chelsea, Michigan, pp. 79-100. 

ERDAS. (1997). IMAGlNE~ 8.3 Softwareand on-line help manual. ERDAS, Inc. Atlanta, GA. 

ESRI. (1995). ARC/lNFO~ Softwareand on-linehelp manual. Environmental Research Institute, Inc., 
Redlands, CA. 

ESRI. (1998). ArcViewC!/J 3.1 on-line help manual Environmental Research Institute, Inc., Redlands, CA. 

Fretwell, S. D., and H. L. Lucas. 1970. On territorial behavior and other factors influencing habitat 
distribution in birds. I. Theoretical development. Acta Biotheoretica, 19:16-36. 

Friedl, M. A., and C. E. Brodley. (1997). Decision tree classification of land cover from remotely sensed 
data. Remote Sensingand the Environment, 61:399-409. 

Kalkhan, M. A., R. M. Reich, and R. L. Czaplewski. (1996). Statistical properties of measures of 
association and the Kappa statistic for assessing the accuracy of remotely sensed data using double 
sampling. In: 2nd International Symposium of Spatial Accuracy Assessment in Natural Resources and 
Environmental Sciences. General Technical Report RM-GTR-277. U.S. Department of Agriculture, Forest 
Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO, pp. 467-476. 

Kalkhan, M. A., R. M. Reich, and T. J. Stohlgren. (1998). Assessing the accuracy of Landsat Thematic 
Mapper classification using double sampling. International Journal 0/RemoteSensing, 19:2049-2060. 

Kennedy, P. L. (1997). The northern goshawk (Accipiter gentilis atricapi//us): is there evidence of a 
population decline? Journal0/Raptor Research, 31:95-106. 



,
 

Lemmon, P. E. (1956). A spherical densiometer for estimating forest overstory density. Forest Science, 
2(4):314-320. 

Lemmon, P. E. (1957). A new instrument for measuring forest overstory density. Journal ofForestry, 
55(9):667-668. 

McNab, W. H. (1989). Terrain shape index: quantifying effect of minor landforms on tree height. Forest 
Science, 35:91-104. 

Merkle, J. (1962). Plant communities of the Grand Canyon area, Arizona Ecology, 43:698-711. 

Rasmussen, D. I. (1941). Biotic communities of the Kaibab Plateau, Arizona. Ecological Monographs, 
11: 230-274. 

Reich, R. M., C. D. Bonham, and K. L. Metzger. 1997. Modeling small-scale spatial interactions of 
shortgrass prairie species. Ecological Modeling, 101:163-174. 

Reich, R. M., and R. A. Davis. (1998). On-line spatial library for the S-PLUse statistical software 
package. Colo. State Univ., Fort Collins. 

Reynolds, R.T. (1983). Management ofwestern coniferous forest habitat for nesting Accipiter hawks. 
General Technical Report RM-102. U.S. Department of Agriculture, Forest Service, Rocky Mountain 
Forest and Range Experiment Station, Fort Collins, CO, 7 pp. 

Reynolds, R.T. (1989). Accipiters. In: Proceedings of the Western Raptor Management Symposium and 
Workshop. National Wildlife Federation Scientific and Technical Series No. 12, Washington, DC., pp. 92­
102. 

Reynolds, R.T., R. T. Graham, M. H. Reiser, R. L. Bassett, P. L. Kennedy, D. A. Boyce, Jr., G. Goodwin, 
R. Smith, and E. L. Fisher. (1992). Management recommendations for the northern goshawk in the 
southwestern United States. General Technical Report RM-2l7, U.S. Department of Agriculture, Forest 
Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO, 90 pp. 

S-Plus. 1995. S-PLUse 3.3Statistical software package for personal computers. StatSci Division, 
MathSoft, Inc., Seattle, WA. 

Stehman, S. U. (1996). Estimating the kappa coefficient and its variance under stratified random 
sampling. American Society ofPhotogrammetry and Remote Sensing, 62:401-402. 

Tou, J. T., and R. C. Gonzalez. (1974). Isodata algorithm. In: inPattern Recognition Principles. 
Addison-Wesley Publ. Co., Reading MA, pp. 97-104 

Van Horne, B. (1983). Density as a misleading indicator ofhabitat quality. Journal ofWildlife 
Management, 43:893-901. 

White, M. A., and J. T. Vankat. (1993). Middle and high elevation coniferous forest communities of the 
North Rim region of the Grand Canyon National Park, Arizona, USA. Vegetation 109:161-174. 

Wiens, J. A. (1985). Habitat selection in variable environments: shrub-steppe birds. Pages 227-251 in 
Cody, M. L. (00.), Habitat Selection in Birds. Academic Press, New York. 


