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ABSTRACT. Although growth and yield models have been used to update forest 
inventories for large regions. such models poorly predict cover changes from 
land use conversions. regeneration. and harvest. These changes could be 
monitored directly for large areas using remote sensing. which can be expensive. 
or estimates made by agricultural agencies. which are not detailed for condition 
of timberlands. The Kalman filter. which is a flexible statistical estimator. 
might increase statistical efficiency and produce annual estimates of cover by 
combining such direct monitoring with past knowledge (i.e .• previous forest 
inventory) and expected change (i.e .• model for annual change in land cover). 
This paper describes a potentially useful application of this topical estimator 
and presents specific proposals for practical methods. 

INTRODUCfION 

Inventories performed by the USDA Forest Service. Forest Inventory and Analysis 
(FIA) Projects (Cost and Knight. 1983: Frayer and Beltz. 1986) are adequate for 
their intended applications but are 1 to 10 years old. Models have been used to 
update (Smith and Hahn 1986) and reduce cost (MacLean 1981) of FIA inventories. 
However. most models do not predict changes in area caused by harvesting. 
regeneration. and conversions in land use. This paper describes the Kalman 
filter. and discusses how it might be used to monitor land cover-ownership 
(Table 1). The Kalman filter includes a determlnistic model for change in a 
multivariate system over time. and a measurement model for a time series of 
monitoring data. Estimates from the most current FIA inventory could serve as 
initial conditions (i.e .• time t=O). Subsequently (t>O). remotely sensed data 
and areal estimates of cover from other agencies would serve as monitoring data. 
Areal models of annual change in land cover. possibly based on econometric 
methods. would be used in the Kalman filter to combine this time series of data 
into a single. dynamic estimator. However. estimation errors would eventually 
build to unacceptable levels. and a new FIA inventory using traditional methods 
would be required. Until then. efficient annual estimates of cover would be 
produced for resource planning at the Federal and State levels. 

KALMAN FILTER 

The Kalman filter (Kalman 1960) was originally developed for aerospace control 
problems. Its derivation is given by Lee (1964); Jazwinski (1970). Harrison and 
Stevens (1976). Maybeck (1979). and Sorenson (1985) provide contemporary 
descriptions. Dixon and Howitt (1979) proposed it for continuous forest 
inventory. and Visser (1986) and VanDeussen (1987) have used it in 
dendro-ecological studies. It is a vector analog of the familiar estimator used 
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TABLE 1. Land classification systan 

Land Lind 
Ownershfp ____ C .... ov_e .... r ___ _ 

PUBLIC (censustd) 

Natfon.' Forest 
Other federal 

BLH 
Indian 
Hisc. federal 

State 
County 'Municipal 

fOREST INDUSTRY (censused) 

Owned 
Leased 

PRIVATE (not censused) 

Fanner 
Other private 
Other corporate 

FOREST 

Tt lIIber1and 
Woodland 

f«)HFOREST 

Cropland 
Grassland 
Blrrenllnd 
Urban 
Water 

{ 
FOREST TYPE 

Pine 
Oak-pine 
Uphnd hardwood 
BottOlllland hardwood 

Sawtimber 
"oletimber 
Seedl1 ny-sap 11 ng 
Honstocked 

Natural 
Planted 

in sampling with partial replacement. in which components are weighted in 
inverse proportion to their variances (Gregoire. personal communications). 

The Kalman filter is given by model (1). which represents the linear change (~t) 

in a multivariate system (~) between time t-l and t. and model (2), which 
describes the linear relationship (lit) between measurements of the system (~t) 

and the true, but unknown state of the system (~t)' 

~t 

~t 
~t can 
data. The vector of prediction errors w has a zero mean vector and covariance 

-t 

matrix Qt' The vector of measurement errors Y
t 

has a zero mean vector and 

covariance matrix _R
t

. w and v are vectors of random variables; their exact 
-t -t 

values are unknown. but estimates can be made for Qt and Rt , and assumptions 

made regarding their true distributions. 

The state vector (~t) might represent hectares in each of n land/forest cover 

categories (Table 1) at time t. The true, but unknown, state vector (~t) equals 

'" 
an estimated state at time t (~t) plus a vector of estimation errors (~t)' 

~t = ~t + E. t 
E. t has a zero expected value and covariance matrix ~t' If error vectors ~t' Yt 
and E.o are multivariate normal for all values of t, then ~t will be multivariate 

normal. and confidence intervals for x are readily computed using ~t' 
-t 

The state vector at time t is estimated using the state vector at a prior time 
(t-l) and expected change between t-l and t 

1090 



(4) 

The covariance matrix for propagated estimation errors (ft ) is a function of the 

previous covariance matrix for estimation errors at time t-l (ft - 1). the 

expected change in the state of the system (~t) from model 1. and the covariance 

matrix for prediction errors between t and t-l (Qt)' 

f t = ~t f t - 1 ~~ + Qt' (5) 

This requires estimates of initial conditions !o and 1O. 

Measurements at time t can improve the updated estimate. Measurements might be 
estimates of hectares in m land/forest cover types from remote sensing or from 
other agencies. The composite estimator. which combines prior knowledge 
(~del 1) with a new vector of measurements (model 2), is 

A* ft 

~t = [! - ~t Ht ] ~t + ~t Yt' (6) 
where ~t is computed to produce the minimum variance estimate (see Appendix). 

* This estimator has less variance in estimation error eft} than the prior 

estimate (ft ) because 

p* = P (I - G H) 
-t -t - -t -t ' 

where {Qt Bt } has values from zero to one. 

FIA DATA 

(7) 

FIA units provide the most detailed, reliable, statistical estimates of forest 
cover for the entire United States. Every 5 to 10 years. areal estimates are 
made for condition of forestland in multi-county physiographic regions (i.e., 
Inventory Units) in each State. The following describes FIA methods used in the 
southeastern United States, with specific examples from the 1984 inventory of 
North Carolina (NC) from Sheffield and Knight (1986). 

First, complete aerial photo coverage is used to estimate area of timberland in 
each county; it is 1:40,OOO-scale black and white, or l:58,OOO-scale color 
infrared (CIR) prints, and can be up to 10 years old. Temporary plots. 
nominally 12 ha, are systematically located on the photographs, and the 
proportion of timberland for each plot is photointerpreted. There were 91,765 
photo samples (1 per 138 hal in the 1984 inventory for NC. Photointerpretation 
is verified on the ground for a subsample (e.g .• 8,123 out of 91,765 photo 
samples in NC). Estimates of total timberland are adjusted for 
misinterpretations an.d changes since the date of photography using double 
sampling with regression. 

Second, exact area of timberland for certain ownerships (Table 1) is censused 
for each county using information from forest-product industries and government 
agencies. It is impractical to census area of other timberlands managed by 
non-industrial, private forest (NIPF) landowners (typically 75% of the 
timberland in the Southeast). Third, permanent ground plots. nominally 0.4-ha, 
are systematically installed in timberland by field crews (5.355 plots in 1984 
for NC). Field crews remeasure forested permanent plots (4.878 of the 5.355 in 
NC) for estimates of growth. removals. and mortality. Ground data are used to 
classify each plot using the system in Table 1. In addition. a few temporary 
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O.4-ha ownership plots are measured by field crews to describe area in 
ownerships that do not contain a permanent ground plot in a county. This 
procedure produces reliable estimates of area for classes in Table 1 within each 
Inventory Uni t. 

REMOTELY SENSED DATA 

The following assessment of remote sensing strategies for the southern United 
States is based on catts et al. (1987) and Czaplewski et al. (1987). It 
emphasizes statistical estimates for large regions rather than in-place 
vegetation maps required for land management or extension efforts. Three 
sources are considered: digital satellite data, high-altitude aerial 
photography. and medium- or large-scale aerial photography. 

Forest type and some classes of land cover could be interpreted using digital 
satellite data. However. seedling stands would be confused with cropland and 
grassland. Accurate monitoring of regeneration is critical for forecasting 
future timber supplies. Ownership, size class (poletimber vs. sawtimber), stand 
origin. old clearcuts. and residential urbanland would be very difficult to 
interpret with digital satellite data. Small-scale, high-altitude aerial 
photography could also be used to reliably interpret some categories in Table 1. 
Seedling stands would be confused with cropland, grassland, and shrubland. Such 
photography is unsuitable for interpreting ownership and stand origin. These 
data are available every 5 to 10 years, but would include a wide range of dates 
for a single Inventory Unit. Alternatively, high resolution, ,medium- or 
large-scale aerial photography could be used to interpret all categories in 
Table 1 except for ownership. It is the only source of new monitoring data 
which could be acquired directly by FlA. and not subject to priorities and 
policies of other organizations. Regeneration and type conversions could be 
detected after 2 years. However, such photography is expensive, and would have 
to be used for sampling photoplots. Medium-scale aerial photography could be 
acquired annually, but a 3- to 5-year cycle would be more realistic. 

OJVER ESTIMATES FROM OTHER AGENCIES 

Government agencies routinely gather information about forestlands by mail. 
telephone canvass, and ground inventories. However. these rarely cover all 
ownerships. and vary greatly in detail on forest condition. frequency. 
timeliness, reliability. and definitions. The following lists periodic 
estimates which might be combined with FIA data to monitor land cover. 

The National Resource Inventory (NRI) provides estimates by State of land 
use/land cover for nonfederal lands every 5 years (USDA Soil Conservation 
Service 1982). The Census of Agriculture also estimates area of farmland and 
other land uses by State and county every 5 years (USDC Bureau of the Census 
1981). The National Agricultural Statistical Serv'ice (NASS) produces annual 
estimates of area of cropland and total forestland at the State level (USDA 
Statistical Reporting Service 1983). NASS has produced special estimates of 
land cover and fprest type compatible with FIA definitions (Table I) for Kansas. 
Arkansas, and Missouri (May et al. 1986) , and a survey that examined harvest and 
reforestation decisions of NIPF landowners (Fecso et al. 1982). Estimates from 
these agencies vary from those made by FIA because of differences in definition. 
timing. sampling. and procedure. However, they might provide a measure of 
trends in forested area if differences are quantified. 

Each year the Forest Service estimates area planted or seeded with trees by 
State and ownership (USDA Forest Service 1987). Data corne from many sources. 
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and vary considerably in quality and accuracy. The area of successful 
artificial regeneration is overestimated because failures are not considered. 
and some planted areas were already stocked using FIA definitions. Trends might 
be monitored with these data If adjusted annually for seedling survival. perhaps 
using a climatological index. 

Information on timber products output (TPO) describes trends and current levels 
of tree harvest. Most States in the Southeast canvass primary wood-using plants 
every 1 or 2 years to determine the volume produced and geographic source of all 
industrial roundwood products (Tansey 1984). Similar information is available 
for the Midsouth (McWilliams 1986). However. the type of material from which 
the products are derived is not specified. Some material is not considered 
growing stock by FlA. TPO does not include logging residue and growing stock 
removed during conversion In land use. 

PREDlcrIVE MODELS FOR roVER 

Econometric models have been used to predict change in area for land. use/forest 
ownership using economic. social. and policy variables. White and Fleming 
(1980). Stoll et al. (1984). Brooks (1985). and Alig (1986) all rely on land 
rent theory. Brooks (1985) also uses models of land allocation to perennial 
crops as in Houck and Subotnick (1969). French and Matthews (1971). and Minami 
et al. (1979). Alig {19B6} takes advantage of exact prior information to 
reflect zero sum changes for the total land base. At least three groups of 
input data are usually required: (1) cross-section and time series data. 
including FIA data on area by forest ownership (needed to estimate model 
parameters); (2) current area estimate of the existing forest land base. and; 
(3) projections or estimates of economic driving variables (necessar-" to predict 
changes in land use) such as population estimates and per capita 1'n, .>me. 

Econometric models have been linked to models of forest succession and cover 
type dynamics (Alig 1985). These require: (1) current data on tI.e area in each 
forest type by ownership: (2) probability of a primary disturbance for each type 
of ownership and forest type; and (3) the conditional probabilities of forest 
type shifts in response to a primary disturbance (Alig and Wyant 1985). 
Regional models for the Nation are being developed to predict area changes on a 
lO-year time increment for long-range planning. Annual projections are possible 
if an annual time series of estimated economic driving variables is available. 

IMPLEMENTING THE KALMAN FILTER 

Initial conditions for forestland monitoring using the Kalman filter can be 
determined from the most current FIA inventory for each Inventory Unit. Areal 

estimates for all categories of land in Table 1 at time t=O are available for.~ 

in equation (4). However. the covariance matrix for estimation error (Co in 

equation 5) has never been computed because of the complex design used by FlA. 
which includes systematic sampling, census, and regression data. This problem 
is being investigated in a related study. 

STATE TRANSITION MODEL AND PREDICTION ERROR 

Econometric models for an annual time increment, and annual estimates for 
socioeconomic driving variables. are presently unavailable. Therefore, a more 
empirical approach is proposed until such are available. Assuming annual 
transition probabilities among cover types are constant. an estimated state 
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transition matrix (~) is readily computed from a previous FIA inventory (t=-h) 

to the most recent FIA inventory (t=O) using field classification of permanent 
plots at both times. For example, 4.878 0.4-ha FIA forested plots were 
classified in both 1974 (t=-IO) and 1984 (t=O) in NC (h=10 years). The tj-th 

element of ~ is 

A N(AO=iIA_k=j) 
(~ij)k = -----

N(A_k=j) 
(8) 

where N(AO=iIA_k=j) is the number of plots classified as category t at t=O (1984 

in NC). given they were classified as category J at t=-h (1974 in Ne), and 
N(A_k=j) Is the total number of plots classified as category J at t=-k. 

Therefore. the columns in ~ are vectors of independent, estimated, conditional 

probabilities (see Appendix). Because these probabilities are for h years, they 
can be converted to a time-invariant transition matrix for one year using 

A A 1/k m1 = (~) t (9) 

which is derived in the Appendix from equation (1). 

If prediction error is caused solely by sampling error in the estimated 

transition probabilities for k years (~), then the covariance matrix for 
... 

prediction error (Qk) can be determined using equation (I), the multinominal 

distribution for each column vector in ~. and the estimated area variables at 

time -k and 0 (see Appendix). The covariance matrix for prediction errors in 
A 

annual estimates (Ql) is computed from the corresponding matrix for k years 

using the following (see Appendix) 
A 1}{-1 11<-2 A -1 A 

Q1 = [~l + ~1 + ... + m1 + I] Qk 
11< 1 1k 2 "T 1 [(~1- + ~l- +... + g>l + I) ]- . (10) 

This is an underestimate of prediction error because it ignores change in 
transition probabilities over time. Realistic estimates of Q

1 
are needed so 

that proper weight is placed on model predictions relative to measurements. An 
objective method for scalar inflating Q

1 
to better represent all prediction 

errors is in the Discussion and Appendix. In the future, this oversimplified 
model will be replaced with a better econometric model. 

roVER MEASUREMENTS USING REMOTE SENSING 

Satellite imagery could be periodically classified by FIA for multi-scene areas 
to map land cover and produce area estimates. In other countries, 
photointerpreted stand maps might serve the same purpose {e.g., Bonner and 
Magnussen 1987}. Some categories in Table 1 could not be accurately classified 
(e.g .• ownership), and Ht would sum these into a less detailed classification 

system for satellite data {i.e., m<Tt}. The measurement relationship matrix (Rt ) 

could be further determined from an analysis of classification accuracy as 
commonly done in remote sensing studies (Prisley and Smith 1987). There would 
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be no sampling error, but error in estimating fit would be included in the 

measurement error (R t ) using a multivariate regression estimator or conditional 

probabilities in a "classification error matrix" (see Appendix). 

FIA could obtain aerial photography of photoplots. and photointerpret land 
cover. Assuming negligible interpretation error. Ht would contain ones and 

zeros. representing the logical association between Table 1 and a less detailed 
classification system for FIA photointerpretation {e.g .• ownership could not be 
photointerpreted}. Sampling error for the photoplots would be used for Rt . 

However. classification error can be substantial. and H would have to be . -t 

further estimated using ground reference data. The error in estimating fit would 

be added to the sampling error to compute total measurement error. 

roVER MEASUREMENTS FROM OTHER AGENCIES 

Extensive estimates of land cover. made annually by NASS and at 5-year intervals 
by other Federal agencies. have an estimated covariance matrix for sampling 
errors. This matrix is needed for Rt to compute gt in equations (6) and (7). 

However, these agencies do not produce a detailed classification of forestland. 
Therefore. the measurement matrix (fit) in model (2) must sum many state 

variables into a few categories. If definitions are compatible. H will contain 
-t 

zeros or ones. depending upon the logical relationship between land 
classification systems. However. effects of different definitions and 
procedures must be quantified; these could be estimated using multivariate 
regression ruld corresponding estimates from many geographic areas (e.g .. 
counties or Inventory Units). Alternatively. FIA and another land 
classification systems might be applied to a randomized set of small plots. The 
reSUlting contingency table could be treated as a matrix of conditional 

probabilities. similar to ~ and Q
k 

{see Appendix}. Again. error in estimating 

fit would have to be added to any sampling error to estimate total measurement 

error. 

VERIFICATION 

Many assumptions. approximations. numerical calculations. and estimates are 
required to apply the Kalman filter. If any are inaccurate. then estimates of 
land cover or their confidence intervals can be biased. producing serious 
consequences if undetected. However. the actual distribution of residuals will 
likely deviate from their expected distribution in presence of significant 
inaccuracies. The entire time series of multivariate measurement residuals can 
be standardized and orthogonalized: goodness-of-fit tests could detect 
significant departures from their expected distribution. and tests of hypotheses 
used to investigate independence (Appendix). This would identify existence of a 
problem. but problem isolation and solution could be diificult. Comparison of 
estimates from the Kalman filter to estimates from a new FIA inventory is the 
most rigorous test of reliability. This would be possible every 5 to 10 years 
given present schedules. In a production system. detection of a failure in the 
filter for one State might suggest potential problems for other States. Serious 
scrutiny of residuals is necessary for responsible application of the Kalman 
filter. 
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DISCUSSION 

The Kalman filter has potential for frequent. efficient monitoring of land cover 
between FIA inventories: however. it also presents formidable challenges. An 
unexpected distribution of standardized residuals might indicate a poor 
assumption. The assumption most likely incorrect is time-invariant transition 
probabilities. This might be remedied using econometric models for cultural 
changes. and growth and yield models for vegetative succession. Also. the 
covariance matrix for prediction error. which considers only the sampling error 
in estimating time-invariant probabilities. could be inflated by a scalar value 
to represent additional prediction errors caused by changes in transition 
probabilities. The scalar value might be estimated to maximize the 
goodness-of-fit of standardized residuals to their expected distribution 
(Czaplewski 1986). Also. change in transition probabilities over time might be 
observed directly. Change in cover on permanent photoplots could be efficiently 
interpreted using a time-series of comparable aerial photography. Future NASS 
or Bureau of census surveys could include estimates of timber harvest. forest 
regeneration. conversion of land use. and change in type of ownership. 
especially for NIPF lands. Annual estimates of seeding and planting rates. 
supplemented by survival estimates. might improve predictions of regeneration 
rates for planted stands. Annual estimates of TPO might improve predicted area 
of forest converted to other cover types because of harvest. These would 
require the Kalman filter to Simultaneously estimate state variables and rate 
parameters. 

Some existing sources of monitoring data might not be useful because they do not 
use FIA definitions (e.g .. SCS, NASS. Bureau of Census. TPO. and Planting 
Reports). Definitions and criteria for minimum stand size vary. Measurements 
of aggregations of many variables might poorly represent changes which vary 
considerably among components (e.g .. clearcut rate on industrial lands might be 
much different than on non-industrial lands. but this difference would be 
ignored if direct observation of clearcut area was not identified by ownership). , 
The expense in quantifying these differences might not justify a marginal 
increase in efficiency. Rather. new sources of frequent monitoring data. such 
as remote sensing or surveys of forest landowners might be more cost effective. 

The land classification system in Table 1 contains 418 categories. Each 
requires a separate state variable. More variables in the state vector would be 
required for simultaneous estimation of rate parameters. The Kalman filter is 
rarely successful for systems with more than 60 such variables. and the 
classification system must be simplified. This could be reduced to 48 classes 
if non-forested cover types are not differentiated by ownership. nor planted and 
nonstocked stands by forest type; and land ownership classes condensed into 3 
categories: public. forest industry. other private. 

This proposal is speculative. and there are major questions regarding 
implementation. Will insurmountable problems be encountered using remote 
sensing and ancillary data of varying quality as monitoring data. and FIA 
inventories as initial conditions and the basis for an empirical model of change 
in cover? Will monitoring data for land/forest cover and rates of change and 
inflation of prediction error compensate for a predictive model that assumes 
constant transition probabilities among cover types. Can econometric models be 
formulated to better predict annual changes in cover. These questions are being 
addressed in an ongoing study for the State of North Carolina. 
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TABLE 1. Land cover-ownership categories. 
following classifications. 

Land 
ownership 

Land 
cover 

Censused categories 
National forest 
Other Federal 

Bureau of Land 
Indian 

Forest 
Cropland 

Management Grassland 
Urban 

Miscellaneous Federal 
State 
County and municipal 
Forest industry 
Forest industry-leased 

Other private (not censused) 
Farmer 
Other individual 
Other corporate 

Water 
Woodland 
Barrenland 
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These include combinations of the 

Forest 
condition 

Forest ~. 
Pine 
Oak-pine 
Upland hardwood 
Bottomland hardwood 

Size class 
Sawtimber 
Poletimber 
Sapling and seedling 
Nonstocked 

Origin 
Natural 
Planted 
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APPENDIX 

For review purposes only, will not be published because of page limit. 
Available from authors upon request. 

The Kalman filter is given by. 

~t = ~s ~t-k + ~t-k' 
Yt = Ht ~t + Yt · 

KALMAN FILTER 

In equation (AI), ~t is the nxl state vector at time t. 

(AI) 

(A2) 

The n state variables 

can represent area for each combination of land ownership. land cover. and 
forest condition in Table 1. m is the nxn state transition matrix. which is a 

s 
multivariate linear model of change between time t-k and t. m may be 

s 
time-invariant (s=constant). or may change with time. For example. m might 

s 
include proportion of poletimber area that annually changes to sawtimber because 
of succession. ~t-k is the nxl vector containing prediction errors from t-k to 

t. The distribution of ~t-k can be estimated. but its exact values are unknown. 

Equation (A2) is a model for m measurements at time t. H is the mxn 
-t 

measurement matrix. which describes the linear relationship between ~t and ~t at 

time t. H
t 

can have off-diagonal elements. which represent linear combinations 

of state variables (e.g .• an estimated area of timberland includes the sum of 
many different types of timberland). Y

t 
is an mxl vector of measurement errors, 

which is the difference between the measurements (~t) and the best prediction of 

the measurements before they are actually made (H
t 
~t). The exact values of Y

t 
are unknown; however. parameters describing their joint distributions can be 
estimated. 

Equations (AI) and (A2) are conceptual models. They are not used for estimation 
because ~t-k' ~t-k' and Y

t 
are vectors of unknown random variables. Rather, 

estimates or assumptions are made for the first two moments of these variables. 
For example. prediction errors (~t-k) are assumed to have a zero mean vector, 

estimated covariance matrix (Q ). and are independent of prediction errors at 
s 

time intervals other than t-k to t. Measurement errors (Y
t

) are assumed to have 

a zero mean, estimated covariance matrix (R
t
). and are independent of 

measurement errors and prediction errors at times other than t. 

The true, but unknown, state of the system is modeled as: 

~t = ~tlt-k + §tlt-k' 

where ~tlt-k is the known estimate of the state vector at time t given knowledge 

at time t-k, where k may equal zero. §tlt-k represents the unknown errors in 

estimation. It is a vector of random variables, assumed to have a zero mean 
vector with covariance matrix of £tlt-k' The estimated state of the system at 
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time t given knowledge at time t-k is 

~tlt-k = Ws ~t-klt-k" (A3) 
The covariance matrix for this estimate of the state vector is 

r t l t - 1 = Ws r t - 1 It-1 W! + Qs " (A4) 

gt is a matrix which combines two independent sources of multivariate 
A 

information on the system: the predicted estimate (~tlt-k from equation A3) and 

measurements (~t): 
A 

~tlt = [I - gt Ht ] ~tlt-k + gt ~t" (A5) 

The minimum variance estimator for ~t is produced for 

G = P HT [H P I HT + R ]-1" -t -tlt-1 -t -t -t t-k -t -t (A6) 
A 

The error covariance matrix for the new estimate (~tlt) is 

rtl t = [I - gt Ht ] rtl t - k " (A7) 

If no measurements are taken at time t, ~tlt=~tlt-k and rtlt=rtlt-k" If Stlt 
has a multivariate normal distribution, then confidence intervals are readily 

computed using ~tlt and rtlt" 

Each time measurements are taken, a vector of known residuals (Kt ), also called 

innovations, is available: 

Kt = ~t - Ht ~tlt-k' (AS) 
which is independent of residuals at all other times, has an expected value 
vector of zero, and covariance matrix of 

T T 
E [Kt Kt ] = Ht rtl t - k Ht + Rt" (A9) 

If the distribution of residuals deviates significantly from their expected 
distribution, then there is a likely problem in model identification. 

ANNUAL TRANSITION MATRIX 

From equation (AI), a prediction for k years is 

~t = 4.k ~t-k' 
which can be represented by annual transition matrices (WI) using 

~t = (ml WI "". ml ) ~t-k· 
Therefore, 

4.k = (m
1
)k, 

and 

m
l 

= (4.k) l/k , 

(AID) 

(All) 

(AI2) 

(AI3) 

which yields equation (9). Eigenvalues are used to compute the root of a matrix 
that has large dimensions (Bodewig, 1959; Wiberg 1971). 
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COVARIANCE MATRIX PREDICfION ERROR 

The covariance matrix for predictions for k-years (~) is derived by studying 

the vector of prediction errors for k-years (~t-k) in equation (AI): 

~t-k = ~t - ~ ~t-k· (A14) 
Their crossproducts are 

T T m T T mT m T ",T 
~t-k ~t-k = ~t ~t - ~ ~t-k - ~t ~t ~ + ~ ~t-k ~t-k ~t-k· (A15) 

Assuming the state vectors are constants rather than random variables. the 
expected value of the crossproducts are 

T T m T T mT 
E [~t-k ~t-k] = ~t ~t - E [~] ~t-k ~t - ~t-k ~t-k E [~] + 

E [~ ~t-k ~!-k ~] (A16) 

Taking for E [~] = ~. which is computed from FIA inventories from times t and 

t-k using equation (8). the iE-th term of the last portion of equation (A16) is 
T 'T n n 

E [(¢k x t - k xt-k¢k)iE] =.2 2 (x·)t-k (x )t-k 
J=l p=l J P 

{Cov [(mij)k (mEp}k] + (iliij}k (iliEP}k}' (A17) 

where (xj}t-k is the j-th element of ~t-k' and (~ij}k is the ij-th element of 

~. The covariance term in equation (A17) is estimated using the multinominal 

distribution: 

($ij)k[l - ($ij)k] 
= ------------------

= 0 

N(At_k=j) 

($ij)k ($2j}k 

N(At_k=j) 

for j = p, i = 2 

for j = p. i #- 2 

for j #- P 
where N(A k=j} is the number of plots in category j at time t-k. 

t-

(AlS) 

The 

covariance of probabilities in different column vectors of ~ are independent 

because 
P(A =ilA k=j} n peA =ilA k=P} = t t- t t-

P(At=iIAt_k=j} P(At=iIAt_k=p}· 

where j # p and P(At=iIAt_k=j) is the probability of a plot being in category i 

at time t given it was in category j at time t-k. 

This assumes FIA plots. used to compute ~ in equation (S). are independent. 

This is reasonable because they are systematically and widely dispersed (one 

O.4-ha plot per 25 km2 in NC). However. all land is being modeled in equation 
(AI). not FIA plots alone. Each site in the landscape is dependent upon 
surrounding sites. and this covariance is ignored in equation (AlS). Therefore. -
covariance in cover type transition probabilities among contiguous sites is 
assumed negligible for an entire multi-county physiographic region or State. 
This is reasonable for the southern United States. where tracts are small and 
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different land uses are very intermingled. This assumption could be relaxed, 
but covariance in transition probabilities for contiguous sites could not by 

'quantified using O.4-ha FIA plots; the covariance might be quantified with much 
larger plots. 

Assuming prediction errors are unbiased (i.e., E[~t-k]=Q) and E[~]=¢k, the 

covariance matrix for prediction error from t_k to t is 

TAT T A 
~ = ~t ~t -' ~ ~t-k ~t-k - ~t ~t-k ~ + 

A T AT 
E[~ ~t-k ~t-k ~] (A19) 

using equations (A16) to (AlS). However, the state vectors ~t-k and ~t are 
A 

unknown; instead, their estimates from the last two FIA inventories (~t-k and 
A 

~t) are used in equation (A19) 'to estimate Qk' This ignores the estimation 

error in state vectors; however, such error is relatively small for FIA 
inventories. 

ERROR FOR ANNUAL PREDICTIONS 

Assuming time-invariant transition probabilities, the prediction error 
covariance matrix for k-years is transformed to an annual time increment using 
equation (AI): 

~t = ~l {~l { ... (~l ~t-k + ~l) + ... ) + ~l) + ~l' (A20) 

where ~l is the prediction error vector for one year rather than k-years. 

Collecting terms, 

~t = g{ ~t-k + gf-l ~l + gf-2 ~l + ... + ~ ~l + ~l' (A2l) 

From equations (AI) and (A2l) and for ~ = g{. 

~t-k = (g{-l + g{-2 + ... + ~1 + 1) ~1. (A22) 

Using the expectation operator and assuming ~1 is a constant rather than a 

random variable, 
T ~-l ~-2 ~ 

E [~t-k ~t-k] = (~1 + ~1 + ... + ~1 + 1) 

E [~1 ~i] {g{-1 + g{-2 + 000 + ~1 + 1)T (A23) 

T T 
For unbiased predictions for one and k-years, Qk=E[~t-k ~t-k] and Ql=E [~1 ~1]o 

Solving equation (A23) for Ql gives 

~-l ~-2 ~ 
Q1 = {~1 + ~1 + 000 + ~l + 1)-1 

Q
k 

[(g{-1 ~-2 ~ T -1 
+ ~1 + 0 0 0 + ~1 + 1) ] (A24) 



17 -- Czaplewski 

However. m1 and Qk can only be estimated as in equations (A13) and (A20). and ~1 

and ~ are used in equation (A24). This again ignores estimation error of ~1 

and~, which must be assumed to have negligable effects on Q1' 

Estimation of Q is typically the most difficult task when using the Kalman 

filter. If all cells in the estimated covariance matrix Q are approximately 

proportional to their true values. then Q can be inflated by a scalar to 
compensate for the above simplifications and approximations (see Validation 
below) . 

ESTIMATING MEASUREMENT MATRIX 

The covariance matrix for estimation errors in certain measurement matrices (Ht ) 

can be estimated in a fashion similar to Qk' Consider the case when small plots 

are randomly selected and categorically classified by digital analysis of 
satellite data. manual interpretation of aerial photography. or with techniques 
and definitions from other agencies. Reference data using FIA definitions 
(Table 1) are available for each small plot. and are considered truth. Let 
N(A =ilA =j) be the number of plots classified into category i given their FIA y r 
classification is category j. N{A =j) is the number of plots in FIA category j. 

r 

The estimated measurement Ht matrix would be computed similar to ~ in 

equation (8): 
A N{A =ilA =j) 

(H .. ) = Y r (A25) 
1J t N{A =j) 

r 

where {Hij)t is the ij-th element of the estimated measurement matrix (B
t

). 

Therefore. each column vector in H is an independent. estimated vector of 
conditional probabilities. namely the probability that a plot will be in 
category i of the classification system used for measurements (remote sensing or 
estimates from another agency) given it is in category j of the FIA 
classification system (Table 1). However. errors in estimating Ht contribute to 

the total measurement error. 

Assume the only measurement error is from estimating the measurement matrix. 
From equation (A2). 

Yt = ~t - Ht ~t· (A26) 

For ~t and ~t constants rather than random variables. unbiased errors in 

estimating Ht . and E[HtJ=Ht . then 

R T H T - y xT II E[H HTJ -t = ~t ~t - -t ~t Y t _t -t -t + -t ~t ~t - . (A27) 

This is derived similar to Qk in equations (A15). (A16) and (A19). The expected 

value in equation (A27) is estimated using the multinominal distribution. 
similar to equations (A17) and (A18): 
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(A28) 

where 
A A 

A A 

(Hij )t[1-{Hij )t] 

Cov [(Hij ) t (H2p) t] = N{A =j) 
for j=p, i=l! 

r 
A A 

(Hij)t{Hl!j)t 

- N{A =j) 
for j=p, i#l! 

r 
= 0 for j;ip (A29) 

This assumes classification error for a plot is independent of classification of 
all other plots. However, this also assumes that estimation error for H

t 
is the 

only source of measurement error. If plots are used for measurements (~t)' then 

the covariance matrix for sampling error would have to be added to equation 
(A27) to compute a covariance matrix for total measurement error. 

It is important to precisely estimate the measurement matrix because errors in 
estimating H

t 
increase Rt in equation (A6) , which increases estimation error for 

state variables in equation (A7). For example. measurements with small sampling 
errors might not substantially improve estimates of state variables if the 
relationship between measurements and state variables H

t 
is imprecisely known. 

Therefore. error matrices in remote sensing studies. and relationships among 
land classification systems, should be determined with adequate sample sizes. 

INDEPENDENCE OF ERRORS 

The vectors of measurement errors (Yt ). prediction errors (~t-k)' and estimation 

errors for intial conditions (~Io) are assumed independent of each other in 

equations (6) and (7). This is reasonable for Y
t 

because measurements come from 

independent sources. However, FIA data are used for both initial conditions and 

estimating transition probabilities in ili1 . Covariance between ~Io and ~t (t>O) 

might be assumed negligable because the former involves estimating the area for 
cover types, while the latter involves estimating probability of a change in 
cover type. Prediction errors for time t are assumed independent of prediction 
errors at all other times. This is reasonable assuming an accurate prediction 
model. Measurement errors are also assumed uncorrelated in time. This might be 
a poor assumption if permanent plots are used. as in the NASS, SCS, and some 
remote sensing systems. Techniques presented by Dixon and Howitt (1979) might 
be required for systems using some permanent plots. 

SQUARE ROOT FILTER 

Computing problems are frequently encountered when using the Kalman filter 
because covariance matrices are used. The square root filter (Bierman 1977, 
Maybeck 1979) is equivalent to the Kalman filter, but is computationally more 
stable. It is frequently used instead of equations (A4) to (A7). There are 
many variations of the square root filter. These formulations differ in 
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computational speed and storage requirements. which are important for real-time. 
aerospace applications. However. the square root filter will be applied 
off-line to monitoring changes in land cover. and computational speed and array 
storage are lesser considerations. Therefore. the simplest algorithm is given. 

The state vector ~tlt-1 and its covariance matrix for estimation errors {~tlt-1} 

at time t are predicted from their values at t-1 using the standard methods in 
equations {A3} and {A4}. The latter step can be made more numerically accurate 
using the modified Gram-Schmidt orthogonalization or the Householder 
transformation; however. it is the measurement update. not the state space 
predictions in equations {A3} and {A4}. which causes critical numerical problems 
in the filter. 

Next. the measurement vector at time t {y } is orthogonalized {y*} using its _t 
covariance matrix for measurement errors {Rt }: 

{A30} 

Rt can contain error covariances for estimating the measurement matrix {H
t

} in 

addition to sampling errors. 

From equations {A2} and {A30}. 
~ = Ht ~t + Yt 

{R~O.5} y = R~O.5 {H
t 
~t + Y

t
} 

* * * 
~t = Ht ~t + Yt 

where 

H* = R-O.5 H 
-t -t -t 

* R-O.5 v Yt = -t -t 

* The covariance matrix for the transformed measurement error {Yt } is the identity 

matrix. 

* * T E [Y
t 

{Y
t

} ] = 

However, Rt is unknown, and the estimated measurement error covariance matrix 

must be used instead. 

Now that the transformed measurements at time t from equation (A30) are mutually 

* independent, the i-th standardized measurement (y.) , i=l, 2, ... , m, can be 
1 t 

processed sequentially as scalers rather than simultaneously as a vector (Potter 
1964) . 
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Let S I 1 be the matrix square root of the propagated covariance matrix for 

-t t-

estimation error f t l t - 1 ' where 

T 
f t l t - 1 = (~tlt-1) (~tlt-1) • (A31) 

~tlt-1 is computed using the Cholesky decomposition or eigenvalues. Define the 

nx1 vector a .• corresponding to the ith orthogonalized measurement at time t, as 
-1 

* T ~i = [(Hi)t~tlt-1J • (A32) 

where {H7)t is a 1xn vector containing the ith row of the transformed 

measurement matrix 

If = R-0 .5 H . 
-t -t -t (A33) 

Let the, scaler b
i

• corresponding to the ith measurement at time t. be defined as 

b. = (a: a. + 1)-1. (A34) 
1 -1 -1 

Then the nx1 gain matrix corresponding to the ith measurement is. 

* (Qi)t = b i ~tlt-1 ~i' (A35) 
which is used as in equation (A5) to combine measurement data with the prior 
estimates: 

(A36) 

(~j)tlt is the composite estimator for the state vector at time t that combines 

the previous estimate (equation A3) with measurements 1 to j at time t. (~)tlt 

= ~tlt-1' and (~)tlt = ~tlt in equation (A5). 

The square root of the covariance matrix for estimation error in this composite 
estimator is 

* T (~i)tlt = (~i-1)tlt - [(Qi)t ~i] 
(~j)tlt includes measurements 1 to j, 

(1 + b?·5)-1 
1 

(A37) 

(~)tlt = Stlt-1' and (Sm)tlt = ~tlt' 

Equations (A32) to (A37) are repeated m times, once for each of the m 
measurements at time t. The covariance matrix for the error in the final 
estimate is 

p - S ST 
-t I t - -t I t -t It' 

which is the equivalent of equation (A7) on the original Kalman filter. 

VALIDATION 

Many assumptions, approximations, and estimates are necessary to apply the 
Kalman filter for monitoring land cover. Also, numerical problems and computer 
programming errors during implementation are possible. Therefore, it is crucial 
to closely inspect the solution for inconsistencies. This can be accomplished 
using the time series of residuals, which use~hllown measurements and their known 
expected values given the structure of and parameter estimates for the Kalman 
filter. 
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The multivariate residuals at time t are defined in equation (AS). and their 
covariance matrix in equation (A9). If the assumptions and estimates used in 
the Kalman filter are accurate. then vectors of residuals from different time 
periods are unbiased and independent of those at time t. Also. residuals from 
independent sources of measurement data at the same time should also be \ 
independent. The task is to combine all residuals for t)O into a single set of 
independent transformed residuals. each with the same expected distribution so 
that their actual distribution and correlations can be inspected and compared to 
their expected statistics. 

Each vector of residuals (~t) from the same multivariate measurement can be 

* standardized and orthogonalized (r t ) using the square root of, their expected 

covariance matrix (equation A9): 

r* = (H P HT + R )-0.5 r (A37) 
-t -t -tlt-1 -t -t -t 

This could be done using the Cholesky decomposition or eigenvalues. similar to 
procedures used an the square root filter. If Kt is unbiased and multivariate 

* normal. and the Kalman filter is implemented accurately. then ~t will be 

unbiased and multivariate normal with a covariance matrix of unity (i.e .• each 

* * element of Kt will be independent of all other elements of Kt . each will have a 

variance of one and each will be normally distributed). These standardized 
measurement residuals may be pooled with similarly standardized residual vectors 
from all other time periods and measurement systems because these vectors are 
mutually independent and identically distributed assuming an accurate 
implementation of the filter. 

These pooled, independent. standarized measurement residuals may be inspected in 
~ 

many ways. Goodness-of-fit tests. such as the Kolmogorov-Smirnov, Cramer-Von 
Mises, and Anderson-Darling tests (Reynolds 1984), could be used to test for a 
normal distribution with a known mean of zero and an known variance of one. 
Many different goodness-of-fit tests should be used because each performs best 
for certain types of deviations from expected distributions. 

If these tests suggest rejection of the assumption of normally distributed 
standardized residuals with zero mean and unit variance, then there are 3 
potential causes. The mean might not be zero, which can be tested using a 
t-test or a distribution-free equivalent (Mielke 1986). The variance might not 
equal one. This could be tested using an F-test (Sokal and Rohlf 1969) or a 
similar distribution-free test (Mielke 1986). If the assumptions of zero mean 
and unit variance are not rejected, then the distribution of standardized 
measurement residuals might not be normal. In this case, the Kalman filter 
still produces minimum variance estimates; however, confidence intervals for 
these estimates should not be computed under the assumption of multivariate 
normal estimation errors. This greatly complicates estimation of confidence 
intervals. In this case, transformations will be considered to normalize 
distribution of prediction and measurement errors. 

If the assumptions, estimates, and approximations used to apply the Kalman 
filter are accurate, then the standardized measurement residuals should be 
mutually independent. Tests for correlations in the standardized residuals 
should be made. For example, NASS estimates for cropland might be consistently: 
greater than those predicted by the filter, suggesting an inaccurate estimate of 
the measurement matrix for such data or a prediction model which consistently 
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underestimates area of cropland. Analysis of variance or similar 
distribution-free techniques {Mielke 1986} might be used to detect simple 
patterns. If there are enough residuals, more complicated pattern recognition 
techniques might be applied {e.g., Breiman et ale 1984}. Significant patterns 
in the standardized residuals suggest an inefficient and possibly biased 
implementation of the filter, and opportunities likely exist to reduce variance 
of the estimation error. 

The approach described in the first part of this paper assumes time-invariant 
transition probabilities {i.e., m

l 
from equation AI3}. The time-invariant 

covariance matrix for prediction error {QI} from equation {A24} considers only 

the sampling error in estimating these time-invariant transition probabilities. 
However, this assumption is very likely an oversimplification. Economic forces 
probably change the rates of harvest, regeneration, land use conversion; shifts 
among different ownership types; and differences in timber stand improvement 
over time, especially since the last FIA inventory. If these changes occur at 
rates different than those observed in the past, then measurements would tend to 
reduce the bias in the estimates, and would partially compensate for an 
inaccurate state transition model. However, the variance-covariance of 
prediction errors would be underestimated because prediction errors are caused 
by an oversimplified model in addition to sampling errors during estimation of 
transition probabilties. In terms of an optimal composite estimator, too much 
weight would be placed on model predictions and not enough on measurements. If 
the assumption of time-invariant transition probabilities is a seriously 
inaccurate then the standardized residuals {equation A37} will likely fail the 
validation tests already described. 

The following addition to the estimation model is a simple attempt to recognize 
the likelihood of time-variant transition probabilities. Let the state 
transition model (equation AI) be modified as follows: 

~t = ml ~t-l + q YI {A38} 

where q is a time-invariant scalar, representing the additional prediction error 
caused by assuming mt does not change over time. The covariance matrix for 

prediction error {Qi} in equation {A38} would be 

Qi = q2 QI' 

where QI is estimated using equation (A24). 

The value of q could be estimated by iteratively exploring a wide range of 
possible scalar values (presumeably q>l), and inspecting the effect on the 
goodness-of-fit statistics (see Validation section in this Appendix). The best 
estimate of q would be that which maximizes the goodness-of-fit of the 
standardized residuals to their expected distribution. This tactic has been 
proposed by Czaplewski (1986) for an application of the Kalman filter to big 
game management, and is suggested as a useful model for estimating prediction 
error even when the null hypothesis is not rejected during the goodness-of-fit 
tests. 

Another approach to improving the assumption of time-invariant transition 
probabilities is to use a more realistic, econometric model that is driven by 
annual economic indicators for the State or sub-State physiographic region. 
When such models are available, it will be necessary to describe their 
prediction errors, including a new estimate of Qt " Such models are also based 
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on historical trends, which might have changed since the econometric model was 
estimated. Therefore, a tactic similar to equation (A38) might be useful, even 
after better transition models are built. 



24 -- Czaplewski 
LITERATURE CITED IN APPENDIX 

(Also see Literature Cited for main paper) 

Bierman, G. J. 1977. Factorization Methods for Discrete Sequential 
Estimation. Academic Press; New York. 241 p. 

Brieman, L., J. H. Friedman, R. A. Olshen. and C. J. Stone. 1984. 
Classification and Regression Trees. Wadsworth Internation Groupl Belmont, 
California. 358 p. 

Bodewig. E. 1959. Matrix Calculus. North-Holland Publishing CO; New 
York. 452 p. 

Mielke. P. W. 1986. Multiresponse permutation procedures. In 
Encyclopedia of Statistical Sciences,-Volume 6. Wiley-Interscience New 
York. pp 724-727. 

Potter. J. E. 1964. W. Matrix Augmentation. M.I.T. Instrumentation 
Laboratory Memo SGA 5-64. Cambridge. Massachusetts 1/64. 

Reynolds. M. R. 1984. Estimating the error in model predictions. 
Forest Science 30:454-469. 

Sokal. R. R. and F. J. Rohlf. 1969. Biometry. W. H. Freeman and Co. 
San Francisco. 775 p. 

Van Deusen. P. C. 1987. Southern red qpruce tree-ring analysis. In: 
Tree rings and forest mensuration: how can they document trends in forest 
health and productivity. NCASI Technical Bulletin No. 523. 

Wiberg, D. M. 1971. State space and Linear Systems. McGraw-Hill Book 
Company; New York. 237 p. 


