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A B S T R A C T   

In recent years, the pocket penetrometer (PPT) test has been used to measure soil compaction and has gained 
attention due to its simplicity, high speed, and low cost. This study aimed to predict soil strength using a 
regression relationship between unconfined compressive strength (UCS) and PPT. We collected 45 large soil 
samples from a forest district in a part of the Hyrcanian Forest. In the laboratory, soil samples were classified 
according to unified soil classification system. Samples were classified as either silt or clay with a low or high 
liquid limit. These four soil groups were, brought to four different moisture contents (14%, 25%, 31%, and 36%; 
n = 180 measurements). Samples were then brought to a constant dry unit weight (1.387 kg/m3). Once the 
samples were prepared, we measured soil compression strength using a PPT and then determined UCS. We 
modeled our lab results to determine if PPT could be used as a surrogate for UCS. As soil moisture content 
increased UCS decreased non-linearly. The behavior of silt and clay with low liquid limit plasticity were similar; 
likewise, the silt and clay with high liquid limit plasticity produced similar results. According to the values of 
Eta-squared, soil moisture is more important factor than soil type class in explaining the variance of UCS. In 
addition, PPT data can accurately predict soil UCS (R2 = 0.98). Therefore, PPT data can be used to predict UCS 
of fine-grained soils with good accuracy and very low cost.   

1. Introduction 

Understanding soil mechanical properties is critical for geotechnical 
analyses and designs to guarantee project success. One of the most 
important soil properties for construction activities is soil resistance to 
penetration (a measure of soil strength). There are two principal 
methods for measuring soil penetrability or penetration resistance: (1) 
dynamic methods, in which a probe is driven into the soil by a slide 
hammer or falling weight and (2) static methods, in which a probe with 
a cone or blunt tip pushed into the soil at a constant velocity (Bradford, 
1976). Another important soil physical characteristic is shear strength, 
which is defined as the magnitude of shear stress that a soil can sustain. 
Soil shear resistance is a measure of friction and cohesion (i.e. inter-
locking particles or cementation). Frictional shear strength is a function 
of gravitational forces and is common in coarse-grained soils; cohesion 
shear strength is a function of surficial forces common in fine-grained 
soils (Robertson and Chock, 2017). Soil cohesion is not a constant 
parameter and is a function of the load transferred by the structure (e.g. 
building, bridge) to the soil and soil moisture content (Tavenas, 1976). 

Soil cohesion also depends on inter-granular loads and testing method 
and, when no lateral load is applied to the sample, adhesion is con-
sidered to be soil shear strength (Chang and Cho, 2019). 

Unconfined compression tests are used to determine adhesive soil 
strength (Güneyli and Rüşen, 2016). Generally, testing for unconfined 
compression strength (UCS) measures the adhesive soil strength using a 
strain-controlled method (Cao, 2018). This test determines the com-
pression strength of a soil cylinder with no lateral load. It is similar to 
an unconsolidated undrained triaxial test; both are used to determine 
cohesion in fine-grained soils. In saturated clayey soil samples, soil 
strength decreases with increased soil moisture content but, in un-
saturated soil, when dry weight is fixed, soil strength decreases slightly 
with increasing saturation. Unconfined compression test has an ad-
vantage over a direct shear test, in which stresses and strains are uni-
formly created in the soil sample and fractures occur in the weakest part 
of the soil. This soil characteristic is important for calculating safe 
bearing capacity and soil strength (Patel and Patel, 2012). 

Assessing road strength is another phase of construction or main-
tenance operations (Patel and Patel, 2012) and road traffic 
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characteristics depend on the subgrade soil strength. Soil moisture, clay 
size, and the quantity of clay-sized particles are the main factors that 
determine soil strength (Dolinar, 2004). Koumoto and Houlsby (2001) 
examined the relationship between undrained shear strength and soil 
moisture content in disturbed fine-textured mineral soils and concluded 
that water holding capacity at the given soil strength depended on soil 
texture, particle-size distribution and composition, and mineralogical 
characteristics, especially in the clay fraction. Furthermore, the influ-
ence of soil mineralogical characteristics on undrained shear strength 
depends on inter-granular water content (Trauner et al., 2005; Wood, 
1990). 

Despite the importance of UCS for geotechnical studies 
(Schmerimann, 1975), determining this in the laboratory requires 
considerable time and cost. It is also difficult to collect intact soil cores 
and preserve sample conditions from the field to the laboratory. This 
sampling issue leads to differences in UCS between laboratory tests and 
in situ soil conditions (Salgado and Yoon, 2003). 

The UCS is a popular method to measure soil shear strength, but it is 
not simple to conduct. Therefore, an easier method that uses a pocket 
penetrometer (PPT) has been proposed. The PPT is used to determine 
soil compression strength and is a low-cost simple to use method 
(Yasun, 2018) in both the laboratory and field (Das, 2019). Generally, 
little research has been conducted for estimating soil UCS using a 
simple and inexpensive tool, such as PPT (Das, 2019; Texas Department 
of Transportation, 2006; Yasun, 2018). However, these authors indicate 
that the PPT could properly estimate soil UCS (Texas Department of 
Transportation, 2006; Yasun, 2018). Amacher and O’Neill (2004) de-
monstrated soil compression strength, as measured with the PPT, was 
significantly higher in compacted trails and areas than in the adjacent 
undisturbed locations and was noted as an easy tool for use on surface 
soils, but this work was not correlated with UCS. Similar studies have 
been conducted to estimate UCS using the dynamic cone penetration 
test (Aulakh et al., 2017; Enayatpour et al., 2006; Patel and Patel, 2012;  
Salgado and Yoon, 2003) and jet grout columns (Akan et al., 2015). 
Furthermore, Dirriba (2017) showed that UCS was correlated with 
dynamic cone penetration, natural moisture content (NMC), specific 
gravity (Gs), and liquid limit (LL). Using the PPT to estimate UCS in the 
field would greatly reduce time and cost to determine this soil property. 
Consequently, the objective of this paper is to develop an appropriate 
statistical equation for estimating UCS using the PPT to collect field 
data. 

2. Material and methods 

2.1. Study area and sampling 

This study was conducted in Namkhaneh District in the Hyrcanian 
Forest, University of Tehran. The study area was about 750 ha. ArcGIS 
software was used to develop a sampling plan. A landform map was 
developed after overlaying map layers of slope, aspect, and elevation 
originally extracted from a Raster elevation model. The slope layer was 
classified into six classes (0–5%, 5–12%, 12–25%, 25–40%, 40–65%, 
above 65%), aspect was classed into classess north, east, south, west, 
and elevation was classified as 0–1000 m, or above 1000 m. To prepare 
the final map, soil clay content According to the values of Eta-squared, 
soil moisture is a more important factor than soil type in explaining the 
variance of UCS. Mousavi et al 2020 was integrated with the landform 
(slope, aspect, and elevation) layer. Forty-five soil sample points were 
randomly selected within homogeneous polygons (Mousavi et al., 
2020). Each sample point was located using a Garmin 64S GPS. To 
collect our samples, the surface organic matter (including mulch, if 
present) was removed and set aside, then the surface mineral soil was 
removed to a depth of 30 cm. Samples weighed approximately 5 kg and 
were placed in double-walled plastic bags, numbered, and transferred 
to the laboratory (Mousavi et al., 2020). Soil organic matter (OM) 
content in the samples was measured according to Walkley-Black 

method (Rankin, 1970). The results of OM content indicated the 
average of 1.66% for OM in soil samples. The low OM values obtained 
in this study could be attributed to the point that surface OM layer was 
removed before collecting the soil samples (0.6–2.92%). 

2.2. Sample preparation 

Soil samples were classified using the standard practice for classi-
fying the soils (American Society for Testing and Materials D2487-11). 
We classified the fine-grained soils using the Casagrande plasticity 
chart. The soil liquid limit was initially determined using the soil testing 
methods for civil engineering purposes (British Standard, 2016) and the 
soil plasticity limit was determined using the standard of plastic limit 
testing (American Society for Testing and Materials (ASTM), 1995). The 
soil plasticity index was determined as the difference between the li-
quid limit (LL) and plastic limit (PL). All soil samples were classified as 
fine-grained soil; 28% of the samples were clay with a high liquid limit 
(CH), 37% were clay with low liquid limit (CL), 20% were silt with high 
liquid limit (MH), and 15% were silt with low liquid limit (ML). Each of 
the four LL categories of samples were prepared considering the dry 
unit weight of intact soil (1.387 kg/m3). Each main soil sample was 
subsampled and brought to four different moisture contents, which 
were 14%, 25%, 31%, and 36% (dry weight basis). This represents the 
minimum, maximum, average, and maximum soil moisture contents 
that would occur during one year of field monitoring (Hayati et al., 
2018). 

2.3. Measuring PPT 

The PPT was used to measure soil compression strength (Fig. 1) in 
the laboratory and is capable of measuring undrained shear strength of 
cohesive soils in the range of 0–5 kg/cm2 (Yasun, 2018). The PPT pe-
netrates directly into the soil and UCS is measured by a calibrated 
spring with constant stiffness (Das, 2019). Because it is easy to use it is 
possible to increase the number of test iterations on each soil sample at 
each moisture content. Laboratory tests in 2016 indicated that this 
method could be used to approximate UCS of cohesive soil samples 
(Yasun, 2018). 

The PPT has a spring-loaded piston which was pushed into the soil 
surface after each soil sample was brought to the required moisture 
content and before UCS testing. The PPT rod was placed perpendicular 
to the soil surface and was gently and uniformly pressed into the flat 
surface until the rod progressed to the indicator on the device. When 
the rod reached the indicator, the compression strength was read. 

2.4. Measuring UCS 

The UCS was determined on the samples at all four soil moisture 
contents and at a soil bulk density dry unit weight of 1.387 kg/m3 using 
ASTM-D1633 standard on the collected soil cores (four moisture con-
tents × 45 soil samples = 180). Each soil sample (100 mm height and 
50 mm diameter) for each moisture content was placed in the un-
confined compression apparatus, as shown in Fig. 2. The test load was 
applied at the rate of 1 mm/min, which corresponded to the strain rate 

Fig. 1. PPT.  
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of 0.5% per minute for a sample. The stress readings were taken in 
5 mm intervals and loading continued until the complete fracture of the 
sample. A compaction mold was employed to prepare the sample and 
fractured sample after loading on the unconfined device. In order to 
reduce measurement error two replicates of each sample were analysed 
(see Fig. 3). 

2.5. Statistical method 

Descriptive statistics were used to summarize the collected data. 
Based on the results of descriptive statistics as well as quantitative 
evaluation criteria, two different regression models were developed to 
predict UCS. The first regression model estimated the UCS based on soil 
type (including ML.CL and MH.CH) and soil moisture content (Eq. (1)). 

= + × + ×UCS (moisture) ML.CL0 1
2

3 (1)  

Soil type is a binary variable of 0 and 1. When the soil type is ML or 
CL (soil with low LL), the ML.CL factor value in the model is equal to 1. 
When the soil has a high LL (MH or CH), the ML.CL factor value in the 
model was assumed to be 0. 

In a second regression model, the strength variable of PPT was in-
serted in the model and other independent variables, including 
moisture and soil type, were insignificant. Therefore, the final regres-
sion model was formed only using the PPT variable (Eq. (2)). 

= + × + × + ×UCS PPT (PPT) (PPT)0 1 2
2

3
3 (2)  

The possibility of removing independent variables was evaluated by 
a likelihood ratio test. In this study, p-values ≤ 0.05 were considered 
significant. All the statistical analyses and model fitting were performed 
in R statistical software. 

Final model performance was evaluated using R2. The efficiency 
criteria of the model are reliable when they are based on data not used 
during model fitting. In this study, the regression model was validated 
using 10-fold cross-validation (Zhang, 1993) in which the data are di-
vided into 10 random folds (subsamples). In each regression stage a fold 
was excluded as a testing set to evaluate model efficiency. Afterwards, 
model fitting was conducted using other folds as the training dataset 
and the fitted model was used to predict an excluded fold. This was 
repeated for all the folds and the predicted values for all folds were 
obtained when they were not used in model fitting. 

Sensitivity analysis was performed to determine those parameters 
that mostly influenced model output. In models with a large number of 
input variables, sensitivity analysis is an essential part of model 
building and is critical for reducing the number of parameters required 
in the final mode (Wesseling et al., 2020; Xu et al., 2016). Eta-squared 
(also called the squared correlation ratio) and standardized regression 
coefficients (SRC) were employed to determine the most influencing 
parameters in Model 1 and Model 2, respectively (Chan et al., 1997;  
Norouzian and Plonsky, 2018; Saltelli et al., 2004). Moreover, an ex-
plorative analysis was performed to compare the variation of UCS 
versus soil type and moisture contents in the first model. 

3. Results and discussion 

As soil moisture increased, the mean UCS, standard deviation, and 
coefficient of variation decreased (Table 1). Furthermore, with in-
creasing moisture content, the dispersion of strength data decreased. 
Thus, when the soil moisture reaches saturation, UCS is highly reduced, 
which is consistent with the results of Sharma and Singh (2018). 

As soil moisture increased in all LL classes the UCS decreased non- 

Fig. 2. Soil sample in an unconfined compression device.  

Fig. 3. Sampling template and fractured sample.  

Table 1 
Minimum, maximum, mean, standard deviation of USC and coefficient of var-
iation for soil samples at four moisture contents.        

Moisture 
content (%) 

UCS (kPa) 

Min Max Mean Standard 
deviation 

Coefficient of 
variation  

14  118.00  274.80  178.51  41.99  23.52 
25  105.22  224.48  145.215  31.51  21.69 
31  81.10  185.19  122.02  25.52  20.91 
36  69.44  151.00  93.32  17.90  19.18 
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linearly, suggesting that decreasing fine-grained soil strength is related 
to increased moisture content (Fig. 4). This is also consistent with the 
previous studies (Dahale et al., 2012; Tang et al., 2007). Further, 
strength loss at the maximum soil moisture (36%) can be due to the 
development of a double layer of water and decreased electrostatic 
force between clay particles. In other words, in a dry clay soil there is a 
surface negative charge that is balanced by exchangeable cations (e.g., 
calcium, potassium, magnesium, and sodium) which surrounds clay 
particles and adheres by electrostatic attraction. Adding water forms a 
double layer around the particle, weakens clay particle attraction, 
which results in a nonlinear soil strength decrease (Lambe, 1958). 

Fig. 5 shows the variability of UCS and PPT data for each soil and 
four levels of moisture content. Accordingly, the dispersion of PPT data 
was higher than that of UCS data for different soil types. In addition, the 
dispersion of PPT data was higher than that of UCS for the moisture 
contents of 14, 25, and 31%, but was lower than UCS for the moisture 
content of 36%. Based on this graph, both low and high LL soils have 
similar medians for UCS. Therefore, in the modeling process, the pre-
sence of four separable soil types was not significant. In the final model, 

ML and CL soils were entered into the model as CL.ML factor and the 
CH and MH soils were classified and entered into the model as MH.CH 
factor. Comparing the model performance also indicated a better model 
fit with the merged soil types than the model that included all the soil 
types separately. 

We used PPT as a quick and easy index of UCS and the model 
showed that as PPT increased UCS also increased with a nonlinear trend 
(Fig. 6). Given that the accuracy of the UCS measurement was higher 
than the PPT measurements, we displayed the UCS on the X axis. As 
UCS increased, PPT values should also increase; but the increasing rate 
of PPT for the UCS values of larger than 120 kPa was not in proportion 
to the increasing rate in UCS. Therefore, the relationship between UCS 
and PPT was not linear. The relationship of PPT and UCS had a higher 
curvature when the UCS values were greater than 159 kPa or less than 
120 kPa. 

The correlation between UCS and PPT was 0.99, which was very 

y = -0.0938x2 + 0.8556x + 181.51
R² = 0.5251
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Fig. 4. Relationship between UCS and soil moisture.  

Fig. 5. Distribution of UCS and PPT data for each soil type and four levels of moisture content.  

Fig. 6. Relationship between PPT strength and UCS.  
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high (Table 2). The correlation between UCS and PPT and also PPT and 
soil moisture was −0.77, which indicated a negative relationship. 
Unfortunately, no other studies were found, in which this relationship 
has been examined, but previous work indicates high correlation be-
tween UCS and dynamic cone penetrometer (DCP), (Fitsum, 2014; Patel 
and Patel, 2012; Salgado and Yoon, 2003). Enayatpour et al. (2006) 
examined UCS estimation using DCP in stabilized soil, found a high R2 

(0.97 and 0.91), and noted that the DCP method can be a reliable tool 
for predicting UCS. Furthermore, Dirriba (2017) presented a regression 
between UCS and other soil characteristics, and R2 coefficients between 
UCS and DCP were 0.80–0.83, NMC 0.72, GS 0.62–0.74, and LL 
0.63–0.72. Amacher and O’Neill (2004) expressed the main dis-
advantage of PPT was that many of the compacted soils had compres-
sion strength higher than the maximum measurable value of 450 kPa. 
Despite this limitation, PPT can quickly and easily distinguish between 
compacted and uncompacted areas. 

In the present study, the first regression model used two variables 
(soil moisture and soil type) as independent variables. Estimated sig-
nificant coefficients for each variable in the final model are presented in  
Table 3. With increasing soil moisture content, the UCS decreased in a 
second-order nonlinear manner. Regarding soil type, the UCS decreased 
by 25.43 (i.e. the regression coefficient) when varying soil type from 
MH.CH to ML.CL. 

When PPT was added to the model, only this variable was sig-
nificant (Table 4) and the other independent variables were not sig-
nificant. This indicates strong correlation between USC and PPT. 

Table 5 presents model validation results based on the 10-fold 
method and compares Model 1 and Model 2. 

In this validation exercise, Model 2 not only had a higher R2 than 
Model 1, but also had a lower residual mean square error. Therefore, 
Model 2 is proposed as a reliable model for estimating UCS using soil 
resistance to penetration data. 

In Model 2, high adjusted R2 was predictable since PPT and UCS 
were highly correlated. Soil PPT and UCS evaluated the same soil 
characteristic (compression strength). Hence, Model 2 showed a higher 
adjusted R2 than the first model (Table 5). Measurements of PPT re-
flected other soil properties (e.g. soil moisture and type) that affected 
UCS. Consequently, these properties were not included in Model 2. 

The results of explorative analyses (Fig. 7) indicates that soil 
moisture causes more variation in UCS than soil type. According to the 
Eta-squared values, soil moisture explained about 56% of total var-
iance, while soil type explained about 11% of total variance, indicating 
that soil moisture was a more important factor than soil type in ex-
plaining the variance of UCS. According to the results of SRC for Model 
2, parameter of RTP had the minimum and squared term of RTP had the 
maximum effects on UCS variability. 

Unfortunately, no direct studies on developing the relationship be-
tween UCS and PPT were found in the literature. But, Yasun (2018) 

showed that the average difference between soil resistance and UCS 
was between 1.10% and 1.53%, with moisture contents ranging from 
14.7% to 27.3%. In general, the results in Model 2, with adjusted R2 of 
98%, showed higher correlation and greater accuracy than studies 
using other methods for estimating UCS (Enayatpour et al., 2006; Patel 
and Patel, 2012; Salgado and Yoon, 2003). Based on Model 2, soil pe-
netrometer resistance can be employed to estimate UCS with more 
accuracy as well as less time and cost. 

The results showed the suitability of using PPT for estimating soil 
resistance to penetration rather than using the more laborious UCS 
method regarding time and cost. On the other hand, the PPT is a faster 
and easier way for estimating UCS. The field PPT measurements should 
be followed by some validation samples of UCS to ensure accurate data. 
Also, these results indicate the developed models can be used to retrieve 
the UCS values from the PPT for further applications. Furthermore, the 
PPT could be applied for efficient soil monitoring in order to predict 
and monitor soil strength in extensive areas and also used to determine 
the depth of increased soil strength. 

The results of this study should be applied in areas with similar soil 
types or validated on different soil textural classes and clay content. 
Although the PPT is a very good indicator of strength, care must be 
taken in the selection of the equation used to determine the needed 
strength parameter, as the equations are sensitive to soil characteristics. 
Therefore, these results are valid for the measured range of soils. 
However, it may be possible to enhance applicability through further 
studies on broad diversity of soils from other geographic areas and 
assay the importance and accuracy of the proposed methodology. 

4. Conclusion 

In this study, the behavior of fine-grained soils was investigated 
using UCS test and PPT on dense soil samples with various moisture 
contents and the following can be concluded:  

• As soil moisture increased, the mean UCS, standard deviation, and 
coefficient of variation decreased.  

• UCS nonlinearly decreased with increasing moisture content.  
• Accuracy of PPT predictions decreased when UCS values were 

greater than 159 kPa or < 120 kPa. An increase in PPT was not in 
proportion to the UCS and resulted in a nonlinear relationship be-
tween UCS and PPT.  

• Correlation between UCS and PPT was R2 0.99.  
• Correlation between UCS; PPT and soil moisture was −0.77.  
• PPT alone can be used to determine the UCS of fine-grained soils 

with proper accuracy. 

Table 2 
Results of Spearman correlation between UCS, PPT, and soil moisture.      

Row Column R P-value  

UCS PPT 0.99  < 0.001 
UCS Moisture −0.77  < 0.001 
PPT Moisture −0.77  < 0.001 

Table 3 
Results of the first model with soil moisture and soil type ML.CL.      

Variables Coefficient Standard Error P-value  

Constant  203.40  4.74   < 0.001 
(Moisture)2  −727.74  42.29   < 0.001 
ML.CL  −25.43  3.36   < 0.001 

ML.CL is a binary variable of the soil type and accepts values of 0 and 1.  

Table 4 
Results of the second polynomial model with soil resistance to penetration 
added.      

Variables Coefficient Standard Error P-value  

Constant 68.6362 1.5514  < 0.001 
PPT 0.6725 0.0335  < 0.001 
(PPT)2 −0.0026 0.00016  < 0.001 
(PPT)3 0.000004 0.00000022  < 0.001 

Table 5 
Model validation based on 10-fold method, showing the R-squared (R2), re-
sidual mean square error (RMSE), and mean absolute error (MAE).      

Model R2 RMSE MAE  

Model 1 62% 27 21 
Model 2 98% 5.8 4.5    
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