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A B S T R A C T   

Dryland ecosystems play an important role in the global carbon cycle, including regulating the inter-annual 
global carbon sink. Dynamic global vegetation models (DGVMs) are essential tools that can help us better un
derstand carbon cycling in different ecosystems. Currently, there is limited knowledge of the performance of 
these models in drylands partly due to characterizing the heterogeneity of the vegetation and hydrometeoro
logical conditions. The aim of this study is to evaluate the performance of a DGVM for drylands to facilitate 
improved understanding of gross primary production (GPP) as one of the important components of the carbon 
cycle. We performed a sensitivity analysis and calibrated the Ecosystem Demography (EDv2.2) DGVM to 
simulate GPP in a dryland watershed (Reynolds Creek Experimental Watershed, Idaho) in the western US for the 
years 2000-2017. GPP capacity and activity were investigated by comparing model simulations with GPP esti
mated from eddy covariance data (available from 2015-2017) and remote sensing products (2000-2017). Our 
results show good performance of EDv2.2 at daily timesteps (RMSE ≈ 0.38 [kgC /m2 /year]) between simulated 
and measured GPP in lower elevations of the watershed. Moreover, remote sensing analysis show that EDv2.2 
captures the long-term trends in this ecosystem and performs relatively well in capturing phenometrics (start/ 
end of the season). The performance of the model degrades in more productive sites with greater GPP (located at 
higher elevations in the watershed). To improve model performance, future studies will need to introduce 
additional plant functional types for drylands such as our study area, and modify plant processes (e.g., plant 
hydraulics and phenology) in the model.   

1. Introduction 

Dryland vegetation plays an important role in the global carbon 
budget, including regulating the global land carbon sink (Ahlström 
et al., 2015; Metcalfe, 2014; Poulter et al., 2014). Vegetation dynamics 
in drylands are largely a function of spatial and temporal variability in 
climate. For example, characteristic vegetation structure, composition, 
and function (e.g. photosynthesis) can differ markedly between lower 

and higher elevations in drylands, largely in response to corresponding 
differences in precipitation and temperature. Climate variability can 
also drive long-term changes in vegetation dynamics in dryland eco
systems. For example, climate change in the drylands of the Great Basin, 
US, may lead to a shift from winter snow to rain-dominated precipitation 
regimes, which in turn may favor fire-prone invasive species, such as 
cheatgrass (Bromus tectorum), that can convert native shrub-steppe 
communities to exotic annual grasslands (Concilio et al., 2013; Polley 
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et al., 2013; Scott et al., 2015). These changes in structure and function 
ultimately affect ecosystem-scale vegetation productivity. Indeed, 
studies have shown that up to 60 percent of the global carbon sink 
anomaly can be explained by vegetation dynamics in dryland ecosys
tems (Ahlström et al., 2015; Poulter et al., 2014). This carbon sink 
variability is mostly associated with changes in gross primary produc
tion (GPP) (Yao et al., 2020). Thus, modelling the spatial and temporal 
dynamics of GPP in drylands is essential for global-scale studies on 
carbon balance and atmospheric CO2. 

GPP represents ecosystem-scale apparent photosynthesis and is a 
primary indicator of the vegetation state of an ecosystem. GPP can be 
assessed in terms of capacity (i.e., amount) and activity (i.e., dynamics) 
(Medvigy et al., 2013; Smith et al., 2018). Estimation of GPP at the 
ecosystem scale in drylands is helpful in understanding food and fiber 
availability, livestock grazing resources, and long-term processes related 
to the global carbon cycle (Ryu et al., 2019). However, there is a poor 
understanding of GPP in drylands due to variable hydrometeorological 
conditions (e.g., along an elevation gradient) and different plant func
tional types and photosynthetic pathways (e.g., C3 vs. C4) (Yan et al., 
2019), among other factors. Direct measurement of GPP is a challenging 
task (Ryu et al., 2019; Yan et al., 2019) and commonly used products are 
based on data from eddy covariance (EC) towers, remote sensing, and 
dynamic global vegetation models (DGVMs) (for the latest review refer 
to Ryu et al., 2019). EC data provide the most reliable estimates of GPP 
capacity; however, in drylands the spatial distribution of EC towers is 
limited, and their time series may not be long enough to represent GPP 
dynamics. Remote sensing-based GPP derived from space-based sensors, 
such as MODIS (Running et al., 2004), provides long-term estimates that 
can be used for analysis of photosynthetic activity; however, GPP 
derived from remotely sensed data may be under- or overestimated 
depending on the ecosystem (Stocker et al., 2019; Verma et al., 2014), 
thus limiting our understanding of GPP capacity. 

Process-based DGVMs are important tools to study GPP capacity and 
activity that can provide complementary observations to EC tower and 
remote sensing data. These models can provide simulations of photo
synthesis at the leaf scale, as well as at the canopy and ecosystem scales. 
A wealth of studies have implemented DGVMs in different ecosystem 
types (see review in Fisher et al., 2018) to estimate GPP from local (EC 
towers) to regional scales. An evaluation of the DGVMs’ performance 
prior to implementation should take place and include model parame
terization, sensitivity analysis, calibration, and validation (Fer et al., 
2018; Keenan et al., 2013; Kuppel et al., 2012; Pandit et al., 2019a; Post 
et al., 2017; Renwick et al., 2019; Santaren et al., 2007; Wang et al., 
2001). However, there is an information gap in the evaluation of DGVMs 
in drylands and, more specifically, in dryland regions where vegetation 
productivity rapidly changes, especially across elevation gradients. 
Many studies have investigated the correlation between simulated GPP 
and GPP estimated from EC towers or remote sensing (Antonarakis et al., 
2014; Pandit et al., 2019a; Renwick et al., 2019; Trugman et al., 2016). 
Comparing simulated GPP of drylands with EC towers is largely appli
cable to assessing GPP capacity rather than activity due to limited years 
of EC data. To fully capture GPP activity more specific metrics are 
required. Phenometrics, such as start of season (SOS) and end of season 
(EOS), and long-term trend analyses are examples of criteria that can be 
used for studying GPP activity (Chen et al., 2016; Forkel et al., 2015; 
Zhao et al., 2019). 

The focus of this paper is on the Ecosystem Demography model 
version 2 (EDv2.2; Medvigy et al., 2009; Moorcroft et al., 2001). This 
model has been implemented in a variety of ecosystems (Antonarakis 
et al., 2014; Davidson et al., 2011; Kim et al., 2012; Levine et al., 2016; 
Lokupitiya et al., 2016; Medvigy et al., 2013, 2012; Trugman et al., 
2016; Xu et al., 2016; Zhang et al., 2015) and, unlike most DGVMs, 
EDv2.2 represents the vertical and horizontal heterogeneity of terres
trial ecosystems (Longo et al., 2019b, 2019a). A further strength is that 
EDv2.2 accommodates the local variability of vegetation composition 
and structure. However, a thorough evaluation of this model in drylands 

is lacking. The heterogeneity and in many areas, the sparsity of vege
tation in dryland communities, makes modeling these ecosystems 
challenging. 

The objective of this study is to explore the ability of EDv2.2 to 
predict GPP capacity and activity in a dryland study area. To address this 
objective we (i) perform a sensitivity analysis and a state-of-the-art 
calibration method; (ii) assess GPP capacity by comparing the model 
output with EC tower data with varying vegetation productivity; and 
(iii) assess GPP activity by comparing long-term trends and pheno
metrics (SOS and EOS) between model GPP simulations and remote 
sensing data. 

2. Materials and methods 

2.1. Study area and data 

The study area is Reynolds Creek Experimental Watershed (RCEW), 
located in the northern Great Basin of the western US (Fig. 1). In this 
study, we used three EC towers on the RCEW spanning an elevation 
range of ~1,000 m (Fig. 1, Table 1). With increasing elevation, mean 
annual precipitation increases and temperature decreases (Table 1; 
Flerchinger et al., 2019). The dominant vegetation cover of each EC site 
is a different species of sagebrush (Artemisia spp.) including Wyoming 
big sagebrush (Artemisia tridentata ssp. wyomingensis), low sagebrush 
(Artemisia arbuscula) and mountain big sagebrush (Artemisia tridentata 
ssp. vaseyana). The site dominated by Wyoming big sagebrush (WBS 
site) has the lowest elevation, the low sagebrush dominated site (LS site) 
occurs at mid-elevation, and the mountain big sagebrush site (MBS) has 
the highest elevation. Other vegetation at the WBS site includes green 
rabbitbrush (Chrysothamnus viscidiflorus), spineless horsebrush (Tetra
dymia canescens), perennial graminoids including bluebunch wheatgrass 
(Pseudoroegneria spicata), squirreltail (Elymus elymoides), and Sandberg 
bluegrass (Poa secunda), as well as nonnative cheatgrass (Bromus tecto
rum). The LS site includes predominantly Sandberg bluegrass, squirrel
tail, and Idaho fescue (Fescue idahoensis). Mountain snowberry 
(Symphoricarpos oreophilus) is another common shrub at the MBS site. 
Cheatgrass is less abundant at both LS and MBS compared to the WBS 
site, however at LS and MBS there is a strong presence of native forbs 
including longleaf phlox (Phlox longifolia), pale agoseris (Agoseris 
glauca), and silvery lupine (Lupinus argentius). A full description of each 
of these sites is presented in Flerchinger et al. (2019). 

Vegetation field inventory data were collected during Septem
ber–November of 2014 and May and June of 2015. The field data are 
publicly available (Glenn et al., 2017). Hourly meteorological forcing 
variables for the years 1988-2017 were obtained from the Weather 
Research and Forecast (WRF) model (Flores et al., 2016). The EC tower 
GPP data cover water years 2015-2017. We also used MODIS GPP 
products (MYD17A2H006) from 2000-2017. 

2.2. EDv2.2 model calibration and sensitivity analysis 

We implemented the EDv2.2 model at a point scale to correspond 
with the EC towers. In this model, at the static level the study area is 
divided into different sites based on the meteorological and abiotic (e.g. 
soil type) conditions. At the dynamic level, each site is divided into 
patches based on the time since last disturbance. Within each patch, 
individuals are grouped into cohorts based on plant functional type 
(PFT) and height of the plant (Fisher et al., 2018). The EDv2.2 model 
simulates vegetation dynamics based on the plant physiology associated 
with each PFT. Processes such as competition over resources (e.g. light 
and water) between PFTs, recruitment, and disturbance drive the 
ecosystem scale dynamics. The EDv2.2 model includes many sub-models 
to capture these processes. While a full description is outside the scope of 
this study, we describe in the SI the fundamental equations governing 
leaf physiology, which is directly related to GPP in the model. In addi
tion, for the most recent review of different processes in EDv2.2, refer to 
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Longo et al. (2019a). We utilize the shrub PFT parameters and allometric 
equations developed by Pandit et al. (2019) for the study area and 
meteorological forcing data based on the WRF model. 

Due to differences in vegetation type and composition between the 
sites (Table 1), we implemented the calibration process at each site 
separately. We calibrated the model with regards to 12 parameters 
within EDv2.2 that are directly related to GPP (Table 2). One source of 
uncertainty in the calibration process is the increasing number of free 
parameters. To decrease this uncertainty, it is common to find non- 
influential parameters using a sensitivity analysis (SA) and exclude 
them from the calibration process. This is in accordance with Pareto’s 

principle in which a model includes a few influential parameters, and a 
majority of non-influential parameters (Pappas et al., 2013). In this 
study, we used the Morris method for the sensitivity analysis. Multiple 
studies show that the results of a Morris SA are robust for calibration 
purposes (Hsieh et al., 2018; Janse et al., 2010; Tian et al., 2016). Morris 
returns the distribution of the elementary effect of each parameter on 
the model outputs. The absolute value of the mean (µ*) of this distri
bution represents the influence of each parameter on the outputs (i.e. 
GPP in this study). The standard deviation (σ) is the variability of this 
influence, which is a function of model nonlinearity or parameter in
teractions (Campolongo and Saltelli, 1997; Saltelli et al., 2000; White 

Fig. 1. Location of eddy covariance towers in Reynolds Creek Experimental Watershed, managed by US Department of Agriculture, Agricultural Research Ser
vice, Idaho. 

Table 1 
Site descriptions of the three eddy covariance tower sites, WBS, LS, MBS.  

Site Elevation [m] Dominant vegetation cover Mean annual precipitation [mm] Mean annual temperature [◦C] Data availability [water year] 

WBS 1188 Wyoming big sagebrush 307.94 9.75 2015-2017 
LS 1618 Low sagebrush 367.42 9.02 2016-2017 
MBS 2113 Mountain big sagebrush 586.15 4.58 2015-2017  

Table 2 
GPP related PFT parameters within EDv2.2, their abbreviation, and initial, lower and upper boundaries selected for the Morris sensitivity analysis.  

Parameter name [unit] Abbreviation Initial Lower 
boundary 

Upper 
boundary 

Reference 

Specific leaf area [m2kg− 1] SLA 4.5 2.0 15.0 (Brabec, 2014; Lambrecht et al., 2007; Olsoy et al., 2016; Pandit 
et al., 2019a) 

Maximum carboxylation rate 
[µmolm− 2s− 1] 

VM0 16.5 4.0 30.0 (Comstock and Ehleringer, 1992; Oleson et al., 2013; Pandit et al., 
2019a) 

Stomatal slope STO_S 7.0 2.0 15.0 (Bonan et al., 2014; Dietze et al., 2014; Pandit et al., 2019a) 
Ratio of fine root to leaf biomass Q_RATIO 3.2 0.4 12.0 (Dietze et al., 2014; Pandit et al., 2019a) 
Root turnover rate [a− 1] FTR 0.33 0.1 2.0 (GILL and JACKSON, 2000; Pandit et al., 2019a) 
Leaf turnover rate [a− 1] LTR 1.0 0.1 2.0 (Pandit et al., 2019a) 
Growth respiration factor GRESP 0.33 0.11 0.66 (Pandit et al., 2019a; Wang et al., 2013) 
Cuticular conductance [µmolm− 2s− 1] CUT_C 1000.0 100.0 10000.0 (Barnard and Bauerle, 2013; Duursma et al., 2019; Pandit et al., 

2019a) 
Water conductance [ms− 1kgCroot− 1] WAT_C 1.900000E- 

05 
1.90E-06 1.90E-4 (Pandit et al., 2019a) 

Seedling mortality S-MOR 0.95 0.25 0.99 (Trugman et al., 2016)  
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et al., 2019). We follow the common approach of presenting the indi
vidual importance of a set of variables and associated interactions by 
plotting the µ* vs. σ from the Morris SA. In the next step, we calibrate the 
model using the PEST++ package (White et al., 2019) and the most 
influential parameters resulting from the SA. The calibration method is 
based on Tikhonov regularization and truncated singular value decom
position (SVD) regularization (Doherty, 2005; Fang et al., 2019) (refer to 
SI for more details). The SVD regularization enables us to incorporate 
the user’s knowledge of the parameters. We used the values of the pa
rameters provided in Table 2 as our initial approximations and low
er/upper boundaries to constrain the PEST++ calibration. 

2.3. EDv2.2 model evaluation 

After calibrating the model, the performance of EDv2.2 in simulating 
GPP capacity and activity was tested using the EC tower data and MODIS 
GPP, respectively. In order to evaluate the model in terms of its per
formance to estimate GPP capacity, we calculate the Root Mean Square 
Error (RMSE) between GPP simulated from EDv2.2 and GPP observed 
from the EC towers. Since the EC tower data are temporally limited 
(Table 1), a meaningful time series analysis is challenging. Thus, for 
model evaluation of GPP activity, we compare the phenometrics (SOS 
and EOS), and long-term trend retrieved from the calibrated model 
simulations, and MODIS GPP for the 2000-2017 time period. Estimation 
of SOS and EOS is based on a weighted cross-correlogram spectral 
matching-phenology (CCSM-P; Chen et al., 2016). To compare the 
simulated start of season (SOSS) and MODIS start of season (SOSM), we 
calculate the mean absolute deviation (MAD = (

∑
|SOSS − SOSM|)/n) 

where n is the number of observations year (i.e. 17 years). The same 
method was used for comparing EOS. The trend analysis is based on the 
recently developed Bayesian Estimator of Abrupt change, Seasonal 
change, and Trend algorithm (BEAST; Zhao et al., 2019). BEAST returns 
the non-linear trend in a time series and is able to decompose it into its 
seasonal and trend components; due to its Bayesian nature it returns 
confidence intervals on these components. We compared the long-term 
trends in model-simulated and MODIS GPP. For both phenology and 
trend analyses, we aggregated the daily model-simulated and MODIS 
GPP into monthly values based on the maximum composition approach 
(Forkel et al., 2015; Holben, 1986). More details on the CCSM-P and 
BEAST can be found in the SI. 

3. Results 

The results of the Morris sensitivity analysis (SA) are shown in Fig. 2. 
Among all parameters, the specific leaf area (SLA), stomatal slope 
(STO_S), cuticular conductance (CUT_C), and maximum carboxylation 

rate (VM0) show the highest individual influence (µ*). These parameters 
also show the largest non-linear influence and interaction effect at all 
sites (σ). The results from the other eight parameters indicate that 
EDv2.2 is less sensitive to them in simulating GPP (e.g. clustering near 
the lower left corner of Fig. 2). All four parameters indicated as influ
ential are indeed used in the photosynthesis sub-model of EDv2.2, which 
is directly related to GPP (see SI). The stomatal slope is a fixed parameter 
in the stomatal conductance model (Leuning, 1995), which actively 
regulates the photosynthesis rate (Dietze et al., 2014). Cuticular 
conductance in EDv2.2 is equal to stomatal conductance when plants 
shut down their stomata due to environmental stress (Medvigy et al., 
2009b; Moorcroft et al., 2001). The maximum carboxylation rate is 
maximum photosynthesis at 15◦C based on the photosynthesis model 
developed for C3 plants (Farquhar et al., 1980). Finally, the specific leaf 
area scales leaf-level photosynthesis to the canopy-level (Dietze et al., 
2014). Following our framework, we used these four parameters (SLA, 
STO_S, CUT_C, and VM0) for calibration analysis with PEST++. 

Table 3 shows the corresponding standard deviation (STDV) and 
confidence intervals (upper/lower bounds) of the estimated parameters. 
Table 4 shows the calibration/validation RMSE between simulated and 
estimated GPP from EDv2.2 and the EC towers, respectively. We exclude 
MBS (highest elevation site) from Table 4 because the EDv2.2 calibra
tion process resulted in no vegetation growth (zero GPP) for this site. 
This is because the estimated parameter values for this site are incorrect 
(Table 3). For example, the confidence interval for the SLA of this site is 
much large than the other sites and includes unrealistic negative 
numbers, providing evidence that the MBS site parameters are not 
reliable. We also found a higher STDV and wider confidence interval at 
the LS site for all of the parameters in comparison to the WBS site (lowest 
elevation). With this information, we conclude that the best EDv2.2 
performance of GPP capacity is attained for the WBS site. Subsequently, 
all further analyses are performed for the WBS site only. 

Fig. 3 shows simulated vs. observed (EC tower) GPP at WBS site. The 
mean annual observed and estimated GPP at this site is 0.38 [kgC/m2/ 
year] and 0.30 [kgC/m2/year], respectively. Note that the model 
underestimated GPP for the 2017 water year, when observed GPP is 
higher than average. 

In addition, we analyzed the contribution of the two dominant PFTs 
(shrub and grass) to total simulated GPP at the WBS site (Fig. 4). This 
allowed us to understand EDv2.2’s capability to capture local vegetation 
heterogeneity. 

We base our time series analysis for evaluating long-term perfor
mance of EDv2.2 on GPP activity at the WBS site. In order to evaluate 
GPP activity, we estimated SOS and EOS for the MODIS GPP and 
simulated GPP (Fig. 5). Visually, there is a good agreement between 
MODIS and EDv2.2, but with more agreement between simulated and 

Fig. 2. Morris sensitivity analysis for WBS, LS, and MBS, µ* and σ are the mean and standard deviation of elementary effects. Based on this analysis, SLA, STO_S, 
CUT_C, and VM0 are identified as the most important parameters to estimate GPP at all three sites. 
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MODIS SOS (MAD = 18.6) compared to EOS (MAD = 25.2). 
The results of the trend analysis using the BEAST algorithm are 

shown in Fig. 6. There is general agreement between MODIS and EDv2.2 
during greening events, specifically in years 2011 and 2017. We also 
calculated the trend components of precipitation for the WBS site (2000- 
2017). The precipitation trend increases in years 2005, 2011 and 2017, 
leading to an increase in both simulated and MODIS GPP. However, 
there is a significant difference in the intensity of senescing events. For 
example, between 2000 and 2004, MODIS shows no trend in GPP 
whereas the EDv2.2 shows a significant trend. In general, the senescing 
and greening events are more intensified in the EDv2.2 simulations than 
in the MODIS GPP. 

4. Discussion 

4.1. Model calibration and sensitivity analysis 

We compared parameters identified here with other studies in RCEW 
(Pandit et al., 2019a; Renwick et al., 2019). Three of the four influential 
parameters in this study (SLA, STO_S and VM0) are similar to those 
identified by Pandit et al., 2019. However, only SLA was identified as 
important by Renwick et al. (2019). These parameter discrepancies 
among studies may be due to the SA method or the DGVM structure. For 
example, in Pandit et al. (2019), a local SA was used in comparison to 
the Morris SA used here. In Renwick et al. (2019), the shrub PFT pa
rameters for the LPJ-GUESS model were analyzed using a ranked partial 
correlation coefficient. In addition to these methods, the structure of the 
LPJ-GUESS model is different from EDv2.2. Thus, differences in SA be
tween studies are expected, and one should consider the SA method and 
model structure when evaluating any DGVM model performance. 
Considering the wide range of DGMVs, intercomparison SA studies can 
highlight model limitations (e.g. structural issues) and help direct 
further improvements (Cariboni et al., 2007; Jakeman et al., 2006; 
Pappas et al., 2013). While a comprehensive intercomparison SA was 

Table 3 
Calibration results using PEST++ for SLA, STO_S, CUT_C, and VM0 and their uncertainty. STDV is standard deviation of the estimated parameters.  

Parameter WBS LS MBS 
Best STDV (upper bound; lower bound) Best STDV (upper bound; lower bound) Best STDV (upper bound; lower bound) 

SLA [m2kg− 1] 6.14 0.03 (6.04;6.18) 7.50 0.47 (6.55;8.45) 2.82 3.25 (-3.67;9.32) 
VM0 [µmolm− 2s− 1] 24.50 0.21 (24.06;24.93) 19.45 0.48 (18.48;20.43) 7.44 2.04 (3.33;11.51) 
STO_S 13.97 0.03 (13.90;14.05) 9.85 0.53 (8.77;10.92) 7.82 1.98 (3.83;11.76) 
CUT-C [µmolm− 2s− 1] 999.51 112.184 (775.143;1223.88) 1000 462.68 (74.62;1925.37) 1000 267.44 (465.121;1534.89) 
Number of model runs 166 — 56 —- failed   

Table 4 
Calibration and validation results for EDv2.2 at the WBS and LS sites.  

Site RMSE (daily; monthly) [kgC/m2/year] 
Calibration Validation 

WBS 0.22; 0.18 0.44; 0.38 
LS 0.29; 0.24 0.47; 0.39  

Fig. 3. Model simulations and EC tower-based observations of GPP for years 
2015 through 2017 at the WBS site. 

Fig. 4. Contribution of shrub and grass PFTs to total GPP at the WBS site.  
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beyond the scope of this study, our results may be used alongside others 
for future model improvements. 

From a methodological point of view, PEST++ is a gradient-based 
method which mathematically searches for local minima in the objec
tive function space (Doherty, 2005; White et al., 2019). Being trapped in 
local minima is one of the drawbacks of gradient-based methods in cases 
where the model is highly nonlinear. In general, global calibration 
methods such as Covariance Matrix Adaptation Evolution Strategy 
(Hansen et al., 2003), Differential Evolution (Storn and Price, 1997), 
Particle Swarm Optimization (Li et al., 2020), and Bayesian approaches 
(e.g. Dietze et al., 2014; Fer et al., 2018) are preferable if their 
computational cost can be afforded. It should be noted that the short 
time span of the calibration process may impact the results. For example, 
the influence of other parameters such as root:shoot ratio and turnover 
rates may have a stronger influence on the GPP simulations over longer 
terms (decades). Precipitation during years used for calibration 
(2015-2016) was close to the long-term average, while precipitation for 
2017 was above average. Underestimation of GPP during 2017 may 
imply that the calibration time period is insufficient to properly 
parameterize these variables for application beyond the range of con
ditions encountered during 2015-2016. Thus, increasing the calibration 
time period and introducing more anomalies (e.g. precipitation below or 
above the long-term average) should improve model performance. 
Further investigations should explore the influence of other factors over 
the longer term. 

4.2. EDv2.2 GPP capacity and activity 

EDv2.2 performed well in capturing GPP capacity (Table 4) at the 
WBS site with low vegetation productivity; however, the model per
formed more poorly at LS and MBS where vegetation productivity is 
higher. Also, GPP was underestimated for the WBS site in 2017 when the 
EC data indicated that GPP was higher than during previous years 
(Fig. 3). The less robust EDv2.2 model simulations of GPP at more 
productive, higher elevation sites may be discussed in terms of uncer
tainty in the model parameters (e.g. Table 3) and processes such as 
photosynthesis in the model structure. Shiklomanov et al., 2020 found 
that in forest ecosystems in the Upper Midwest of the US, the model 
parameters had a higher contribution to the overall uncertainty of 
EDv2.2 outputs than the model structure. DGVMs are heavily studied in 
forest ecosystems and the representation of different processes in models 
is well-developed. Thus, the higher contribution of model parameters to 
uncertainty may be expected for forest ecosystems. However, the poor 
performance and failure of EDv2.2 at more productive sites in our study 
is likely related to model processes. We suggest this because our study 
used PEST++ as a robust calibration method for the model parameters 
(Doherty, 2005; Fang et al., 2019). Further, considering that DGVMs are 
less studied in drylands, model representation of processes is not as 
mature as in other ecosystems. Consequently, the higher contribution of 
model structure to the uncertainty is not surprising. Our finding is in 
agreement with a recent study which showed that in a dryland study 
area, model structure contributed more than the parameters to the 
improvement of DGVMs (Li et al., 2020). One of the key factors which is 

Fig. 5. Phenometrics estimated from MODIS GPP and simulated GPP using EDv2.2 at the WBS site.  

Fig. 6. Estimated trend component and its 95% confidence interval (gray shading) for MODIS and EDv2.2 GPP (left) and precipitation (right) for years 2000-2017 at 
the WBS site. 
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directly related to the EDv2.2 model structure is the lack of ecosystem 
heterogeneity represented in the model. At the WBS site, the main 
vegetation cover types are shrub and grass, and EDv2.2 reasonably 
captured the contribution of these PFTs to GPP over time (Fig. 4). As 
elevation increases at RCEW, the heterogeneity of the ecosystem also 
increases (Flerchinger et al., 2019). For example, the presence of forbs at 
MBS is noteworthy and significantly contributes to the carbon budget 
including GPP (Flerchinger et al., 2010). Currently, there is no PFT for 
forbs in EDv2.2. The lack of forbs and other PFTs common in 
higher-elevation drylands (e.g. juniper and aspen trees) in EDv2.2 may 
partly explain the poor performance of the model in capturing photo
synthesis capacity at higher elevation and more productive sites. Thus, 
developing other PFTs commonly found at higher productive sites will 
likely improve model performance at those sites. 

Other model processes are likely to influence the performance of 
DGVMs in drylands. For example, the water flux from the soil to plants 
and its distribution within the plant (i.e. plant hydraulics) play an 
important role in the performance of DGVMs in drylands (De Kauwe 
et al., 2015; Li et al., 2013, 2012; MacBean et al., 2019; Swenson and 
Lawrence, 2014). Flerchinger et al. (2019) found that the timing of 
complete snowmelt and water availability is a strong control on GPP at 
the MBS site. To what extent the EDv2.2 model captures this timing of 
water availability remains an open question. The interaction between 
shrubs and soil moisture availability in topographically complex 
shrubland environments (e.g. LS and MBS sites) is complicated. For 
example, previous studies have shown that the roots of dead plants 
contribute to water infiltration, improving dry soil moisture conditions 
and thus plants productivity (Wu et al., 2020, 2019). While plant mor
tality in EDv2.2 is accounted for, to our knowledge, there is limited 
understanding of this mechanism in drylands, hence the need for 
improvement in the model. We should also note that regulating photo
synthesis (hence GPP) as a function of soil moisture in EDv2.2 is 
controlled by an empirical soil-moisture-dependent scaling factor 
(Longo et al., 2019b). Some studies have shown that modifying plant 
hydraulics greatly enhances the performance of DGVMs in drylands (Li 
et al., 2013, 2012; MacBean et al., 2019) and dry forests (Xu et al., 
2016). In sum, the potential for model improvement by using more 
realistic, mechanistic plant hydraulics that consider water fluxes be
tween plants and soil, and within plants in shrublands, needs further 
investigation. 

Capturing phenology is also a challenging task for most DGVMs 
(Migliavacca et al., 2012; Richardson et al., 2013). The ED2.2 model 
performed relatively well compared to similar studies (e.g., Forkel et al., 
2015). The difference between estimated phenometrics from MODIS and 
EDv2.2 may be due to a combination of uncertainty in remote sensing 
data, EDv2.2 model structure, and the method used for the retrieval of 
SOS and EOS. In general, GPP estimated from EC towers is considered 
more reliable than model-driven, remotely sensed GPP. However, 
long-term EC tower GPP data are lacking at RCEW. Which remote 
sensing dataset to use for phenological studies remains an open ques
tion. It has been shown that solar induced fluorescence (SIF) may better 
capture the dynamics of drylands (Smith et al., 2018), and future studies 
could explore the potential of comparing SIF with EDv2.2 results (SIF 
data were not available for the 2000-2017 time frame assessed here). 
The cold deciduous phenology subroutine in EDv2.2 used in this study is 
based on changes in seasonal temperature (Botta et al., 2000), when 
deciduous plants drop their leaves. In reality, the phenology of sage
brush (dominant shrub in WBS site) is more complicated. Sagebrush is 
semi-deciduous and keeps some leaves during the cold season (Evans 
and Black, 1993; Williams et al., 1997). Renwick et al. (2019) recently 
developed an empirical method to represent sagebrush phenology 
suitable for drylands of the western US. While this model improved the 
seasonality of GPP (i.e. GPP activity) in LPJ-GUESS DGVM, it reduced 
the capability of the model to capture the peak and annual GPP (i.e. GPP 
capacity). This contrasting performance points to a fundamental concept 
that modifying phenology or other processes in a DGVM may improve 

one aspect of the model (e.g. GPP activity) at the expense of others (e.g. 
GPP capacity). Thus, changing the model structure should be followed 
by re-evaluating model parameters and other processes (Renwick et al., 
2019). One of the shortcomings of the proposed phenology scheme for 
sagebrush is that it still needs empirical thresholds (e.g., percent of 
persistent leaves), which might be significantly different among 
different sites and dependent upon sagebrush species. 

Our results show that, at the low productivity site (WBS), the general 
decadal trend in simulated GPP is coincident with the general trend of 
precipitation. This is expected in drylands where water is the main 
limiting factor. This finding is also consistent with an extensive ground- 
based analysis of this site in Flerchinger et al. (2019) and similar sites 
(Yan et al., 2019). However, EDv2.2 shows oversensitivity to precipi
tation at the WBS site, at which small changes in precipitation often 
leads to sharp changes in the GPP trend. Flerchinger et al. (2019) found 
that the WBS site is constantly under water stress. A key ecosystem 
process that mitigates such stress is changing plant community compo
sition in response to interannual variation in precipitation (La Pierre and 
Smith, 2015; Wilcox et al., 2015). Since representation of such a diverse 
vegetation community is limited in the EDv2.2 model (i.e. lack of 
different drylands PFTs), the model is not able to capture such a miti
gation strategy in response to precipitation changes. Thus, a solution to 
the generally exaggerated greening and senescing trends in response to 
precipitation is to introduce more PFTs to EDv2.2 to better represent the 
dynamics of vegetation in drylands. 

5. Conclusion 

In summary, our main conclusion is that at lower elevations, pre
cipitation drives the general trend of GPP which is captured by both 
MODIS and EDv2.2; however, the model generally exaggerates this 
trend in comparison to MODIS. Introducing additional PFTs, making 
structural modification to the model (e.g. phenology scheme), and 
incorporating land surface processes should increase model applicability 
at higher elevations. Adding more dryland PFTs will not only contribute 
to GPP capacity (e.g. forbs in more productive sites) but can also 
improve estimates of the long-term trends of GPP activity by modifying 
the landscape composition. The results of this study can contribute to 
other model benchmarking activities such as the International Land 
Model Benchmarking (ILAMB) project (Collier et al., 2018). Future 
studies should focus on combining the capabilities of EDv2.2, remote 
sensing, and EC flux towers through a data assimilation framework. New 
satellite products such as solar induced fluorescence (SIF) have great 
potential to be integrated with DGVMs. Integration of all these sources is 
necessary for upscaling GPP to the global level (e.g. FLUXCOM project; 
Jung et al., 2019). The results of this study provide additional guidance 
for challenges associated with upscaling carbon fluxes in drylands. 
Considering the heterogeneity of drylands, increasing the number of EC 
tower sites for calibration and validation will also improve our under
standing of GPP capacity and activity. 
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