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Abstract: The global COVID-19 pandemic will pose unique challenges to the management of wildland
fire in 2020. Fire camps may provide an ideal setting for the transmission of SARS-CoV-2, the virus
that causes COVID-19. However, intervention strategies can help minimize disease spread and
reduce the risk to the firefighting community. We developed a COVID-19 epidemic model to
highlight the risks posed by the disease during wildland fire incidents. Our model accounts for
the transient nature of the population on a wildland fire incident, which poses unique risks to the
management of communicable diseases in fire camps. We used the model to assess the impact of two
types of interventions: the screening of a firefighter arriving on an incident, and social distancing
measures. Our results suggest that both interventions are important to mitigate the risks posed by the
SARS-CoV-2 virus. However, screening is relatively more effective on short incidents, whereas social
distancing is relatively more effective during extended campaigns. We conclude with a discussion of
model limitations and potential extensions to the model.
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1. Introduction

Fire personnel know all too well the occurrence and unpleasantness of “camp crud,” a respiratory
illness that is annually transmitted to many of these personnel while they spend time at fire camps [1].
COVID-19 is a dramatically different disease than camp crud. Furthermore, smoke exposure may
complicate the risk of infection and the severity of the disease if contracted [2]. With fire season already
underway in the U.S., there is an urgent need to understand how COVID-19 may impact wildfire
incident management activities. In the absence of historical data, epidemiological simulation models
can provide insights into the transmission of SARS-Cov-2 (the virus that causes COVID-19) and the
potential impact of mitigation measures in fire camps.

Here, we developed an epidemiological simulation model of COVID-19 to analyze the impact
of interventions on wildland firefighter health and workforce availability in the setting of a single
large wildland fire camp. A wildland fire incident may pose unique challenges to avoiding the spread
of SARS-Cov-2 among deployed firefighters. During an actively managed incident, hundreds to
thousands of firefighters may be dispatched to the incident. These personnel come from around the
country to help contain the fire [3]. Because many of these fires occur in remote areas, and the personnel
are not local, there can be substantial logistical challenges with providing basic services for all the
personnel. Historically, these logistics have been met by setting up fire camps. These fire camps are sites
at which the personnel are provided with food, water, areas for sleeping, and sanitary services during
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the time they are assigned to work on the fire [4]. While these camps do provide important services,
they are also known to provide opportunities for viruses to spread among personnel [5]. The fire
camp is not the only place that a virus might spread among personnel. For example, the incident
command post, the location where the primary logistics functions of the fire are administered [4],
may also provide opportunities for spread. Because the fire camp is the area often associated with
disease spread, in this paper, we used the term “camp” generically to indicate the virus spreading
throughout the personnel assigned to the fire.

We used our model to explore how the rates of infection and fatality vary with incident
mobilization/demobilization dynamics, duration, and the number of assigned personnel, using
real resource assignment data from three historical fires. We selected these three incidents because they
captured a range of these characteristics (assignment timing, duration, personnel) thought to affect
disease dynamics. Using a scenario analysis approach allows us to evaluate a range of parameters
based on coarse assumptions about the efficacy of interventions. Specifically, we adjusted the model
to explore the benefits of two risk mitigation measures that incident management teams may adopt:
screening and social distancing measures.

Screening and social distancing measures may influence health and workforce outcomes in a
variety of ways on a fire camp. Screening includes monitoring symptoms as firefighters enter camp
and monitoring firefighter symptoms over time while in camp [6]. To address the initial screening of
the firefighter arrival at the camp in our model, we assumed that screening reduces the number of
infected personnel who arrive at a fire, but does not remove 100% of the potentially infectious personnel
due to individuals who may be asymptomatic, pre-symptomatic, or misattributing symptoms as
typical due to exertion and smoke exposure. Social distancing steps specific to the wildland fire
environment include the use of remote briefings (rather than in-person briefings), reduced attendance at
briefings, the expanded use of telecommunications, dispersed camping, the increased use of packaged
meals that are delivered to the field, using the module as one concept so that crews are minimally
interacting with people outside their crew, and wearing masks when appropriate. In our model, social
distancing reduces the transmission parameter; thus, we are assuming that the mitigations reduce the
average number of personnel that acquire the disease from a single infected person. In reality, disease
transmission is a stochastic process. Random perturbations (i.e., a large spread event) early on in the
incident may dramatically alter the trajectory of an outbreak in a fire camp. Our deterministic model
abstracts from this real-world complication.

The wildland fire management community is developing guidance and planning modifications to
wildland fire response strategies, operations, and logistics in order to mitigate the variety of risks posed
by COVID-19 [6–8]. Furthermore, responders are the sharing lessons learned in the conduct of fire
operations to better understand the considerations and consequences of putting COVID-19 mitigations
into practice e.g., [9–15]. Notably, [15] summarizes some of the operational logistics and challenges
associated with adapting to COVID-19 and implementing mitigation measures. As described above,
one of the risks posed by SARS-CoV-2 is the rapid outbreak of infection in a traditional large fire camp,
where high-density living and working conditions, limited hygiene, and a transient workforce can
“create an ideal environment for the transmission of infectious diseases” [5]. The intent of this analysis
is to help understand the risk of outbreak and to support risk-informed decision making.

2. Materials and Methods

2.1. Model Specification

We developed a compartmental epidemic simulation model [16] adapted to the context of a
wildfire incident. Our model incorporated the movement of personnel to and from the incident, which
have important implications for disease transmission. The model divided the population into four
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health classes (susceptible, exposed, infectious, and removed, or SEIR). The outbreak evolved according
to the following system of differential equations:
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where R0 is the basic reproduction number indicating the number of secondary infections caused by an
index case over the duration of the infectious period DI, N is the total population on the fire at time t,
A(t) is the number of new arrivals on the incident (all are assumed susceptible or exposed), X(t) is the
number of individuals exiting the incident, DE is the exposed, or incubation, period (i.e., the period of
time after an individual is exposed to the virus, prior to becoming infectious), and γ is the probability
that new arrival personnel are infected.

The term R0
DI

S(t)·I(t)
N(t) represents the number of new infections at time t. R0

DI
is the rate of transmission

conditional on contact between susceptible and infectious individuals in the population. New infections
enter the exposed class during which time they are not infectious, but most certainly will become

infectious. Individuals in the exposed class enter the infectious class at a rate of E(t)
DE

.
Models of wildfire incidents need to reflect the dynamic population of fire fighters as there are

individuals arriving and leaving due to reassignment or demobilization. New personnel arrive on the
incident according to A(t) and exit according to X(t). Entering personnel were considered only to be
either susceptible or infected; we discuss this in Section 2.2. However, the exits were proportional to
the population in each class at time t. We estimated the number of personnel arriving and departing
based on the empirical fire assignment data.

2.2. Model Assumptions

We parameterized the model based on the estimates from relevant literature (Table 1). Estimates
of R0 vary widely in the literature, but generally fall between 1.3 and 6.0 [17]. We used a baseline
estimate of R0 of 2.68 [16], and bound it by 1.34 (50% of 2.68) and 5.36 (200% of 2.68). While COVID-19
can affect individuals for several weeks [18], infected individuals with symptoms are likely to sequester
themselves and be isolated from the susceptible population. Estimates from [18] suggest that the
time from symptom onset to isolation is between two and five days. We assumed that an infectious
individual was mixing in the population for three days. Estimates of the incubation period, DE,
are between four and six days [19]. We used five days in our models.

Table 1. Parameter values used in simulation.

Variable Low Medium High Extreme Citation

R0 1.34 2.68 5.36 [17]
DI 3 [18]
DE 5 [19]

Initial Infected 2
Infection Fatality Rate 0.1% 0.3% 1% 2% [20]

Infected Entry Rate 0.1% 1% 5%
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In order to propagate the disease’s spread, the model required infectious personnel to enter the
fire. This may occur through two pathways in our model; initial infectious personnel that arrive at the
camp on the first day (“initial infected”) and infectious entry throughout the course of the camp due to
additional mobilizations (“infected entry”). We assumed that two infectious individuals entered each
of the case study fires on the first day of the fire camp, which represents 1% of the peak personnel
on the smallest of the three fires case study fires profiled. The value of the initial infected stayed
constant for all the scenarios modeled. We considered various rates of infected individuals mobilizing
to the incident. While these infected entry rates depended on the behavior of individuals while off

duty, they also may be influenced by screening procedures. We considered 0.1%, 1%, and 5% to
capture the range of general population disease prevalence and the potential effectiveness of screening
procedures. The SEIR model assumed the continuous distribution of people, so the entry of infections
may occur in non-integer numbers of personnel. We considered all non-infectious personnel to initially
be susceptible.

Infection fatality rates vary widely in the literature because of demographic characteristics and
variable testing. Early reports suggested that the case fatality rates may be as high as 6%; however,
recent evidence suggests that it may be 2–3%, and much lower in younger healthy populations [20].
Furthermore, emerging evidence suggests that undocumented cases may imply actual cases were 45%
to 90% higher than reported [21,22]. Therefore, we considered an infection fatality rate of 0.3%. We also
considered a low bound of the infection fatality rate of 0.1%, which was comparable with the 2009
H1N1 pandemic [23], and high estimates of 1% and 2%.

2.3. Case Fires

We simulated COVID-19 outbreaks using three 2017 fires chosen to represent different incident
archetypes: the Highline Fire, which burned for much of the summer but the personnel peaked early in
the effort; the Lolo Peak Fire, which spanned July through September and had a relatively symmetric
mobilization and demobilization phase; and the Tank Hollow Fire, which was shorter than the other
two, and had fewer personnel throughout the incident. Figure 1 shows the mobilization/demobilization
dynamics for the personnel expected to be at camp for the three fires we selected, providing perspective
on when in the season they occurred, how long they lasted, and how many personnel were at the fire
each day. Data for these fires were obtained from the Resource Ordering and Status System (ROSS)
(see [3,24] for other peer-reviewed studies of suppression resource allocation and movement using
ROSS). ROSS was queried to obtain the mobilization and demobilization dates for each person assigned
to the fire, except those associated with aerial resources.
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We fed these incident dynamics into the COVID-19 SEIR model to analyze the different scenarios.
Table 2 shows the scenarios we analyzed regarding infection rates and the entry rates of infected
personnel. These scenarios ranged from best to worst case, along with two risk mitigation options:
comprehensive screening, and aggressive social distancing at camp (e.g., no catering, increased use
of spike camps, remote briefings). The best-case scenario assumes that both mitigating measures
are implemented jointly and effectively. The worst-case scenario assumes that either mitigation
measures were not implemented, or they were implemented ineffectively. We also explored variable
infection fatality rates, ranging from low (0.10%), medium (0.30%), high (1.00%), and extreme (2.00%).
These fatality rates may differ from what was observed for the general population due to the responders’
increased smoke exposure and fatigue, among other factors.

Table 2. Scenarios and corresponding model parameters. The infection rate parameter is drawn
from [16]; medium is the baseline observed rate of 2.38, low is half of the baseline (1.34), and high is
twice the baseline (5.36). The percentage of individuals arriving at the fire infected is varied from low
(0.1%) to medium (1%) to high (5%); see Table 1.

Scenario Infection Rate (R0 Parameter) Percent of Arriving Individuals
that Are Infected

Best case Low Low
Worst case High High

Baseline Medium Medium
Enhanced screening Medium Low

Aggressive social distancing Low Medium

3. Results

Figure 2 shows the paths of infectious individuals and the total infections under the baseline
assumptions for each fire over time. The total infections are defined as the individuals who became
infected during the incident, whether they remained on the incident or left. Maximum daily infections
generally peaked around the time of the peak assigned personnel. Despite the Highline Fire having a
greater number of assigned personnel at the peak, the Lolo Peak Fire had by far the greatest number of
infected persons due to the longer duration with substantial personnel assigned and the total number
of personnel that worked on the fire. The Lolo Peak also had the highest number of modeled fatalities
(Figure 3), which in the extreme case, could exceed ten fire personnel. At low to medium infection
fatality rates, we would expect near-zero fatalities on the Highline and Tank Hollow fires.

We explored the impact of different infection rates of arriving personnel (Figure 4). This analysis
has two interpretations: (1) different levels of disease prevalence in the general population, and (2)
the relative effect of a screening protocol. Figure 4 displays the total cases under different infection
rates of new arrivals. Under the first interpretation, these results highlight the impact of circumstances
external to the firefighting community. In the Highline fire, the total cases are 247 when 5% of the
arriving personnel are infected as opposed to 82 when 1% of the arriving personnel are infected.
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The second interpretation of this analysis is as the effect of screening arriving personnel, which in
practice will be conditioned by the percentage of cases that are asymptomatic or pre-symptomatic.
Assuming the disease prevalence in the population is approximately 1%, such that roughly 1% of new
arrivals are infected (orange curve in Figure 4), if an effective screening protocol identified most of
those infected individuals arriving on the fire and removed them from the population via quarantine,
the infection rate of new arrivals could fall to 0.1% (green curve in Figure 4). On a fire like the Highline,
this effective screening protocol would result in 45 fewer total cases representing 55% of the total cases
incurred without screening. In contrast, the reduction of the same screening protocol on a fire like
Lolo Peak reduces cases by 72, representing 11% of the total cases. The larger relative impact on a fire
like the Highline is due to the relatively short duration and high population. In this type of incident,
a relatively high share of new cases arises from the introduction of cases that originate outside of the
fire. In longer duration fires, relatively more cases arise from transmission within the fire.
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Figure 4. Total number of infected individuals over the duration of each incident under the low (0.1%),
medium (1%), and high (5%) entry rates of infected individuals. Note that the vertical axis is log scaled.
All simulations assume R0 of 2.68.

We explored the impact of aggressive social distancing by varying the transmission rate derived
from R0 (the basic reproduction number, or the number of secondary cases resulting from a single case).
Reducing contacts in the camp by dispersed camping or remote briefings will reduce transmission.
Figure 5 compares the total number of infections on each fire under low, medium, and high transmission
scenarios, corresponding to different levels of social distancing. Social distancing is comparatively
more effective than screening, and can substantially reduce cases, especially on long-duration fires like
Lolo Peak.
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(R0 = 1.34), medium (R0 = 2.68), and high (R0 = 5.36) infection rates. Note that the vertical axis is log
scaled. All simulations assume the infection rate of 1% of the arriving personnel.

Beyond the direct health impacts, infected persons are also unable to work, reducing the workforce
available to contain the fire. These impacts affect not only the contemporaneous incident, as modeled
here, but could carry forward to reduce the workforce capacity for weeks into the future, depending
on the severity of the illness. The loss of personnel can be substantial: up to 10% of the workforce may
be infectious on a single day with the maximum number of personnel on the fire (Figure 6), in the
worst-case scenario, though other scenarios show smaller effects (less than 5%). The most promising
option appears to be implementing both aggressive screening and social distancing measures on-site
at the fire camp (Figure 7; best case). Certainly, results are driven by the assumption that incoming
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infections and infection rates can be reduced; nevertheless, results do suggest that aggressive mitigation
can help sustain firefighting capacity over time.
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4. Discussion

Models are, by definition, an abstraction of reality and are subject to the accuracy of the parameters.
Wildfires and the COVID-19 pandemic are each complex dynamic phenomenon, and the combination
of the two produces great uncertainty. Therefore, we stress the limits of our model and highlight the
qualitative results of the analysis rather than the estimated numbers.

In this study, we focused on two sources of case growth on an incident. The first is the introduction
of infection by personnel arriving on an incident. As the fire grows and the incident becomes
more complex, resource orders will be filled by available personnel, some of whom may come
from other counties or states. Given the variation in the COVID-19 prevalence around the country
at any given point in time, the firefighters from different areas will introduce variable risk to the
camp. While current policies require or request symptomatic individuals to report their conditions
and inform supervisors, evidence suggests that many infected people may experience very mild
symptoms [25]. These asymptomatic individuals may remain infectious for weeks [26,27], perhaps
posing the greatest risk of infection through a camp. The combination of exposure risk posed by the
high turnover of personnel coming from a large number of places in concert with the exposure risk
due to non-quarantined infectious individuals highlights the potential merits of developing testing
strategies for early identification, which could include testing asymptomatic individuals without
known or suspected exposure [28]. The utility of such testing strategies is conditioned by the availability,
timeliness, and reliability of viral tests, and the optimal testing strategy design could be the subject of
future research.

The second source of case growth on an incident that we examined was the spread among
personnel while assigned to the fire. In the event that personnel arrive at an incident exposed or
infected, their level of interaction with others will determine the rate of transmission within the camp.
The rate of transmission will depend on the level of interaction between the personnel at the incident
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and the nature of those interactions. Under normal circumstances, personnel may gather in large
groups, for example, for briefings or meals. These interactions are similar to potentially infectious
interactions in the general public that public health agencies have deemed ill-advised. Some of these
interactions could be made less risky using current social distancing and mitigation recommendations;
for example, masks appear to provide a barrier to the spread of SARS-CoV-2 [29]. Recognizing that a
range of mitigations is already being planned or put into place by incident management personnel [9],
these analyses provide a proxy for a business-as-usual baseline as a point of comparison.

We studied two types of interventions corresponding to the two types of source growth identified
above: the screening of personnel arriving at the incident to address the case growth by the entry of
the virus and the spread from non-quarantined infectious individuals, and social distancing measures
within the fire camp to address the case growth from the spread among individuals in the camp. While
both interventions mitigate transmission and lead to fewer cases, screening measures are relatively
more effective on shorter incidents with a frequent resource turn over. In contrast, social distancing
measures are relatively more effective on prolonged campaigns where most of the cases are due to
transmission within the community.

While the total number of infections and the associated mortalities are clearly crucial measures for
fire mangers to consider due to their health impacts on personnel, outbreaks also have implications
regarding the possible degradation of workforce capacity. Wildfires rarely occur in isolation; most fire
seasons in the recent past (2014–2018) have seen a scarcity of wildfire response personnel as several
large wildfires occur simultaneously [30]. Thus, personnel that must leave a fire to recover from an
infection may not easily be replaced and could leave the wildfire shorthanded. In addition, personnel
may move between fire camps, and a large outbreak at one camp could be the source of infection for
several following wildfires. If simultaneous fires incurred outbreaks, the entire wildland fire response
system could be stressed substantially, with a large portion of the workforce quarantined.

The results from this model do imply that outbreaks of COVID-19 in wildland fire camps could be
a serious threat to the firefighting mission and that mitigation measures could help reduce the risk of an
outbreak. At the beginning of a fire incident, a manager has limited ability to predict which incidents
will turn into extended campaigns. Thus, early and consistent intervention is crucial, with mitigations
being implemented during initial fire operations. Our model suggests that even with mitigations in
place, under certain circumstances, if infected individuals do enter the general population, there is
enough time to support substantial transmission within the firefighting community (see Figure 3).
The periodic reassessment of incident risk should play an important role in guiding mitigations and
interventions. As managers observe key risk factors increasing (such as the number of personnel on
the fire or fire duration), they might consider increased vigilance, which could include more aggressive
social distancing or additional screening measures.

Our model has some important limitations. First, our analysis is deliberately limited in scope
because our objective is to assess plausible disease dynamics and qualitative differences in interventions.
While our models provide numerical results based upon the particular sets of parameters and fire
data we used, these results should not be interpreted as making a prediction about any future events
that fall outside the scope of the scenarios we examined. In particular, this model does not attempt to
predict any events in the current or coming fire seasons.

As with all models, our assumptions guide our results. Thus, as we update this model throughout
the season in response to additional gained knowledge about COVID-19 in fire camps, we could
see substantial variation in our results. For example, COVID-19 symptoms overlap with common
health issues observed on fires due to the exposure to high levels of particulate matter (cough) and
substantial exertion (fever). Thus, COVID-19 symptoms in fire camps could be misattributed, leading
to a substantially longer infectious period than our assumption of three days. In addition, the presence
of asymptomatic infection would also increase the length of the infectious period. Similarly, there is
substantial uncertainty in the effect of social distancing measures in reducing contact; changes in this
parameter may substantially affect the model results. The underestimation of key disease parameters
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such as the infection period and transmission would result in an outbreak where a substantially larger
portion of the population is infected. In addition to the uncertainty surrounding COVID-19, specifically
in fire camps, other scientific knowledge about COVID-19 will likely continue to grow, with updated
parameter estimates that may be more relevant to fire camps in the United States than those that were
available during the time period when we developed this scenario analysis.

We consider firefighter health and workforce outcomes only on single incidents. Future analyses
could extend this to multiple fires in order to capture the risk posed by individuals moving across
incidents. For instance, a severe outbreak at one fire may expose many firefighters to the virus, some of
whom may be reassigned to other incidents, seeding further infection at those incidents. In addition,
a long incubation period could lead to exposed individuals being reassigned in large numbers to future
wildfires, leading to outbreaks that increase in severity over the season. The seasonal implications of
COVID-19 are complex, important, and need to be addressed by a substantially more complex model
than we present here.

In addition, the model is limited by only having four classes of infectious states for personnel with
only one pathway between each state. That is, personnel move directly from susceptible to exposed
to infectious to removed, and each of these pathways has a single rate associated with it. However,
there are more possibilities for infectious pathways than the simple one modeled here. For example,
an asymptomatic individual that tests positive might quickly move from infectious to removed, while
an undetected asymptomatic individual might move to the removed class much slower. In addition,
a new quarantined class is needed to better test the impact of infections on the workforce, as the current
model only tracks the total number removed from the incident due to infection, but not the timing
of how long they are out of the workforce. This would be particularly important for modeling the
impacts of COVID-19 outbreaks on multiple incidents.

The model is deterministic and only approximates the stochastic nature of disease transmission.
In large populations, random fluctuations in contacts and transmission tend to cancel each other out,
making the deterministic model a good approximation of transmission dynamics in the population.
In relatively small populations (e.g., hundreds of people), random transmission events can propagate
through the system, altering the course of the epidemic. Quantifying the magnitude of this uncertainty
is a crucial extension to the modeling framework we have proposed.

Our current approach relies on a simplifying assumption that the population at a fire camp
mixes randomly and evenly across space and time. If contact patterns vary among individuals at a
fire, interventions can be targeted to individuals or groups that are most likely to transmit the virus.
For example, members of incident management teams have, in the past, spent much of their time
inside a mobile trailer that is used as office space. This closed environment with a high level of contact
between many people may be much riskier than the interaction that occurs out of doors between
personnel on the fireline. Risk management plans may consider contingency plans in case substantial
fractions of the leadership team become infected.

Not only is there uncertainty in the levels of contacts between individuals in a heterogeneous
population, but there is also uncertainty in how the spread parameters might be influenced by some of
the characteristics of the fire camps themselves. While some personnel on incident management teams
may spend a substantial amount of time inside, most interaction in a fire camp occurs outdoors, which
may be correlated with fewer spread events [31].

There are additional systematic and cultural factors that may prove challenging to implementing
mitigation methods at the fire camp. Wildland firefighting is fraught with risks, and the agencies
involved have implemented systems and protocols to minimize risk and ensure firefighter safety.
However, these systems are generally focused on exposure risk to the individual (i.e., falling snags or
burnovers). The nature of disease transmission risk is fundamentally different because it depends on
the collective behavior of the group rather than a simple sum of individual actions. The risk of injury
due to falling snags (weak or dead trees that may fall unexpectedly) is linear in the sense that in a
scenario with ten people in a snag-prone environment, the potential for injury is ten times the number
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of people, relative to a single person in that environment. The nonlinear nature of disease spread
means that the introduction of ten infected firefighters in a population poses a much larger risk than
ten times the risk posed by a single infected firefighter. In addition, the probabilities of infection are
not independent over time in the way of snag risk (provided the number of snags remains constant).

The health impacts of COVID-19 on the wildland fire workforce based upon their health status is
also an important consideration with substantial uncertainty. Wildland firefighting requires strenuous
work in hot and smoky conditions, and firefighters must pass an arduous physical fitness test prior at
least once every three years to prove they are capable of the strenuous work required [32–34]. Thus,
wildland firefighters are generally considered to be fit. However, previous studies have found that
wildland firefighters’ lung function is affected by their work [35], and over the course of a season,
and wildland firefighters experience a decrease in their metabolic and cardiovascular health [36].
Therefore, the impacts of COVID-19 on firefighters are highly uncertain, with the lowered risk of severe
symptoms due to their general overall fitness possibly at odds with the higher risk due to the stress on
their respiratory and cardiovascular systems [37,38].

Despite the model limitations, uncertainties, and challenges to the implementation of mitigation
measures, the work presented in this paper does provide an approach for modeling and gaining insight
about the potential spread of SARS-CoV-2 in fire camps. As we learn more about this threat, better
information can be included in the model, and the model structure itself can be updated. Even prior to
such updates, the implications of the efficacy of the two mitigation methods tested in this paper are
valuable as fire managers prepare to fight fires during a global pandemic, unlike anything they have
experienced in the past.

5. Conclusions

As society faces the confluence of a global pandemic and a possibly severe fire season [39], models
can provide key insights into the consequences of disease transmission and highlight promising
interventions to protect firefighting personnel. We modeled the spread of SARS-CoV-2 in wildland
fire camps to gauge the risk posed by COVID-19 to the wildland fire community. Our results suggest
that SARS-CoV-2 may spread rapidly within a fire camp during extended campaigns. One of the key
insights of the model is that screening may be more effective on shorter incidents with large numbers
of personnel entering and exiting, whereas social distancing measures may be more effective on longer
campaigns. The relatively long incubation period inhibits rapid growth on short duration incidents
relative to long campaigns. As the season progresses, the wildland fire community will continually
learn the consequences of COVID-19 and how to cope with the risk of illness.
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