Translocation experiment reveals capacity for mountain pine beetle persistence under climate warming

DAVID N. SODERBERG,1,2,5 KAREN E. MOCK,1,2 RICHARD W. HOFSTETTER,3 AND BARBARA J. BENTZ1,4

1Wildland Resources Department, Utah State University, 5230 Old Main Hill, Logan, Utah 84322 USA
2Ecology Center, Utah State University, 5205 Old Main Hill, Logan, Utah 84322 USA
3School of Forestry, College of Engineering, Forestry and Natural Sciences, Northern Arizona University, Flagstaff, Arizona 86011 USA
4U.S. Forest Service, Rocky Mountain Research Station, 860 N. 1200 E, Logan, Utah 84321 USA

Abstract. Predicting species response to climate change is a central challenge in ecology, particularly for species that inhabit large geographic areas. The mountain pine beetle (MPB) is a significant tree mortality agent in western North America with a distribution limited by climate. Recent warming has caused large-scale MPB population outbreaks within its historical distribution, in addition to migration northward in western Canada. The relative roles of genetic and environmental sources of variation governing MPB capacity to persist in place in a changing climate, and the migratory potential at its southern range edge in the United States, have not been investigated. We reciprocally translocated MPB populations taken from the core and southern edge of their range, and simultaneously translocated both populations to a warmer, low-elevation site near the southern range boundary where MPB activity has historically been absent despite suitable hosts. We found genetic variability and extensive plasticity in multiple fitness traits that would allow both populations to persist in a warming climate that resembles the thermal regime of our low-elevation site. We demonstrate, for the first time, that supercooling points in MPBs are influenced both by genetic and environmental factors. Both populations reproduced with seasonally appropriate univoltine generation times at all translocated sites, and bivoltinism was not observed. The highest reproductive success occurred at the warmest, out-of-range low-elevation site, suggesting that southward migration may not be temperature limited.

Key words: bivoltinism; climate change; cold-hardening; diapause; genetic variation; local adaptation; mountain pine beetle; phenotypic plasticity; reciprocal translocation; supercooling.

INTRODUCTION

There is scientific consensus that climate is rapidly changing, with dramatic effects to ecosystems globally (IPCC 2014). Because climate is an enduring selective agent on traits that shape species distributions and population success, population persistence in a rapidly changing climate will depend on the degree of heritable variation and phenotypic plasticity in environmentally regulated traits (Bradshaw 1965, Sgrò et al. 2016). Heritable trait variation underlies a population’s ability to adapt to new conditions through selection. Phenotypic plasticity is the extent to which an individual genotype can produce different phenotypes under a range of environments, and populations with sufficient plasticity may persist in changing environments without genetic adaptation through natural selection. However, phenotypic plasticity itself is a heritable trait with variation subject to selection (Via and Lande 1985, Schlachting and Pigliucci 1998). In addition to persistence in place through trait adaptation or plasticity (Babin-Fenske et al. 2008, Merilä and Hendry 2014), range shifts via migration to new habitats can be a viable response to rapidly changing environmental conditions (Chen et al. 2011). Indeed, northern boundaries of multiple species have expanded with recent climatic changes that include rapid warming at higher latitudes (Hickling et al. 2006, Parmesan 2006, Morley et al. 2017), although less is known about responses of populations at low-latitude margins of species distributions. To more fully understand and predict responses to future climatic changes, including the potential for population persistence in place, an understanding of range-determining factors and trait responses, such as adaptive potential and phenotypic plasticity, is critical (Gienapp et al. 2008).

Forested ecosystems cover ~30% of the global land surface area (FAO 2018) and are undergoing dramatic changes in response to climate change (Allen et al.
2010), with much of this change mediated by insect-caused mortality (Hicke et al. 2015, Seidl et al. 2017). The mechanisms that lead to tree mortality are complex, and include climate-related impacts on tree physiological responses, biotic and abiotic disturbances, and increasingly, their interactions (Anderegg et al. 2015). The mountain pine beetle (Dendroctonus ponderosae Hopkins; Coleoptera: Curculionidae, Scolytinae; MPB) is an ecologically and economically significant tree mortality agent (Grégoire et al. 2015) that can reverse the role of forests from carbon sinks to carbon sources, at least in the short term until regrowth occurs (Hansen et al. 2014, Arora et al. 2016). MPB, a species native to western North America with an expansive range extending from Baja California Norte, Mexico into western Canada (Cooke and Carroll 2017, Dowle et al. 2017), feeds and reproduces within the inner bark (i.e., phloem) of Pinus species, causing tree death at landscape scales when population levels are high (Raffa et al. 2008).

The distribution of Pinus species in western North America extends both northward and southward beyond the known historical distribution of MPB, and northward range expansion has recently occurred as a result of changing climate in British Columbia and Alberta, Canada (de la Giroday et al. 2012, Sambaraju et al. 2019). At the southern limit of the historical distribution in central and southern Arizona (AZ) in the USA, MPBs are found in the closely related and hybridizing high-elevation species P. flexilis (James) and P. strobiformis (Engelmann) (Bentz and Hansen 2017, Menon et al. 2018), yet MPB is limited or absent in lower elevation Pinus species (e.g., P. ponderosa Dougl. ex P. & C. Laws.) south of the Grand Canyon, AZ (McHugh et al. 2003, Gaylord et al. 2006, Lynch et al. 2006, Williams et al. 2008). Although multiple Pinus species are found in mainland Mexico and further south, MPB is considered rare to absent south of the U.S. border (Wood 1982, Cibrán-Tovar et al. 1995). Recently, however, several MPBs were found in a dead P. strobiformis in Chihuahua Mexico just south of the AZ border (Armendáriz-Toledano et al. 2017). While it is clear that increases in temperatures have permitted MPB migration northward in Canada (Carroll et al. 2004, Sambaraju et al. 2012, 2019), factors delimiting the southern edge of the MPB distribution in the United States are unknown.

MPB survival is significantly affected by thermal regimes that influence multiple physiological traits including development rates and thresholds (Régnière et al. 2012), prepupal diapause (Bentz and Hansen 2017), and cold-hardening (Bentz and Mullins 1999, Rosenberger 2017). These traits facilitate appropriate overwintering seasonality, generation time, and an adult emergence that is synchronous and seasonally appropriate for mass aggregation on well-defended live host trees (Logan and Bentz 1999, Safranyik and Carroll 2006). Local heritable adaptation and plasticity in traits that influence generation time have been shown in populations from different latitudes using common garden laboratory studies (Bentz et al. 2001, 2011, Bracewell et al. 2013, Bentz and Hansen 2017). The applicability of these results to field populations and the role of the observed variation in population response to a changing climate remain unclear. Field translocation experiments between contrasting environments are a particularly powerful approach for characterizing the extent of genetic and environmental sources of variation in traits influencing population persistence in a changing climate (Kawecki and Ebert 2004, Hoffmann and Sgrò 2011, Nooten and Hughes 2017). Translocation experiments can also be used to describe the role of environmental factors (e.g., temperature) in defining geographic distributions (Case et al. 2005, Gaston and Fuller 2009).

We implemented a reciprocal field translocation experiment to assess MPB response to native and novel environments, and to evaluate the relative roles of genetic effects (g, i.e., variation due to differences in source population), environmental sources of variation (E, i.e., differences due to phenotypic plasticity), and their interaction (gE) in several thermally regulated traits. We used two MPB source populations, one from the core and one from the southern, low-latitude edge of the species distribution (Fig. 1). We also simulated a warming climate by transplanting each population to a warmer, low-elevation Pinus forest near the southern distribution boundary where MPB activity has historically been absent (Gaylord et al. 2006, Lynch et al. 2006, Williams et al. 2008). By comparing the relative fitness of the two source populations in three sites (near the core of the species distribution, near the southern distribution edge, and just beyond the current southern distribution) we investigated (1) the response of two MPB populations to warming temperatures, (2) the potential for population persistence in a changing climate, and (3) the potential for thermal regimes to define the southern MPB distribution boundary and constrain expansion southward. In addition to the field translocation experiment, we evaluated responses of the same two populations in a laboratory common garden to compare responses to fluctuating vs. constant temperatures and relate the results from field and laboratory-based experiments.

Methods

Study system

Except for a short adult dispersal period, the MPB life cycle occurs in the phloem beneath the outer bark of Pinus host trees. Adult emergence and flight typically occur in mid-summer, and following acceptance of a new susceptible host tree, MPB release aggregation pheromones that attract conspecifics. Aggregation and attacks on a single tree that occur within a few days can overwhelm the tree’s resinous defenses, allowing successful entry through the outer bark into the phloem (Raffa
et al. 1993). Synchronous adult emergence from previously infested trees facilitates this mass aggregation (Logan and Bentz 1999). Adults mate and females excavate vertical galleries in the phloem, laying eggs while simultaneously propagating the spores of symbiotic fungi that are carried on the body, in the gut, and in the maxillary mycangia (Whitney 1982, Bleiker and Six 2009). Larvae mine horizontally in the phloem, cutting off nutrient and water transport along the tree bole (Amman 1978), feeding on mycelial growth of the inoculated fungi (Adams and Six 2007), which provides a nutritional benefit to developing larvae (Bentz and Six 2006, Myrholm and Langor 2015). Although the MPB-fungus symbioses are complex and not fully understood, success and survival of both MPB and its fungal associates are enhanced by fungal neutralization of host defenses (Solheim 1995, Six and Wingfield 2010). Although the MPB-fungus symbioses are complex and not fully understood, success and survival of both MPB and its fungal associates are enhanced by fungal neutralization of host defenses (Solheim 1995, Six and Wingfield 2010). Following mating, oviposition and development through at least four instars, MPB typically overwinter as a prepupa before eclosing into an adult that undergoes a maturation period prior to emergence from the tree. A single generation typically requires one year from tree attack to brood adult emergence, although two years (i.e., semivoltine) may be required in cold habitats (Bentz et al. 2014). Seasonally appropriate emergence timing during summer is critical to population success (Logan and Bentz 1999, Safranyik and Carroll 2006). Populations with observed generation times of less than a year (i.e., bivoltine) are rare, and not considered self-sustaining in climates within the current MPB distribution (Bentz et al. 2014, Bentz and Powell 2014, but see Mitton and Ferrenberg 2012).

Temperature is the primary driver of MPB development time, and ultimately adult emergence synchrony and generation time, as it influences development rates, thresholds, and other strategies including diapause that control seasonality (Bentz et al. 1991, Régnière et al. 2012, Bentz and Hansen 2017). Cold temperatures can also have a direct and significant negative impact on population success when cold-hardening acclimation is not sufficient (Bentz and Mullins 1999, Rosenberger 2017). Variation in body size, which can be positively correlated with fecundity and dispersal (Reid 1958, Honěk 1993, Elkin and Reid 2005, but see Amman 1972), can also be influenced by temperature (Amman 1972, Atkinson 1994, Bentz et al. 2011). MPB populations often exhibit female-biased sex ratios, in large part due to differential mortality of males in the larval stages during stressful thermal extremes (Lachowski and Reid 2014, James et al. 2016). MPB has an extensive range in western North America, and field studies showed that some thermally regulated fitness traits (i.e., larval cold-hardening, adult size, time to complete a generation) vary geographically among populations (Bentz and

![Distribution of mountain pine beetle (United States [USDA Forest Service, Regional State and Private Forestry]; British Columbia, Canada [https://www.forestry.gov.bc.ca/tp/HFP/external/publish?Aerial_Oversight]; Alberta, Canada [mountain pine beetle detailed Aerial Survey Data, Forest Health and Adaptation Section, Government of Alberta] and Pinus (Little 1971; https://www.fs.fed.us/database/feis/pdfs/Little/aa_SupportingFiles/LittleMaps.html)) within North America, which includes recent population expansion in British Columbia and Alberta, Canada (right). Design of the field translocation experiment in the southwestern United States (left). Mountain pine beetle were reciprocally translocated between sites in Utah (SU, S?) and Arizona (S) as well as to their original source sites. Mountain pine beetle from both sites were also translocated to a third site (S). Insect groups used in these experiments were designated PAZ and PUT, referring to source populations.

February 2021 TRANSLOCATION REVEALS PERSISTENCE Article e01437; page 3
MPB collection, tree harvest, and bolt infestation

For both field and laboratory experiments, we felled MPB-infested trees on 21 June 2016 from the SUT site and on 4 May 2016 from the SAZ-high site (Table 1). Cut bolts (~46 cm long) were harvested from one tree at each of the SUT and SAZ-high sites. Bolt ends were sealed with paraffin wax and transported to the Rocky Mountain Research Station (RMRS) Laboratory in Logan, UT where they were placed at ambient room temperature to allow adults to emerge naturally. Adult beetles were collected daily and stored in Petri dishes lined with distilled water-moistened filter paper at 4°C for up to approximately 10 d. To rear the next generation of beetles we also harvested three live, healthy trees of the same species at each site, cut them into ~46 cm long bolts, and sealed the cut ends with paraffin wax to retain moisture and deter fungal contamination. Bolts were stored at 4°C for up to 3 weeks. The uninfested experimental bolts from each site were randomized among the three field sites and the two temperatures in the laboratory study.

We determined the sex of emerged adult beetles using the morphologically distinct seventh tergite (Lyon 1958). To avoid potential genetic differences in development time among emerging adults, and to standardize for cohort density, we used beetles that emerged during the time beginning just before and throughout peak emergence from natal bolts. Experimental bolts of the same species were infested by drilling a small hole vertically into the phloem at the anatomical bottom of the bolt, inserting first a female then a male beetle, and stapling a mesh screen over each hole to prevent beetle escape. To minimize potential maternal effects due to host species (Burke and Carroll 2017), P_flexilis were reared in P. flexilis and P_AZ in P. flexilis/ strobus hybrid that were harvested from the same locations as infested bolts (Table 1). Individuals were randomized by sex and mating pairs were infested 6 cm apart, with 10–13 pairs per bolt depending on bolt circumference. Following infestation, bolts were inverted to allow for natural upward gallery excavation. Infested bolts were either transported to field sites or placed in laboratory incubators as described in Field and Laboratory experiments.

Table 1. Field sites and Dendroctonus ponderosae population source locations.

<table>
<thead>
<tr>
<th>Site</th>
<th>Source population</th>
<th>Host tree</th>
<th>Location</th>
<th>Latitude (°N)</th>
<th>Longitude (°W)</th>
<th>Elevation (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUT</td>
<td>P_UT</td>
<td>Pinus flexilis</td>
<td>Logan Canyon, Wasatch-Cache NF, UT</td>
<td>41.9319</td>
<td>111.447</td>
<td>2,204</td>
</tr>
<tr>
<td>SAZ-high</td>
<td>P_AZ</td>
<td>Pinus strobus/ flexilis hybrid</td>
<td>Lockett Meadow, Coconino NF, AZ</td>
<td>35.3586</td>
<td>111.6208</td>
<td>2,604</td>
</tr>
<tr>
<td>SAZ-low</td>
<td></td>
<td></td>
<td>Centennial Forest, Coconino NF, AZ</td>
<td>35.1498</td>
<td>111.7156</td>
<td>2,106</td>
</tr>
</tbody>
</table>

Note: United States Forest Service, National Forest (NF) locations where D. ponderosae populations (P) were collected in Utah (UT) and Arizona (AZ). Collection sites (S) were also used as the field sites for the reciprocal translocation experiment. Live trees for rearing each population were harvested within 4 km of the collection/rearing sites.
Field experiments

Experiment setup.—For the field reciprocal translocation experiment, we enclosed infested bolts individually in escape-proof netting (Rothco, MPN 8088) and within 24 h of infestation, suspended each bolt ~1 m above the ground in wooden A-frame structures with metal covers at each location (Table 1; Appendix S1: Fig. S1). Prior to infestation bolts were randomly distributed to their respective treatment groupings. Nine bolts infested with the PUT population and nine bolts infested with the PAZ population (18 bolts total per site) were placed at each of the three sites (54 bolts total). Bolt location was randomized among three A-frame structures at each site such that there was an equal number of PUT and PAZ infested bolts per A-frame (six bolts per structure) (Appendix S1:: Fig. S1). Field experiments were initiated as follows: SUT on 30 July 2016; SAZ-high on 10 August 2016; SAZ-low on 11 August 2016.

To capture thermal conditions at each field site, temperature probes were inserted into the phloem on the south aspect of each infested bolt and temperatures were recorded hourly over the duration of MPB development and emergence (i.e., August 2016 to August 2017; CR1000, Campbell Scientific, Logan, Utah, USA). To describe environmental effects, growing degree hours (GDH) >10°C and <0°C (i.e., cumulative heat and cold units) and weekly maximum and minimum temperatures were calculated for each bolt beginning on 12 August 2016.

MPB collection and trait measurements.—Adult brood emergence at each site was monitored at least twice weekly throughout emergence and daily during the weeks of peak emergence. We collected individuals by bolt and transported them on ice to either Northern Arizona University, Flagstaff, AZ, or the RMRS Laboratory in Logan, UT. Generation time for each individual was calculated as the time difference between bolt infestation and brood adult emergence. Generation time includes the time duration for mating, oviposition, egg, larval, pupal, and teneral adult (pre-emergent) development, in addition to a facultative prepupal diapause. We considered generation time resulting in seasonally appropriate (i.e., summer) adult emergence to represent higher relative fitness than a generation time resulting in aseasonal emergence. Adult emergence synchrony is important to successful mass attacks and colonization of new host trees (Logan and Bentz 1999). We define emergence synchrony as the standard deviation in generation time across all individuals of a population at a site, where a lower standard deviation suggests greater emergence synchrony and therefore greater fitness (see Statistical Analyses). Reproductive success, a direct measure of fitness representing number of offspring produced, was calculated as the number of emerged brood adults per bolt divided by the number of successful galleries within the bolt, thereby compensating for uneven mating success and subsequent brood production among bolts. A parent gallery was considered successful (and therefore included in the count) if the gallery length was greater than 10 cm (Eidson et al. 2018), assuming that galleries less than 10 cm were the result of failed copulation by the inserted mating pair. The subset of bolts sampled for cold-hardening were not included in the determination of reproductive success, as the removal of larvae altered the number of emerged brood.

To measure larval cold-hardening, individual larvae were collected from three infested bolts per population at each field site three times throughout the annual generation: (1) late November/early December 2016, (2) late January/early February 2017, and (3) late March/early April 2017. To account for temperature variability due to bolt aspect, we randomly sampled MPB larvae on three aspects (north, southwest, and southeast) along the bolt circumference, with each population at each site sampled from all three aspects (one aspect per bolt) each sampling period. To extract larvae, the outer bark and phloem were removed using a 15-cm hole saw, and the wound was sealed with paraffin wax. Larvae were placed in Petri dishes with filter paper and transported directly or overnight-shipped on ice to the RMRS Laboratory in Logan, UT. Larval instar was determined based on head capsule width (PUT: Logan et al. 1998; PAZ: B. J. Bentz, unpublished data).

Supercooling points (i.e., the temperature of hemolymph crystallization; Lee 1989) of larvae were analyzed within 24 h of collection. Supercooling points of collected larvae were measured following the protocol of Bentz and Mullins (1999). Briefly, the temperature of individual larvae was monitored while the environmental temperature was lowered at a rate of ~1.5°C/minute. The supercooling point of each larva was estimated as the lowest recorded temperature prior to tissue freezing, which was observed as an increase in temperature (≥0.5°C) caused by the exothermic latent heat of crystallization. MPB typically has four larval instars prior to pupation, and we observed some combination of larval instars 2, 3, and 4 in cold-hardening samples taken in the fall, winter and spring at each site. No other life stages were observed during sampling for this study. To assess population source and environmental differences in life stage development, we calculated a “developmental index” by averaging instar number (i.e., instars 2, 3, 4) across all observed individuals at each field site and seasonal sampling period.

Adult pronotal width was measured and sex determined (Lyon 1958) for 6,251 individuals (65% of total emerged brood adults). Individuals were collected for sex determination and size measurement at least every 4 d, and every 2 d during peak emergence. We measured pronotal width as a proxy for size (Kozol et al. 1988) using an ocular micrometer to the nearest 0.01 mm.
Laboratory experiments

We reared each population in laboratory incubators at a constant 18°C and 25°C with a 12 h:12 h photoperiod (Appendix S1: Fig. S2). Optimal larval development in the laboratory occurs at ~25°C for PdT (Régnière et al. 2012) and ~27°C for PAZ (McManis et al. 2018). 18°C was used because it is the lowest temperature, in either population, where the majority of individuals can develop directly to the adult stage without induction of a facultative prepupal diapause (Bentz and Hansen 2017). Induction of the prepupal diapause would delay development, and because the two populations differ in diapause intensity (Bentz and Hansen 2017), the developmental delay would generate confounding differences between the populations. Four infested bolts of each population were reared at 18°C and three bolts for each population were reared at 25°C. Adult emergence from individual bolts was monitored daily. Generation time for each individual brood adult and reproductive success per bolt were measured as described in *Field experiments*. Sex and pronotal size (mm) of 1,532 individuals (31% of total emerged brood adults) were measured as described above, collected from a weekly random population subsample.

Statistical analysis

We tested for differences in fitness traits due to genetic (i.e., g, source population), environmental (i.e., E, rearing site/temperature), and genetic-by-environmental interaction (i.e., gE) effects. Our model is hierarchically structured with normal distributions and is described as follows:

\[
\gamma_{ijkl}^{(m)} = g_{ik}^{(m)} + E_{jk}^{(m)} + gE_{jk}^{(m)} + e_{ijkl}^{(m)}
\]

where \(g_{ik}^{(m)}\) represents the genetic effect of the \(i\)th population in the \(k\)th bolt for the \(m\)th trait, \(E_{jk}^{(m)}\) represents the environmental effect of the \(j\)th environment in the \(k\)th bolt for the \(m\)th trait, \(gE_{jk}^{(m)}\) is the interaction between the genomic effect of the \(i\)th population in the \(k\)th bolt and the environmental effect of the \(j\)th environment in the \(k\)th bolt for the \(m\)th trait, and \(e_{ijkl}^{(m)}\) is the residual error associated with the \(j\)th observation of the \(k\)th bolt of the \(j\)th population in the \(i\)th environment for the \(m\)th trait.

The model parameters \(g, E, \text{ and } E\) were drawn from normal distributions centered around the mean and estimated variances of our data. Specifically

- \(\mu_{g_{ik}}^{(m)} \sim \text{Normal}(\mu_g, \sigma_g^2)\)
- \(\mu_{E_{jk}}^{(m)} \sim \text{Normal}(\mu_E, \sigma_E^2)\)
- \(\mu_{gE_{jk}}^{(m)} \sim \text{Normal}(\mu_{gE}, \sigma_{gE}^2)\).

The model parameters were given normal, uninformative priors with wide distributions. Specifically

\[
\mu_{g_{ik}}^{(m)}, \mu_{E_{jk}}^{(m)}, \mu_{gE_{jk}}^{(m)} \sim \text{Normal}(0, 1,000).
\]

With the exception of the variance parameters, which were given modest, Student \(t\) prior distribution. Specifically

\[
g\sigma^2, E\sigma^2, gE\sigma^2 \sim \text{Student}(0.10).
\]

We conducted all analyses in R version 3.3.2 (R Core Team 2018) by computing Bayesian hierarchical models (accounting for variation between bolt replicates) for all fitness traits via Markov chain Monte Carlo (MCMC) sampling. Packages rstanarm (Gabry and Goodrich 2016) and brms (Bürkner 2017, 2018) were used to compute four MCMC chains for 2,000 iterations, discarding the first 1,000 iterations as burn-in and sampling each iteration thereafter. All models were checked graphically for convergence and Rhat (\(\hat{r}\)) values (i.e., the Gelman-Rubin convergence diagnostic (Gelman and Rubin 1992)), a ratio of variation within and between MCMC chains, were equal to 1, indicating thorough MCMC sampling and convergence of the posterior distributions.

To evaluate synchrony in the timing of adult emergence (i.e., the absolute value of the number of days wherein 1 standard deviation of a population has emerged), we used the posterior distribution of the standard deviation of the generation time parameter (see Bolstad and Curran 2016). Generation times of all individuals within a population at a site were used, and a lower standard deviation implied greater emergence synchrony and therefore greater fitness.

Using Bayesian MCMC estimates, a median estimate and quantified uncertainty were derived for each model parameter. The median effect size (ES) and 95% Bayesian credible intervals (CI\textsubscript{Bayes}) were then calculated as the median difference in model parameter estimates between populations, bounded by the range of values indicating the equal-tail 95% credible interval of the true parameter estimate, given the data. ES describes the magnitude of difference between populations, and the marginal probability (MP) is the probability that a population’s fitness trait estimate is statistically different (greater or less than, given the direction of the ES) than the comparison population. MP was estimated by calculating the total number of parameter MCMC estimates greater (or less) than the test comparison, divided by the total number of MCMC estimates. In the results, differences between source populations are considered significant or credible when MP > 95% (Ellison 2004).

Results

Field site temperature profiles

As expected, based on GDH heat and cold units (Fig. 2a) and observed maximum and minimum phloem
temperatures (Fig. 2b), S_AZ-low was the warmest site and S_UT the coldest (Appendix S2: Table S1). On average, phloem temperatures at S_AZ-low were warmer than S_UT in the summer (3.3°C), fall (4.8°C), winter (8.0°C), and spring (6.5°C). Overall, S_AZ-low was an average of 5.5°C warmer than S_UT across the duration of the study. Within sites, bolt phloem temperatures did not differ between populations with respect to heat and cold units (Appendix S2: Table S2).

Reproductive success

In the field experiment, we found genetic effects on reproductive success, except at S_AZ-high (Fig. 3a; Table 2). P_PUT reproductive success was greater than P_PAZ when reared at its native site (S_UT), but P_PAZ reproductive success was not different from P_PUT reproductive success at S_AZ-high (Table 2; Appendix S3: Table S1). Both P_PUT and P_PAZ had greater reproductive success at S_AZ-low, the warmer and lower elevation out-of-range site, than at their natal sites. In the field, there were environmental effects for both populations, with the exception of P_PUT reared in S_AZ-high. Both populations had increased success at S_AZ-low relative to S_AZ-high, and the southern population had a decrease in reproductive success at S_UT relative to S_AZ-high. The range of environmental effects on reproductive success were greater in P_PAZ (effect size = 6.98 to 15.21) than P_PUT (effect size = -0.36 to 4.52), and also greater than genetic effects (effect size = -0.34 to 6.28) (Table 2). In the laboratory reproductive success of both populations was greater at 18°C compared to 25°C (Fig. 4a; Table 3; Appendix S3: Table S2).

Generation time

For both populations at all field sites adult emergence occurred at seasonally appropriate times in the summer (Fig. 5). P_PUT at the S_AZ-low site was the earliest to emerge (median = July 24, 2017) and P_PAZ at the S_UT site was the latest to emerge (median = August 28, 2017). Generation time, even at the warmest site (S_AZ-low), required ~ one year from the time bolts were infested and placed at each site. Bivoltinism (i.e., two generations in a single year) was not observed at any site. Sites were checked periodically between December and June, and the first observed adult emergence occurred on 27 June at the warm S_AZ-low site, with median emergence at this site on 24 July. Therefore, the fastest generation time for an individual was 322 d, although the median time was 349 d.

We observed genetic differences in generation time in both the field and laboratory experiments. In the field experiment, P_PAZ developed slower than P_PUT at all sites (median difference 10.5–15.7 d; Fig. 3b; Table 2; Appendix S3: Table S1), and P_PAZ also developed slower than P_PUT at both 18°C and 25°C in the laboratory experiment (median difference 15.7–39.2 d; Fig. 4b; Table 3; Appendix S3: Table S2). The slower P_PAZ generation time was associated with larger male and female adult progeny size in both the field and laboratory (Figs. 3, 4; Appendix S4: Fig. S1, Tables S2, S3). Adults of both populations were larger at 18°C compared to 25°C in the laboratory (Appendix S4: Fig. S1; Table S3).

Environmental effects on generation time were also observed in both populations in the field and laboratory experiments. In the field experiment, the median generation time of P_PUT was 35 d faster at the S_AZ-low site and 29.3 d faster at S_AZ-high than at S_UT, and 5.7 d faster at S_AZ-low than S_AZ-high (Table 2; Appendix 3: Table S1). P_PAZ median generation time was 31.1 d faster at S_AZ-low and 31.7 d faster at S_AZ-high than at S_UT. P_PUT generation time differed between the two warmest sites, S_AZ-high and S_AZ-low, but P_PAZ generation time did not differ between
these sites (Table 2). P_{UT} generation time was also different between 18°C and 25°C in the laboratory experiment, but P_{AZ} generation time did not differ (Table 3; Appendix 3: Table S2). Our results demonstrate both genetic and environmental effects on generation time. Environmental effects observed between the coldest and warmest sites (effect size = 29.3–35.0) were two to three times greater than genetic effects (effect size = 10.5–15.7). Genetic-by-environment interactions were only different between the warmer S_{AZ-high} and S_{AZ-low} sites and 18°C and 25°C laboratory temperatures (Tables 2, 3).

Emergence synchrony

In the field experiment, emergence synchrony (i.e., low standard deviation) was greatest for P_{AZ} at the S_{UT} site, and the least in P_{AZ} at S_{AZ-low} (Fig. 3c; Table 2; Appendix S3: Table S1). Effects due to the environment were only observed for P_{AZ}, which was less synchronous at S_{AZ-high} and S_{AZ-low} than at S_{UT}. Genetic effects on emergence synchrony were observed at all sites, with P_{UT} showing less emergence synchrony than P_{AZ} at S_{UT}, but greater emergence synchrony at both S_{AZ-high} and S_{AZ-low} than P_{AZ}. In the laboratory study, genetic effects in emergence synchrony were also observed, although in this setting P_{UT} exhibited environmental effects between 18° and 25°C while P_{AZ} synchrony was not different between these two temperatures (Fig. 4c; Table 3; Appendix S3: Table S2). Emergence synchrony was greater in the field experiment for both populations relative to the laboratory experiment. In the field experiment, genetic effects on P_{UT} emergence synchrony were
Table 2. Field experiment Bayesian model fitness trait comparison estimates: reproductive success, generation time, emergence synchrony, and supercooling point.

<table>
<thead>
<tr>
<th>Field experiment population, and site</th>
<th>Reproductive success (no. emerged)</th>
<th>Generation time (d)</th>
<th>Emergence synchrony (SD d)</th>
<th>Supercooling point (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ES (95% CI<sub>Bayes</sub>) MP (%)</td>
</tr>
<tr>
<td>Environment (E)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUT vs. PAZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAZ-low vs. SAZ-high</td>
<td>4.15 (0.46, 7.69) 98.5</td>
<td>−5.7 (−8.5, −2.8) 100</td>
<td>0.11 (−0.20, 0.43) 75.6</td>
<td>7.30 (3.28, 11.75) 100</td>
</tr>
<tr>
<td>SAZ-high vs. SUT</td>
<td>−0.36 (−0.36, 3.90) 56.6</td>
<td>−29.3 (−32.3, −26.3) 100</td>
<td>−0.14 (−0.49, 0.20) 79.5</td>
<td>0.00 (−0.05, 0.05) 71.1</td>
</tr>
<tr>
<td>SAZ-low vs. SUT</td>
<td>4.52 (1.62, 7.32) 100</td>
<td>−35.0 (−38.0, −32.1) 100</td>
<td>−0.04 (−0.33, 0.27) 59.4</td>
<td>−0.00 (−0.05, 0.05) 99.9</td>
</tr>
<tr>
<td>PAZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAZ-low vs. SAZ-high</td>
<td>8.21 (5.39, 10.99) 100</td>
<td>−0.5 (−3.3, 2.3) 62.4</td>
<td>0.27 (−0.03, 0.58) 96.5</td>
<td>5.00 (0.79, 9.01) 98.7</td>
</tr>
<tr>
<td>SAZ-high vs. SUT</td>
<td>6.98 (4.37, 9.48) 100</td>
<td>−31.1 (−34.0, −28.3) 100</td>
<td>2.31 (1.88, 2.39) 100</td>
<td>4.05 (−0.24, 8.20) 96.9</td>
</tr>
<tr>
<td>SAZ-low vs. SUT</td>
<td>15.21 (12.54, 17.90) 100</td>
<td>−31.7 (−34.5, −28.6) 100</td>
<td>2.41 (2.14, 2.69) 100</td>
<td>9.08 (4.78, 13.3) 99.9</td>
</tr>
<tr>
<td>Source population (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUT vs. PAZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUT</td>
<td>6.28 (3.71, 9.24) 100</td>
<td>−12.4 (−15.3, −9.2) 100</td>
<td>1.50 (1.22, 1.79) 100</td>
<td>−3.78 (−7.85, 0.59) 96.2</td>
</tr>
<tr>
<td>SAZ-high</td>
<td>−0.34 (−3.98, 3.57) 57.0</td>
<td>−10.5 (−13.4, −7.7) 100</td>
<td>−0.78 (−1.10, −0.45) 100</td>
<td>−6.72 (−10.95, −2.65) 99.7</td>
</tr>
<tr>
<td>SAZ-low</td>
<td>−4.42 (−7.22, −1.58) 100</td>
<td>−15.7 (−18.7, −12.9) 100</td>
<td>−0.94 (−1.23, −0.66) 100</td>
<td>−4.42 (−8.49, −0.20) 98.1</td>
</tr>
<tr>
<td>Relative environmental effects (gE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUT vs. PAZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAZ-high</td>
<td>−4.10 (−8.68, 0.42) 96.3</td>
<td>−5.2 (−9.3, −1.1) 99.7</td>
<td>−0.17 (−0.61, 0.26) 73.2</td>
<td>2.27 (−3.22, 8.37) 78.9</td>
</tr>
<tr>
<td>SAZ-low</td>
<td>−6.48 (−11.03, −2.05) 99.9</td>
<td>1.8 (−2.1, 6.0) 81.0</td>
<td>−2.28 (−2.72, −1.85) 100</td>
<td>−2.99 (−9.00, 3.00) 85.1</td>
</tr>
<tr>
<td>SUT</td>
<td>−10.64 (−14.58, −6.80) 100</td>
<td>−3.3 (−7.6, 0.8) 94.6</td>
<td>−2.44 (−2.86, −2.04) 100</td>
<td>−0.66 (−4.46, 5.23) 59.2</td>
</tr>
</tbody>
</table>

Notes: Field experiment Bayesian model estimates testing the genetic (g; PUT, PAZ), environmental (E; SAZ-low, SAZ-high, SUT), and genetic-by-environmental (gE) effects of mountain pine beetle fitness traits of reproductive success (number emerged per successful gallery), supercooling point, generation time (time from infestation to emergence), emergence synchrony (defined as the standard deviation of generation time), and supercooling point. The median effect size (ES) and 95% Bayesian credible intervals (CI_{Bayes}) are shown. The marginal probability (MP) is the probability that pairwise comparisons are statistically different, given the direction of the ES. Values in bold represent comparison estimates that are credibly different (MP > 95%).
greater than environmental effects, although environmental effects were greater than genetic effects in P_{AZ} (Table 2). Genetic-by-environment interactions were different between all field and laboratory contrasts, except between the warmer field sites S_{AZ-low} and S_{AZ-high} (Tables 2, 3).

FIG. 4. Fitness trait reaction norms of two mountain pine beetle populations, P_{UT} and P_{AZ}, when reared in the laboratory at two constant temperatures (18°C and 25°C) and a 12 h:12 h photoperiod. Shown are the mean (and 95% CI_{Bayes} for emergence synchrony) model estimates among four bolts per population at 18°C and three bolts per population at 25°C. Asterisks are shown where genetic differences (i.e., due to source population) were credibly different (>95% MP) at a laboratory temperature (see Table 3). Panels present mountain pine beetle fitness traits of (a) reproductive success, (b) generation time (time from infestation to emergence), and (c) emergence synchrony (defined as standard deviation of generation time).

TABLE 3. Laboratory experiment Bayesian model fitness trait comparison estimates: reproductive success, generation time, and emergence synchrony.

<table>
<thead>
<tr>
<th>Laboratory experiment</th>
<th>Reproductive success (no. emerged)</th>
<th>Generation time (d)</th>
<th>Emergence synchrony (SD d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ES (95% CI_{Bayes})</td>
<td>MP (%)</td>
<td>ES (95% CI_{Bayes})</td>
</tr>
<tr>
<td>Population Temperature (°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUT 25 vs. 18</td>
<td>-5.94 (−10.37, −1.76)</td>
<td>99.4</td>
<td>-24.1 (−31.1, −18.6)</td>
</tr>
<tr>
<td>PAZ 25 vs. 18</td>
<td>-3.95 (−7.99, −0.12)</td>
<td>97.9</td>
<td>-1.3 (−8.0, 5.1)</td>
</tr>
<tr>
<td>Source population (g)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUT vs. PAZ 18</td>
<td>-1.13 (−4.97, 2.76)</td>
<td>72.4</td>
<td>-15.7 (−21.8, −9.7)</td>
</tr>
<tr>
<td>25</td>
<td>-3.18 (−7.48, −1.29)</td>
<td>91.8</td>
<td>-39.2 (−45.8, −32.6)</td>
</tr>
<tr>
<td>Relative environmental effects (gE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUT vs. PAZ 25 vs. 18</td>
<td>2.05 (−3.72, 7.82)</td>
<td>75.1</td>
<td>-23.6 (−32.8, −14.2)</td>
</tr>
</tbody>
</table>

Notes: Laboratory experiment Bayesian model estimates testing the genetic (g; P_{UT}, P_{AZ}), temperature (E; 18°, 25°C), and genetic-by-environmental (gE) effects of mountain pine beetle fitness traits of reproductive success (number emerged per successful gallery), generation time (time from infestation to emergence), and emergence synchrony (defined as the standard deviation of generation time). The median effect size (ES) and 95% Bayesian credible intervals (CI_{Bayes}) are shown. The marginal probability (MP) is the probability that pairwise comparisons are statistically different, given the direction of the ES. Values in bold represent comparison estimates that are credibly different (MP > 95%).
Cold-hardening

Samples of both PUT and PAZ contained a majority of fourth instars in the fall and winter samples at SAZ-low (Fig. 6; Appendix S5: Table S1). A majority of fourth instars was not observed at the SUT and SAZ-high sites until the spring sample. Development was therefore faster for both populations at the warmest site, SAZ-low, and both populations overwintered at this site as a 4th instar. Overwinter life stages were a mix of third and fourth instars at the two cooler sites. PUT supercooling points were well below minimum temperatures at the three field sites (Appendix S5: Fig. S1). By contrast, PAZ supercooling points were closer to winter minimum temperatures, particularly at the SUT site. Female proportion in the PUT population was greater at the coldest site (SUT) compared to the intermediate temperature site (SAZ-high), and the same trend was observed in the PAZ population (Appendix S5: Fig. S3; Tables S3, S4).

In the fall samples, supercooling points of PUT instar 3 and instar 4 were different at the SAZ-high and SUT sites, and among all PAZ instars at the SUT site (Appendix S5: Table S2). There were no differences in supercooling points among the instars in the winter and spring 2017 sample periods at all sites (Appendix S5: Table S2). We analyzed genetic and environmental sources of variation on cold-hardening using only winter samples, and all individuals in these samples were pooled by site and population.

Based on winter samples, we found genetic variation in supercooling points at all sites, with PAZ supercooling points higher than PUT at all sites (Fig. 3d; Table 2). Environment also had an effect, and for both populations supercooling points were the lowest at the coldest site (SUT) and highest at the warmest site (SAZ-low), although no difference in supercooling point was observed for PUT between SAZ-high and SUT. Genetic-by-environment interactions were not different. The effect sizes of genetic (3.78–6.72) and environmental (4.05–9.08) sources of variation in cold-hardening were similar (Table 2).

DISCUSSION

Predicting responses to climate change remains a central challenge in ecology, particularly for impactful species such as MPB that have the potential to affect large geographic regions. Understanding and ultimately predicting such responses requires the use of controlled experiments that tease apart specific trait-based responses to environmental changes. Here we used a reciprocal translocation experiment to mimic a changing climate and characterize the fitness response of MPB populations in a single generation. In general, we found that MPB populations are highly resilient to single-generation changes in climate regimes, displaying sustained or amplified reproductive success, with trait variation attributable to both population genetic differences and environmental plasticity.
Reproductive capacity and climate change

Our findings demonstrate that MPBs originating from high-elevation sites in the core (P_{UT}) and southern (P_{AZ}) areas of its range are capable of reproducing with synchronous, univoltine, and seasonally appropriate adult emergence when reciprocally translocated. Reproductive success combined with seasonally appropriate adult emergence in the reciprocal environments indicates that both populations are capable of survival and reproduction in novel climates. P_{AZ} had greater reproductive success (20.5 adults per gallery) in its warmer natal environment than in the colder reciprocal environment (13.6 adults per gallery), suggesting local adaptation, although P_{UT} reproductive success was similar (17.9 adults per gallery; Fig. 3a). Most importantly, both populations had their greatest reproductive success at the warmest site that was at a lower elevation than the current MPB range in AZ. The warm out-of-range site was on average 5.5°C warmer than the coldest study site, which is greater than the projected mean temperature increase in Pinus and MPB habitat through 2040 (see Bentz et al. 2019). These results suggest persistence and potentially increased MPB population success under warming climatic conditions that provide similar seasonal patterns as our study sites.

Despite favorable thermal conditions and suitable host trees, MPB activity has been historically absent at warm, low-elevation sites in AZ (McHugh et al. 2003, Gaylord et al. 2006, Lynch et al. 2006, Williams et al. 2008), suggesting that factors other than direct temperature effects are operating at low-elevations at the southern U.S. edge of the species range. While abiotic factors are considered important to expansion of species northern range boundaries (MacArthur 1972, Brown et al. 1996, Normand et al. 2009), biotic factors have been suggested mechanisms that constrain species range limits near southern boundaries (Kaufman 1995, Sax 2001, Gross and Price 2008). For MPB, these biotic factors may include resource competition (Berryman 1974, Coulson 1979, Rankin and Borden 1991), semiochemical interference with other phloephasic bark beetles (Sánchez-Martínez and Wagner 2002, Negron et al. 2009, Hofstetter et al. 2012), differential impacts of temperature on the symbiotic fungal community (Six and Bentz 2007, Moore and Six 2015), insect (Reeve 1997, Turchin et al. 1999) and avian predation (Steeger et al. 1998), host tree growth and vigor (Raffa and Berryman 1982), and host tree chemistry that can inhibit MPB development and aggregation pheromone synthesis (Erbilgin and Raffa 2000, Franceschi et al. 2005). Assessing these interactions, specifically the role of competition among phloephasic bark beetles in attack and colonization of southwestern type ponderosa pine, warrants further investigation.

Generation time and diapause

As expected for ectotherms, generation time was dramatically affected by temperature in our field and laboratory experiments, with effect sizes of 3–4 weeks in several contrasts. Both genetic and environmental variation influenced generation time, although the effect sizes for environmental variation were generally two to three times greater. Both source populations had faster generation times at the warmest relative to coldest field sites, and in the laboratory P_{UT} generation time was fastest at the warmest constant temperature. Genetic factors were also prevalent. P_{UT}, which evolved at the site with the fewest GDH > 10°C, developed faster than P_{AZ} at all three field sites and both temperatures in the laboratory. The evolution of rapid generation times is not
uncommon for species adapted to cold habitats (Sgrò et al. 2016). The patterns we observed are also consistent with counter-gradient variation wherein genetic influences on a trait oppose environmental influences, thereby minimizing phenotypic change along a geographic gradient (Conover and Schultz 1995). In MPB, the longer generation time of southern populations is likely a result of selection pressure to maintain univoltinism (Logan and Bentz 1999, Bentz et al. 2014). PAZ adults were also larger than PUT adults across all field sites and constant temperatures in the laboratory, which is consistent with the hypothesis that longer development time should produce larger adult size (Roff 1992), although we cannot rule out nutritional affects due to the host tree. Generation time and adult size are also influenced by MPB fungal symbionts (Bentz and Six 2006, Bleiker and Six 2014), which may have been lost or gained in shifts to the novel environments. A better understanding of fungal associates of the two MPB populations and their resiliency to thermal changes is needed.

The greatest difference in generation time between the two populations occurred at the warm, out-of-range site where PUT generation time was almost 16 d faster than PAZ. The genetic-by-environment interactions between the two warmest field sites and the two laboratory temperatures also highlights the differential responses of PUT and PAZ to the warmest environment. In contrast to the evolved rapid generation time of PUT, PAZ evolved at a relatively warm site where a relaxed generation time is considered an adaptation for maintaining seasonality (Bentz et al. 2001, Bracewell et al. 2013, Bentz et al. 2014). Instead of reducing generation time, warming can maintain or increase the time required to complete a generation in populations such as PAZ with plastic physiological responses that include diapause (Forrest 2016, Buckley et al. 2017). Diapause is a common trait for maintaining synchrony, and one that is often locally adapted (Denlinger 2002).

Differences in induction cues and the intensity of a facultative prepupal diapause have been previously shown for northern UT and central AZ MPB populations, suggesting local adaptation for this trait that is induced by cool temperatures and serves to reduce the probability that the cold-intolerant pupal stage will occur during winter (Bentz and Hansen 2017, Bleiker and Smith 2019). Results from our translocation experiment, however, suggest that this prepupal diapause is likely not driving the observed heritable variation in generation time or the lack of PAZ plasticity at the warmest sites. At the warmest site both populations overwintered as majority late-stage larvae or prepupa and remained in these stages at least through our last sample date in early April, most likely in diapause. Moreover, northern UT MPB populations have a greater diapause intensity and duration than central AZ beetles (Bentz and Hansen 2017), suggesting that generation time in PUT individuals would have been longer if prepupal diapause was the delaying factor. Heritable differences in generation time between the source populations in our translocation experiment must instead occur in either the pupal or terminal adult life stage. McManis et al. (2018) found few differences in egg and larval development times between central AZ and northern UT populations in a laboratory environment, and observed that central AZ pupae developed at warmer temperatures than northern UT pupae. Pupal development of AZ populations at a warmer temperature would tend to speed up rather than slow down generation time at the warmer sites. Therefore, we concur with McManis et al. (2018) that the likely life stage responsible for delayed generation time in PAZ, relative to PUT, is the teneral adult.

An obligatory or facultative reproductive diapause in the adult is common among Coleoptera and other Curculionidae species occurs during winter. An adult winter diapause in D. ponderosae was suggested by Lester and Irwin (2012), but has not been verified. A winter adult diapause would not, however, explain the generation time differences we observed between the two populations in our study, as both overwintered as late-stage larvae and prepupa. Although it has not been investigated for any Dendroctonus species, summer adult diapause is common among Coleoptera and other Curculionidae species (Masaki 1980). For example, optimal summer adult diapause developmental temperatures in the weevil Hypera brunneipennis were in the range of 20–25°C (Madubunyi 1978). In another example, locally adaptive adult diapause was observed in the moth Mamestra brassicae, where summer diapause was virtually absent in northern populations and both its incidence and duration increased in populations at southern locations (Masaki 1980). Our results suggest that MPB has a previously unidentified teneral adult summer diapause that is manifest in the PAZ, but not PUT populations. Genetic-by-environment interactions that also support this hypothesis include (1) in the field, PAZ generation time did not differ between the two warmest sites, although PUT generation was accelerated at the warmest site; (2) in the laboratory, PAZ generation time did not differ between the two constant temperatures, but PUT generation time was accelerated at the warmest temperature; and (3) in the laboratory, PAZ generation time did not vary across temperatures but PAZ adult size was larger at 18°C compared to 25°C. This result suggests that a warm temperature-induced diapause delayed PAZ adult development but did not affect its size, similar to a phenomena observed in grasshoppers (Buckley et al. 2015). An evolved adult summer diapause that serves to relax development time during long growing seasons, thereby maintaining univoltinism as we observed, could be maladaptive if a reduction in generation time is more advantageous as climate warms (Forrest 2016).
Emergence synchrony

Synchrony of adult emergence from brood trees is critical to successful MPB mass attacks on trees (Logan and Bentz 1999, Safranyik and Carroll 2006). Variation in emergence synchrony was influenced by source population in both the field and laboratory experiments. Emergence synchrony of PUT was less (i.e., greater standard deviation) than PAZ at the coolest site and also at the coolest temperature (18°C) in the laboratory. PUT emergence synchrony was not influenced by environmental variation among field sites but, in the laboratory emergence synchrony, declined at 18°C relative to 25°C. The opposite trend was observed for PAZ where environmental variation did not influence synchrony in the laboratory, but did in the field. In the laboratory, low emergence synchrony in PUT at 18°C could be due to a portion of the population entering the facultative prepupal diapause, whereas 18°C is above the upper threshold for prepupal diapause induction in PAZ (Bentz and Hansen 2017). If some PUT individuals entered the prepupal diapause in the laboratory and some did not, a larger standard deviation in emergence timing, as was observed, would occur. In PAZ the lack of environmental variation in emergence synchrony in the laboratory mirrors the negligible variation in generation time across temperatures in the laboratory, suggesting, as described above, a role for warm temperature-induced adult diapause. The large differences in genetic and environmental effects on the two populations that differ between the field and laboratory, including greater emergence synchrony in the field relative to the lab, suggest that environmental cues in the field environment are important to synchrony, and that population response to fluctuating vs. constant temperatures differs (Colinet et al. 2015).

Cold-hardening

In recent years, warming temperatures have facilitated MPB persistence at high elevations (Weed et al. 2015, Buotte et al. 2016) and expansion northward in Canada (Carroll et al. 2004, Sambaraju et al. 2012, Goodisman et al. 2018), causing enormous impacts to ecosystem goods and services (Morris et al. 2018). A critical trait affecting such persistence and expansion is cold-hardening, which allows overwintering life stages to survive ambient temperatures well below freezing. Cold-hardening in the MPB involves the production of antifreeze compounds, including glycerol, in response to thermoperiodic cues (Bentz and Mullins 1999, Fraser et al. 2017, Thompson et al. 2019), dynamic processes that occur with high energetic cost (Danks 1987, Lee 1989). Supercooling points in MPB, indicative of the extent of cold-hardening, have been shown to differ geographically among populations in the field (Bentz and Mullins 1999), as has been observed in many other insect species with large geographic distributions (Kukal and Duman 1989, Shintani and Ishikawa 2002, Elkinton et al. 2017). However, studies on the degree of heritability and plasticity for this trait are limited, and absent for MPB. Here we were able to demonstrate, for the first time, that supercooling points in MPBs are influenced both by genetic and environmental factors, with similar effect sizes. In our winter sample, PUT originating from the coldest of the three sites, had supercooling points that were consistently lower than PAZ at all three field sites, indicating an evolved capacity for greater cold-hardening. Genetic adaptation of PAZ to relatively warm winter conditions was evident in its reduced supercooling capacity, compared to PUT, across all sites. Moreover, when compared to the similar reproductive success of the two populations in the laboratory, low reproductive success of PAZ at the coldest site was likely due to inadequate cold-hardening and excess winter mortality. The higher proportion of females in both populations at the coldest site also suggests that males were more susceptible to stressful thermal extremes (Lachowski and Reid 2014, James et al. 2016). Supercooling points in both source populations were consistently highest at the warmest sites illustrating how environmental conditions can dictate facultative metabolic investment in antifreeze compounds (Lee 1989).

Fitness benefits of cold-hardening occur when supercooling points are low enough to allow survival, so the degree of cold-hardening must be considerably lower than the average winter temperatures at a site. Although the relatively high supercooling points in PAZ at PUT did not preclude reproductive success in this particular year, average mid-winter PAZ supercooling points were 2.72°C warmer than the lowest recorded minimum phloem temperature at the SUT site. By contrast, PUT average mid-winter supercooling points were 2.25°C colder than the lowest minimum temperature at the SUT site. This finding indicates that northward movement of PAZ is likely to require adaptive evolution to persist through colder winters. Climate change has already increased minimum temperatures in northern latitudes (Easterling et al. 1997), which will reduce the amount of adaptive evolution necessary for persistence of migrants from warmer climates. PUT supercooling points in the middle of winter at the warmest site were 7.6°C colder than the lowest minimum temperature at that site, reflecting an unnecessary and maladaptive energetic investment in cold-hardening. However, as climate change is also expected to increase temperature variability (Stouffer and Wetherald 2007), apparent overinvestment in supercooling may serve as an adaptive buffer in highly variable years.

Conclusion

Pinus habitat within the MPB range is projected to increase by 1–3°C between the periods 1981–2010 and 2011–2040 depending on season, latitude, and elevation (Bentz et al. 2019). A central question in ecology is how the changing environmental conditions will influence
population persistence and range shifts. Using a reciprocal translocation experiment with populations representative of the core and southern edge of the MPB distribution, we found evidence for local adaptation and extensive plasticity in key fitness traits that will sustain population persistence in these regions as temperatures warm. Our results indicate a low likelihood of MPB extinction with warming temperatures that are within the seasonal thermal regime of our study, as survival followed by natural selection in subsequent generations will facilitate future adaptation to warming environments. However, range retraction of suitable host trees as a result of warming temperatures could affect MPB persistence at its southern range.

Both source populations showed their greatest reproductive success at a site that is at a lower elevation than the current MPB range in AZ, and was warmer than both sources. Absence of MPB activity in the historical records from this low-elevation site suggests that factors other than direct temperature effects are controlling population presence and spread southward in low-elevation *Pinus*. *Pinus* also extend south of the United States into Mexico and Central America, but MPB activity in these areas has been limited or absent. Our results suggest a capacity for MPB to persist with warming in *Pinus* hosts found in the core of its range and high-elevation *Pinus* in its southern range, although migration further south into Mexico may be hampered by the fragmented occurrence of high-elevation pines (Menon et al. 2018). The potential to expand into lower elevation forests at the southern range edge, and further southward, may also be limited, but likely by biotic interactions rather than direct temperature effects.

Neither population developed on a bivoltine lifecycle, even at the warm, low-elevation and out-of-range site where both populations overwintered in the last larval instar prior to pupation. These results support previous studies suggesting that a cold-induced prepupal diapause limits MPB bivoltine lifecycles in habitats with relatively cold winter temperatures (Bentz et al. 2014, Bentz and Powell 2014). Moreover, multiple results from our study suggest that MPBs from the high-elevation AZ site have a warm-induced adult summer diapause that was not manifest in UT beetles and has likely evolved to maintain univoltinism and seasonality in the prolonged growing season at this site. The potential for bivoltinism, therefore, will be dictated by the different cues that induce diapause in the two populations. Loss of seasonality and population success may also occur if diapause cues are disrupted in a warming climate. As warming continues, an understanding of limits to the observed plasticity and genetic variation in multiple traits will be required to project future thermal regimes that maintain seasonality (Bentz et al. 2019) and allow population persistence and expansion.

ACKNOWLEDGMENTS

Jim Vandygriff and Matt Hansen provided assistance with collection of *D. ponderosae*-infested and non-infested trees, laboratory rearing, and field assembly. We thank Dr. Monica Gaylord, Danny DePinte, and John Anhold for their help with field assembly and winter collections in Arizona. We also thank Zach Gompert, Justin Runyon, and Justin deRose for providing comments on an earlier version of the manuscript and to William Pearse for statistical help. The experiment was designed by B. Bentz, K. Mock, and R. Hofstetter. D. Soderberg, R. Bentz, and R. Hofstetter implemented the field experiment and collected data. D. Soderberg conducted the statistical analysis and led the writing of the manuscript with assistance from B. Bentz and K. Mock. We thank USDA Forest Service Rocky Mountain Research Station and the Quinney College of Natural Resources at Utah State University for financial support.

LITERATURE CITED

SUPPORTING INFORMATION

Additional supporting information may be found online at: http://onlinelibrary.wiley.com/doi/10.1002/ecm.1437/full

DATA AVAILABILITY

Additional supporting information may be found online at: Data are available from the Dryad Digital Repository (Soderberg 2020): https://doi.org/10.5061/dryad.bnzs7/b47g.