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ABSTRACT
The existence of a consistent inverse relationship between vegetation
greenness and surface temperature has been the premise of many
environmental studies. However, some authors have found that the
nature of this relationship varies depending on the spatial and tem-
poral scales of analysis as well as vegetation type. Therefore, this
research aims to contribute to the understanding of this matter by
evaluating the annual and intra-seasonal relationship between Leaf
Area Index (LAI) and Land Surface Temperature (LST) in Central Mexico
using monthly anomalies of Moderate Resolution Imaging
Spectroradiometer (MODIS) data collected from 2002 to 2017. LAI is
proposed as an alternative index to overcome the shortcomings of
other widely used indicators of vegetation greenness (e.g. Normalized
Difference Vegetation Index and Enhanced Vegetation Index). The
presence/absence of any relationship is investigated through the
notion of Granger causality, while the sign and strength of the relation-
ship is estimatedbymeansof an Impulse-Response (IR) function. Unlike
traditional regression and correlation analysis, the Granger causality
approach enables the examination of lagged effects of one variable
over the other based on past values of both variables. IR coefficients,
which have been rarely used in the related literature, help tomodel the
over-time response of a variable with the change of another variable.
The overall results indicate that, at any temporal scale, Granger caus-
ality from LST to LAI occurs more consistently than causality in the
opposite direction. At the annual scale, the nature of the relationship is
primarily inverse in both directions and usually weaker from LAI to LST.
At the seasonal scale, the occurrence of LST to LAI causality is higher in
spring (it occurs in about 40% of the evaluated pixels) and lower in
winter (10%) among all forest types. The effect of LST on LAI is pre-
dominantly inverse (median coefficient 1 month after impulse −0.043)
and particularly strong in deciduous broadleaf forest during summer.
On the other hand, the effect of LAI on LST is mainly direct in autumn
and inverse in the remaining seasons, except for evergreen needleleaf
forest where the effect is inverse only in summer. The highest presence
(23%) and strength (−0.039) of LAI to LST causality occur in spring over
deciduous broadleaf forest. Based on these results, caution has to be
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exercised when assuming a consistent strong inverse relationship
between vegetation greenness and surface temperature, which
seems to be the general consensus in much of the literature that
makes use of these two variables to study an environmental
phenomenon.

1. Introduction

Many environmental studies have successfully accomplished their objectives, such as detect-
ing ecosystem disturbances (Mildrexler et al. 2007; Coops, Wulder, and Iwanicka 2009;
Mildrexler, Zhao, and Running 2009), classifying land covers (Ehrlich and Lambin 1996; Roy,
Kennedy, and Folving 1997), identifying land cover changes (Lambin and Ehrlich 1996, 1997),
monitoring drought (Wan, Wang, and Li 2004), or studying urban heat islands (Weng, Lu, and
Schubring 2004), by assuming a constant inverse relationship between vegetation greenness
and surface temperature. This assumption, where vegetation greenness is the cause and
surface temperature is the effect, lies on the fact that increased amounts of vegetation
augment latent heat losses through transpiration, which provokes a reduction in surface
temperature (Goward, Cruickshanks, and Hope 1985). However, some authors have demon-
strated that the nature of this relationship is not always inverse and that it varies depending
on the season, forest type, and spatial scale of analysis (Kaufmann et al. 2003; Zhou et al. 2003;
Liu et al. 2006; Notaro, Liu, and Williams 2006; Julien and Sobrino 2009).

Individually, vegetation greenness, commonly measured by multi-spectral sensors
through spectral indices such as the Normalized Difference Vegetation Index (NDVI),
reveals the conditions of vegetative covers and responds to regional climatic character-
istics (Global Observing System for Climate 2019); while surface temperature, often
acquired from thermal infrared satellite measurements, is defined as the skin temperature
of the ground and is mostly a result of albedo, vegetation cover, and soil moisture (Global
Observing System for Climate 2019; Eagleson 2011). Thus, any fluctuation in climatic
variables, including surface temperature, affects vegetation greenness after a certain
time lag and, in turn, these vegetation changes cause a modification of surface tempera-
ture (Notaro, Liu, and Williams 2006).

This relationship between vegetation greenness and surface temperature has been
examined by comparing single-date datasets through correlation analysis (Goward,
Cruickshanks, and Hope 1985; Kumar and Shekhar 2015) and regression models where
surface temperature is the dependent variable (Yue et al. 2007). These studies have found
a significant inverse relationship. However, multi-temporal studies have revealed more
diverse patterns. By means of regression analysis, Julien and Sobrino (2009) found that in
boreal areas the relationship between NDVI and Land Surface Temperature (LST) is clearly
direct, while in semi-arid areas is clearly inverse. Through correlation analysis that allows
for the examination of non-instantaneous effects of one variable over the other,
Kaufmann et al. (2003) reported that in North America the effect of vegetation on surface
temperature is mostly inverse during summer, generally direct during winter and spring,
and not statistically significant during autumn. Liu et al. (2006) found that vegetation
variability is mostly driven by temperature in northern mid and high latitudes; although,
vegetation also imposes a direct effect on temperature. Similarly, Zhou et al. (2003)
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reported that temperature changes accounted for the largest fraction of NDVI change
between the early 1980s and the late 1990s in North America and Eurasia. Notaro, Liu, and
Williams (2006) described a significant instantaneous influence of temperature on vege-
tation over the United States of America, but also a non-instantaneous direct effect of
vegetation (leading by 1 month) on temperature, especially during spring and over
northern states.

The Granger causality approach has been used to examine the lagged effects of vegeta-
tion greenness on surface temperature or vice versa (e.g. Kaufmann et al. 2003; Wang et al.
2006, 2007; Jiang, Liang, and Yuan 2015; Papagiannopoulou et al. 2017), but the use of
Impulse-Response (IR) coefficients to explore the sign and strength of this relationship is
rare in the literature (e.g. Wang et al. 2007). The Granger causality concept is based on the
idea of predictability. When the interaction is studied from vegetation greenness to surface
temperature, the Granger causality test attempts to predict surface temperature based on
past values of surface temperature and vegetation greenness. If the prediction is improved
after including the vegetation greenness values, then vegetation greenness is said to
Granger-cause surface temperature (Granger 1969; Jiang, Liang, and Yuan 2015;
Papagiannopoulou et al. 2017), but the sign and strength of the causality is not specified.
IR functions can determine the sign and strength by modelling the over-time response of a
variable to an impulse (i.e. change) of another variable based on the Wold Moving Average
representation of a Vector Autoregressive (VAR) Model (Lütkepohl 2005).

Regardless of the methods, most of the studies that have evaluated the relationship
between vegetation greenness and surface temperature, or that have modelled a phenom-
enon using both variables, have employed NDVI (e.g. Ehrlich and Lambin 1996; Roy, Kennedy,
and Folving 1997; Lambin and Ehrlich 1996, 1997; Kaufmann et al. 2003; Zhou et al. 2003;Wan,
Wang, and Li 2004; Wang et al. 2006, 2007; Yue et al. 2007; Julien and Sobrino 2009; Jiang,
Liang, and Yuan 2015; Papagiannopoulou et al. 2017) or Enhanced Vegetation Index (EVI; e.g.
Mildrexler et al. 2007; Coops, Wulder, and Iwanicka 2009; Mildrexler, Zhao, and Running 2009)
as the vegetation indicator. However, these indices have some disadvantages. NDVI is very
sensitive to background brightness in areas with sparse vegetation and saturates in zones
with high biomass, while EVI tends to present relatively low values in all biomes and is
sensitive to topographic conditions (Huete et al. 2002; Matsushita et al. 2007). Therefore,
this study proposes to explore the performance of Leaf Area Index (LAI) as an alternative
vegetation greenness indicator. In coniferous canopies, LAI is defined as the total surface area
of just one half of all needles per unit ground area; while in broadleaf canopies, it is described
as the total one-sided area of all green leaves per unit ground area (Myneni et al. 2002). LAI is
then a measure of the amount of vegetation vertically distributed. It can also be considered a
measure of the surface potentially available for photosynthesis and as a proxy of the three-
dimensional conditions of vegetation.

Thus, this paper aims to contribute to the understanding of the relationship between
vegetation greenness and surface temperature by evaluating the annual and intra-seaso-
nal relationship between LAI and Land Surface Temperature (LST) across forest types of
Central Mexico. On a pixel-by-pixel basis, the presence of any relationship is investigated
through the notion of Granger causality, while the sign and strength of the relationship is
estimated by means of an IR function. The procedures are performed using monthly
anomalies of Moderate Resolution Imaging Spectroradiometer (MODIS) data collected
from 2002 to 2017.
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2. Data and methods

2.1. Study area

The study area comprises all 1-km pixels of the MODIS tile h08v06 that were covered by
forest during at least 1 year between 2002 and 2017 according to the MODIS Terra + Aqua
yearly Land Cover product (MCD12Q1, type 3; Figure 1(a)). These pixels extend over 88,824
km2 and are mainly distributed over the Sierra Madre Occidental (west mountain range) and
Sierra Madre Oriental (east mountain range). The altitudinal range goes from sea level to
3,363 m with a mean of 1,046 m and a standard deviation of 741 m (Figure 1(b)). The slopes
range from 0° to 35° with a mean of 6.9° and a standard deviation of 4.8°.

Tropical climates dominate the region (Figure 1(c)). Forty percent of the study area
experiences tropical climate and 34% semi-tropical, whose mean annual temperatures
exceed 22°C and 18°C, respectively. Temperate climate extends over 13% of the study
area and, in comparison with tropical climates, occurs at higher average elevations where
the mean annual temperature oscillates between 12°C and 18°C. Arid climate is generally
found towards continental areas and extends over 8% of the study area. Semi-cold
climate, whose mean annual temperature oscillates between 5°C and 12°C, occurs at
the highest elevations and covers the remaining 3% of the study area. As for precipitation
regimes, the rainy season (also called ‘the warm half of the year’) of most of the study area
starts in May and ends in October, which coincides with the emergence and senescence of
leaves, respectively (García 2004).

The study area is composed of 61% deciduous broadleaf forest, 35% evergreen broad-
leaf, and 4% evergreen needleleaf (Figure 1(d)). These forests are composed of a broad
range of species (in the order of hundreds). Some of the most frequently found trees are

Figure 1. Study area: location (a), elevation (b), climate types (c), and forest types (d).
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oaks (e.g. Quercus magnoliifolia, Quercus rugosa, Quercus laeta, Quercus sideroxyla), pines
(e.g. Pinus durangensis, Pinus douglasiana), firs (e.g. Abies religiosa, Abies durangensis),
mauto (i.e. Lysiloma divaricatum), white mangrove (i.e. Laguncularia racemose), nance (i.e.
Byrsonima crassifolia), and bay cedar (i.e. Guazuma ulmifolia; CONAFOR 2019).

2.2. Data acquisition and pre-processing

2.2.1. MODIS LST product
The MODIS LST data were downloaded from the Land Processes Distributed Active
Archive Centre (LP DAAC) managed by the National Aeronautics and Space
Administration’s Earth Science Data and Information System (NASA’s ESDIS) project.
Specifically, MODIS Aqua 8-day LST composites (MYD11A2, Collection 6) of the MODIS
tile h08v06 were acquired from 2002 to 2017 at 1-km spatial resolution. Aqua sensor’s
overpass time, at approximately 1:30 pm above the equator, allows it to capture tem-
peratures close to the daily peak. LST estimates are retrieved from the generalized split
window algorithm (Wan and Dozier 1996) or the day/night algorithm (Wan and Li 1997),
which use MODIS Thermal Infrared (TIR) data (Wan et al. 2004) and auxiliary MODIS data,
such as geolocation, radiance, cloud masking, atmospheric temperature, water vapour,
land cover, and snow (Wan 2013). Because TIR signals are not able to penetrate clouds, the
LST retrievals are constrained to cloud-free pixels. Wan (2014) reported that the mean LST
error of Collection 6 (i.e. the latest version of the MODIS LST product) is within ± 0.6 K and
the standard deviation of the validation errors is less than 0.5 K in most validation data
sets, which indicates that Collection 6 is an improvement over Collection 5.

All LST composites were projected to Lambert Conformal Conic projection in ITRF2008
datum and clipped to forested areas. To exclude poor quality retrievals, the LST Quality
Control (QC) layers were unpacked using the Land Data Operational Product Evaluation
(LDOPE) tool. Only LST estimates with an error lower or equal to 2 K were selected to
perform the analysis. Based on these good quality retrievals, monthly anomalies of LST
were calculated on a pixel-by-pixel basis for each month from January 2002 to December
2017. The anomalies were calculated by subtracting the long-term monthly average,
often called climatology, from the monthly means (e.g. anomaly = mean of January
2002—average of all January means of the study period). In order to manipulate the
data in an R environment (R Core Team 2018), all LST anomalies were extracted from the
raster files and rearranged into a comma-separated values (cvs) file, where each row
contains 192 monthly anomalies, which constitute the LST time series of a single pixel.

2.2.2. MODIS LAI product
The MODIS LAI data were also downloaded from the LP DAAC. Specifically, MODIS Terra 8-
day LAI composites (MOD15A2H, Collection 6) of the MODIS tile h08v06 were acquired
from 2002 to 2017 at 500-km spatial resolution. The early Terra sensor’s overpass time, at
approximately 10:30 am above the equator, allows it to capture more reliable LAI
retrievals due to lower cloud presence (King et al. 2013; Yan et al. 2016). MODIS LAI
retrievals are acquired from a radiative transfer model (Knyazikhin et al. 1998) that
accounts for vegetation structure. This main algorithm selects the best LAI estimates by
comparing measured red and near-infrared spectral values with a look-up table com-
posed of observed spectral values of six biome types and their corresponding LAI values. If
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this algorithm fails, a back-up method based on the biome-specific empirical relationship
between NDVI and LAI produces the retrievals (Knyazikhin et al. 1998; Myneni et al. 2002;
Jensen et al. 2011; Yang et al. 2006; Yan et al. 2016); however, in this study only retrievals
from the main algorithm were considered for the analysis.

According to Yan et al. (2016), the latest version of the MODIS LAI product, Collection 6,
is considerably better than Collection 5. Collection 6 properly captures the inter-annual
variation of LAI and the general seasonality of most biomes, except for evergreen broad-
leaf forest, for which incorrect seasonal profiles are produced. This issue has been also
observed in other satellite products, such as the Carbon cYcle and Change in Land
Observational Products from an Ensemble of Satellites (CYCLOPES) and those from the
Global Land Surface Satellite (GLASS), and the Satellite Pour l’Observation de la Terre
(SPOT)-Vegetation GEOV1 system. Therefore, this shortcoming may be difficult to avoid
using remotely sensed data.

All LAI composites were projected to Lambert Conformal Conic projection in ITRF2008
datum, resampled to 1-km spatial resolution to make them compatible with the LST data,
and clipped to forested areas. During the resampling process, the geo-location was pre-
served across data products by snapping the raster environment to the cell alignment of the
LST datasets. The geo-location is well conserved because the 500-m LAI pixels are originally
aligned with the 1-km LST pixels (i.e. one LST pixel perfectly contains four LAI pixels). The LAI
QC layers were also unpacked bymeans of the LDOPE tool and used to select only LAI values
obtained from the main algorithm. Then, similar to the procedure performed on the LST
data, monthly anomalies of LAI were calculated on a pixel-by-pixel basis for each month
from January 2002 to December 2017 and arranged into a cvs file, where each row contains
192 monthly anomalies, which constitute the LAI time series of a single pixel.

2.3. Assessment of the annual and intra-seasonal relationship between LAI and
LST

To assess the annual and intra-seasonal relationship between LAI and LST, 86,405 multi-
variate time series of monthly anomalies of LAI and LST were analysed. These multi-variate
time series consist entirely of good quality estimates (Table 1a). For the annual assess-
ment, all values of the time series were used. For the intra-seasonal assessment, the time
series were reorganized by season: winter (December–February), spring (March–May),
summer (June–August), and autumn (September–November). This means that the three
monthly anomalies of a particular season were joined to the three anomalies occurring
the following year in the same season. Then, the presence of any relationship between LAI
and LST was evaluated in each year-round and season-based multi-variate time series
through the Granger causality test. If any relationship was encountered, its sign and
strength was estimated by means of an IR function.

2.3.1. Evaluation of Granger causality
The statistical models of the Granger causality approach rely on linear specifications.
However, climate-vegetation interactions are non-linear in nature. To solve this incon-
sistency, this analysis is based on anomalies, which represent deviations from the
steady state of the variables and, thus, help to linearly approximate relationships
(Glendinning 1994; Wang et al. 2006). It should be noted that the time series of monthly
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LAI and LST anomalies constitute the input data of this analysis; however, to avoid long
repetitions, the terms ‘monthly’ and ‘anomalies’ may be omitted where the reference is
clear.

In formal terms, this section describes the methodology implemented to evaluate the
causal relationship between time series ofmonthly LAI anomalies at a specific pixel and time
series of monthly LST anomalies at the same pixel. The existence of causality is examined in
both directions. When the interaction is studied from LAI to LST, the test attempts to
forecast LST, at a given time, based on past values of LST and LAI. If the prediction of LST
is improvedwhen the LAI values are included as predictors, then LAI is said to Granger-cause
LST. When the interaction is tested from LST to LAI, the logic is inverse. In both cases, if
causality is found, the result should be interpreted as ‘predictive causality’ rather than ‘true
causality’ (Jiang, Liang, and Yuan 2015; Papagiannopoulou et al. 2017).

A limitation of the Granger causality method is that it cannot be applied to non-
stationary time series (i.e. those whose statistical properties, such as mean and variance,
do not remain constant over time; Nason 2006) because they are unpredictable and, as a
result, cannot bemodelled or forecasted (Iordanova 2009). Therefore, prior to examining the
causal relationship, a Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test was applied to all LAI
and LST time series using the ‘urca’ R package (Pfaff 2008a). The KPSS test examines the null
hypothesis of stationarity around a linear trend at 0.05 significance level (Kwiatkowski et al.
1992). Only stationary time series were considered for the analysis (Table 1b).

Vector Autoregressive (VAR) models were used to derive the predictions required to
examine the Granger causality. VAR models are an extension of univariate autoregression
models useful to explain and forecast the dynamic behaviour of multi-variate time series
(Zivot and Wang 2006). The pixels containing stationary time series of both LAI and LST
(Table 1b) were selected to obtain VAR models, which were computed, as well as the rest
of the statistical functions of this section, by means of the ‘vars’ R package (Pfaff 2008a,

Table 1. Multi-variate time series that meet the following required criteria: (a) entirely constituted by
good quality estimates, (b) stationarity in both variables LAI and LST, and (c) absence of serial
autocorrelation at the lag length under analysis. These criteria are additive. Thus, a time series that
meets the (c) criterion also meets the (a) and (b) criteria.

Criteria

Forest type (total of pixels)

Deciduous
broadleaf
(64,136)

Evergreen
broadleaf
(36,233)

Evergreen
needleleaf
(4,618)

All
(104,987)

(a) Good quality 56,561 25,497 4,347 86,405
(b) Stationarity All year 40,231 16,561 2,728 59,520

Winter 51,026 22,775 3,874 77,675
Spring 53,773 22,194 3,423 79,390
Summer 50,710 22,084 3,848 76,642
Autumn 50,104 22,548 4,074 76,726

(c) Absence of serial autocorrelation at 1-
and 2-month lags

All year 1 37,726 15,297 1,346 54,369
2 39,428 16,828 2,126 58,382

Winter 1 50,657 22,646 3,804 77,107
2 50,869 22,734 3,837 77,440

Spring 1 53,008 21,449 3,405 77,862
2 53,659 22,128 3,419 79,206

Summer 1 50,523 21,987 3,833 76,343
2 50,655 22,052 3,838 76,545

Autumn 1 49,738 22,328 4,048 76,114
2 50,031 22,504 4,072 76,607
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2008b). In a VAR model, each variable is a linear function of its own lagged values and the
lagged values of the other variables in the model (Mariano et al. 2018). The general form
of the VAR (p) model implemented in this study is as follows:

yt ¼ A1yt�1þ ... þ Apyt�p þ ut; (1)

where yt represents a K � 1 vector of endogenous variables (i.e. variables that are
explained by other variables in the system; often called ‘depended variables’) at time t
and ut assigns a spherical disturbance term (i.e. white noise process) of the same dimen-
sion. A1; . . . ;Ap are regression coefficient matrices with a dimension of K � K and p is the
lag length (Pfaff 2008b). The p parameter determines how much of the previous informa-
tion of all variables (i.e. lag time) is included in the model to predict future behaviours
(Wang et al. 2006). In this analysis, yt is a 2x1 vector of LAI and LST monthly anomalies (i.e.
a K = 2), the regression coefficients are A1;A2;A3 with a dimension of 2� 2, and p is
measured in months.

The optimal lag lengths at which the time series should be evaluated were identified
by first testing the VAR models using the Akaike Information Criterion (AIC), which finds
the lag with enough information content on the two variables without over-fitting (i.e. the
best goodness of fit; Zivot and Wang 2006). From this preliminary analysis, the most
common optimal lag lengths among all time series were 1 and 2 months. Therefore, the
VAR models were repeated two times using these two lags. Then, a Portmanteau test was
applied to evaluate the existence of serial correlation in the VAR residuals at a specific lag
length. This test examines the null hypothesis of no serial correlation at the significance of
0.05 (Pfaff 2008b). The presence of serial correlation implies that some information (e.g.
precipitation, solar zenith angle, aerosol optical depth) is missing in the model to explain
the relationship. Thus, only time series with absence of serial correlation were considered
for the analysis (Table 1c).

After identifying the appropriate VAR models (i.e. without serial correlation), the
existence of Granger causality was tested at 1 and 2-month lags in both directions (i.e.
from LAI to LST and from LST to LAI). This means that the test was run twice per lag-
length. First, considering LAI as cause and LST as response, and then considering LST as
cause and LAI as response. To that end, the vector of LAI and LST monthly anomalies, yt ,
Equation (1), was split into two sub-vectors as follows:

y1t
y2t

� �
¼

Xp
i¼1

α
0
11;iα

0
12;i

α
0
21;iα

0
22;i

" #
y1;t�i
y2;t�i

� �
þ CDt þ u1t

u2t

� �
; (2)

where y1t and y2t are the sub-vectors, whose dimensions are K1 � 1ð Þ and K2 � 2ð Þ with
K ¼ K1 þ K2, and α is the coefficient of the model. C is the coefficient matrix of potentially
deterministic regressors and Dt is the column vector holding the appropriate deterministic
regressors. This Granger causality test is an F-type test and is distributed as F pK1K2; KT � nð Þ,
n being the total number of parameters in Equation (2) and T the number of observations.
The null hypothesis, stated as y1t does not Granger-cause y2t , is accepted when α21;i ¼ 0 for
i ¼ 1; 2; . . . ; p and rejected when 9 α21;i�0 for i ¼ 1; 2; . . . ; p (Pfaff 2008a, 2008b). The test
was implemented at 95% confidence level. The rejection of the null hypothesis provides
evidence that LAI Granger-causes LST or vice versa, but it does not reveal the sign and
strength of the relationship.
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2.3.2. Estimation of impulse-response coefficients
To estimate the sign and strength of the relationship between LAI and LST, an IR function
was applied to all time series where Granger causality at 1-month lag was found. The IR
function measures the over-time response of a variable to an impulse of another variable
based on the Wold Moving Average representation of a VAR(p) process (Lütkepohl 2005),
which is defined as follows:

yt ¼ ϕ0ut þ ϕ1ut�1 þ ϕ2ut�2 þ . . . ; (3)

ϕ0 ¼ Ik and ϕs (s ¼ 1; 2; . . . ) can be computed iteratively as indicated below:

ϕs ¼
Xs

j¼1
ϕs�jAj; (4)

where Aj ¼ 0 for j > p. i; jð Þth coefficients of the matrices ϕs are interpreted as the
expected response of variable yi;tþs to a change in variable yjt . Hence, the accumulation

of these effects over time (s = 1; 2; . . . ) simulates the impact on variable i after a change in
variable j at time s (Pfaff 2008b). In this case, the output of the function consists of IR
coefficients calculated for 12 months after a single impulse of LAI or LST.

3. Results

3.1. Annual relationship between LAI and LST

Granger causality was evaluated on 54,369 and 58,382 year-round multi-variate time
series that met the required criteria at 1- and 2-month lags, respectively. The results,
summarized in Table 2 and Figure 2, indicate that LST Granger-causes LAI in around 80%
of the evaluated pixels (grey bar), while LAI Granger-causes LST in no more than 12% of
the pixels. In both directions, the presence of causality is slightly higher at 1-month lag.
Regarding forest types, causality from LAI to LST occurs in more pixels of evergreen
broadleaf forest (8% and 17% at 1- and 2-month lags, respectively), followed by deciduous
broadleaf (5% and 10%), and evergreen needleleaf (4% and 7%). In the opposite direction,
causality occurs in more pixels of deciduous broadleaf forest (88% and 89%), followed by
evergreen needleleaf (71% and 76%), and evergreen broadleaf (65% and 69%).

To examine the nature of the relationship, IR coefficients were calculated for 45,028 and
6,513 pixels that showed Granger causality from LST to LAI and from LAI to LST, respectively,
at 1-month lag. Themedian of those coefficients indicates that Granger causality is primarily
inverse in both directions (Figure 3). The response to an impulse of any of the variables is

Table 2. Annual Granger causality at 1- and 2-month lags per forest type. Refer to Table 1c to see
the number of pixels that meet all the required criteria and, therefore, were used to evaluate
Granger causality.

Forest type

Percentage of pixels that show Granger causality

From LAI to LST From LST to LAI

1 2 1 2

Deciduous broadleaf 10 5 89 88
Evergreen broadleaf 17 8 69 65
Evergreen needleleaf 7 4 76 71
All 12 6 83 81
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maximum 2 months after the impulse and then tends to gradually disappear. This means
that, based on the annual behaviour of the variables, an increase in, for example, LAI would
produce a decrease in LST, which would be most noticeable 2 months after the change in
LAI. The effect of LST on LAI is generally stronger than the effect of LAI on LST. The weakest
relationship in both directions occurs in evergreen needleleaf forest, while the strongest
relationship from LAI to LST is observed in deciduous broadleaf and from LST to LAI in
evergreen broadleaf.Figure 4 illustrates the spatial distribution of the IR coefficients calcu-
lated for 1 and 2 months after a single impulse of LAI (Figure 4(a)) or LST (Figure 4(b)). Pixels
showing causality from LAI to LST concentrate over the east side of the study area,
particularly in the States of San Luis Potosí and Tamaulipas. The effect of LAI on LST is mainly
inverse as mentioned before, but there are some pixels in which the relationship is direct. A
few coefficients, especially in the east side of the study area, are positive (i.e. direct relation-
ship) the first month and become negative (i.e. inverse relationship) the second month. A
few others, especially in the south-western portion, start being negative and become
positive the second month (Figure 4(a)). Pixels showing causality from LST to LAI are well
represented throughout the study area. The effect of LST on LAI is also predominantly
inverse, the strongest inverse effect occurs in the east region 2months after the LST impulse.
However, there are few pixels in which the effect is initially direct and becomes inverse the
second month after the impulse, many of these are located in high elevations of both sides
of the study area (Figure 4(b)).

3.2. Intra-seasonal relationship between LAI and LST

Granger causality was evaluated at 1- and 2-month lags on all season-based multi-variate
time series that met the required criteria (Table 1c). The results, summarized in Table 3 and
Figure 5, show that Granger causality from LST to LAI occurs more consistently than
Granger causality from LAI to LST in all seasons. If all forest types are considered as a
whole (grey bar), the presence of LAI to LST causality is higher in spring (18% and 20% at
1- and 2-month lags, respectively) and lower in summer (5% and 6%). LST to LAI causality
is also higher in spring (43% and 40%), but lower in winter (11% and 10%). The highest

Figure 2. Presence of annual Granger causality at 1- and 2-month lags per forest type.
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presence of causality in both directions and all seasons occurs in evergreen needleleaf
forest, with the exception of spring and summer for LAI to LST, when deciduous broadleaf
and evergreen broadleaf show higher occurrence of causality.

IR coefficients were calculated for all pixels that showed Granger causality at 1-month
lag in each season. The median of those coefficients, plotted in Figure 6, revels that the
effect of LAI on LST is generally direct in autumn and inverse in the rest of the seasons,
except for evergreen needleleaf forest where the effect is direct in winter and spring
(Figure 6(a)). The effect of LST on LAI is predominantly inverse across all season, only a
slightly direct impact 1 month after the LST change occurs in evergreen broadleaf and
evergreen needleleaf forests during winter and autumn (Figure 6(b)). In most cases, the
response to change in one of the variables is stronger 2 months after the impulse. In a few
cases, such as in summer for deciduous broadleaf (both directions), the strongest impact
occurs 1 month after the impulse. In all cases, the effect tends to gradually disappear after
the first or second month. The strongest inverse effects of LAI occur in deciduous broad-
leaf forest during spring and winter, while the strongest direct occurs in evergreen

Figure 3.Median IR coefficients of pixels that show annual Granger causality at 1-month lag per forest
type.
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needleleaf during winter. The strongest effects of LST are all inverse and occur in ever-
green broadleaf and deciduous broadleaf during spring and summer, respectively.

The spatial distribution of the IR coefficients calculated for 1 and 2months after a single
impulse of LAI (Figure 7) or LST (Figure 8) shows the diversity of the interactions between
the variables. The effect of LAI on LST during winter is primarily direct over the north-
western portion and mainly inverse in the remaining area (Figure 7(a)). In spring, the LAI
effect is strongly inverse in most pixels, especially 1 month after the impulse. Only a small
group of pixels located south-east and north-west of the study area display positive
coefficients (Figure 7(b)). In summer, the effect of LAI 1 month after the impulse is
predominantly inverse. In the following month, the effect is direct for many of the pixels

Figure 4. IR coefficients of pixels that show annual Granger causality from LAI to LST (a) or from LST to
LAT (b) at 1-month lag.
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located in the west and north-east. There are cases, such as a small area in the south-west
portion of the study area, in which the effect is strongly inverse the first month and
becomes strongly direct the second month (Figure 7(c)). During autumn, the effect is
weak 1 month after the impulse and becomes primarily direct in the following month,
especially in the west portion of the study area (Figure 7(d)).

The effect of LST on LAI presents a wider spatial distribution in all seasons (Figure 8).
During winter, the LST effect is generally weak. One month after the impulse, the coeffi-
cients are mainly negative at low elevations and primarily positive at high elevations. After 2
months, the coefficients are negative in most of the west side and positive in the majority
of the east side (Figure 8(a)). In spring, the effect is predominantly inverse (i.e. negative
coefficients) and particularly strong in the eastern portion of the study area (Figure 8(b)). In
summer, LST imposes a strong inverse effect on LAI across most of the study area. A
notorious exception occurs in pixels located in the State of Sinaloa, where the coefficients
become highly positive 2 months after the LST impulse (Figure 8(c)). During autumn, the
effect is heterogenous. The first month is mainly direct, except for the low altitudes of the

Table 3. Seasonal Granger causality at 1- and 2-month lags per forest type. Refer to Table 1c to see the
number of pixels that meet all the required criteria and, therefore, were used to evaluate Granger
causality.

Forest type

Percentage of pixels that show Granger causality

From LAI to LST From LST to LAI

Winter Spring Summer Autumn Winter Spring Summer Autumn

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Deciduous broadleaf 7 7 23 23 5 6 9 9 10 8 41 37 20 17 17 13
Evergreen broadleaf 5 7 6 16 6 6 7 9 9 10 46 46 13 11 9 9
Evergreen needleleaf 11 8 6 5 3 4 10 12 29 28 47 57 21 17 7 14
All 7 7 18 20 5 6 8 9 11 10 43 40 18 16 14 12

Figure 5. Presence of intra-seasonal Granger causality at 1- and 2-month lags per forest type.
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Sinaloa and Tamaulipas States. The second month is mostly inverse, except for the south-
western portion of the study area, where the coefficients are strongly positive (Figure 8(d)).

4. Discussion

4.1. Relationship between LAI and LST

The results of this research demonstrate that the nature of the relationship between LAI
and LST varies depending on the temporal scale. The processes responsible for this
variation are not the same at different time scales. Vegetation succession and natural
disturbances play a more important role at the annual scale, while phenological changes
and climate regimes impose a greater influence at the seasonal scale (Liu et al. 2006).

Figure 6.Median IR coefficients of pixels that show intra-seasonal Granger causality from LAI to LST (a)
or from LST to LAT (b) at 1-month lag per forest type.
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Figure 7. IR coefficients of pixels that show LAI to LST Granger causality at 1-month lag in winter (a),
spring (b), summer (c), or autumn (d).

INTERNATIONAL JOURNAL OF REMOTE SENSING 3775



Figure 8. IR coefficients of pixels that show LST to LAI Granger causality at 1-month lag in winter (a),
spring (b), summer (c), or autumn (d).
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4.1.1. Annual relationship
At the annual scale, LST Granger-causes LAI over most of the study area. In contrast, LAI
generally does not Granger-causes LST, except for a portion of the east side of the study
area and some small isolated areas over the west side (Figure 4). The nature of the
detected causality is primarily inverse in both directions and usually weaker from LAI to
LST (Figure 3). These findings are in accordance with Liu et al. (2006), who evaluated
feedbacks between Fraction of Photosynthetically Active Radiation (FPAR) and air tem-
perature at a global scale between 1982 and 2000. Using led-lag regression/correlations
to identify the presence of interactions and the Frankignoul, Czaja, and L’Heveder (1998)
method to estimate the strength of those interactions, they observed a year-round strong
inverse correlation from temperature to FPAR over most of the Mexican territory at 1-
month lag, but a general absence of correlation from FPAR to temperature. The only area
where they detected correlation from FPAR to temperature also exhibits weaker negative
coefficients and coincides with the eastern portion where this study found presence of LAI
to LST causality (Figure 4).

The existence of a significant effect of surface temperature on vegetation has been
similarly addressed by other authors. Zhou et al. (2003) found that fluctuations in
temperature accounted for the largest fraction of NDVI change in northern high latitudes
between 1982 and 1999. Liu et al. (2006) detected that FPAR variability is predominantly
driven by temperature, not only in Mexico, but also in northern mid and high latitudes.
Notaro, Liu, and Williams (2006) declared that temperature imposes a significant instan-
taneous forcing on FPAR over the United States. These results reflect some of the physical
process taking place at the land surface. At global and regional scale, surface temperature
is a product of several physical drivers (e.g. albedo, soil moisture), of which vegetation is
only a moderating factor (Liu et al. 2006; Eagleson 2011). In contrast, vegetation green-
ness is purely influenced by regional climatic conditions, where temperature is a primary
element (Liu et al. 2006; Global Observing System for Climate 2019).

As for forest types (Figure 2), a higher proportion of deciduous broadleaf showed
causality from LST to LAI, which demonstrates the general influence of temperature on
leaves phenology. LAI to LST causality was observed in more pixels of evergreen broadleaf
forest, where fluctuations in temperature are less variable year-round and, therefore, a
change in vegetation density may have a more significant impact on the naturally stable
surface temperature.

The eastern portion of the study area is characterized by a relatively higher occurrence
of LAI to LST causality (Figure 4a) and an inversely stronger effect of LST on LAI (Figure 4b),
which can be indicators of more dynamic forest ecosystems. More specifically, these
characteristics may suggest vegetation disturbances. According to the Mexico’s National
Forest and Soils Inventory collected by the Comisión Nacional Forestal (CONAFOR), the
most common disturbances recorded between 2004 and 2017 on the eastern side are
presence of epiphytes, drought, and defoliating insects (in order of importance), while for
the western side are fire, logging, and drought (CONAFOR 2019). Among these distur-
bances, drought has been highlighted as an important driver of forest change. Indeed, in
2009 and 2011, Central Mexico suffered the most severe droughts in seven decades
(Domínguez 2016) and, according to CONAFOR (2019), the effects of these droughts
have been most severe on the eastern region. Although this study suggests that the
distinct behaviour of the LAI and LST variables over the east side of the study area may be
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associated with vegetation disturbances, more research must be performed to elaborate
on a definitive conclusion.

4.1.2. Intra-seasonal relationship
In all season, Granger causality from LST to LAI occurs more consistently than causality in
the opposite direction. The highest and lowest presence of this causality occur in spring
and winter, respectively (Figure 5). The effect of LST on LAI is predominantly inverse,
generally stronger in summer and weaker in winter (Figure 6). As mentioned in Section
2.1, the rainy period (May–October) is also called the ‘warm half of the year’ and coincides
with the growing season. Therefore, a higher presence of LST to LAI causality in spring
suggests that the effect of surface temperature on vegetation greenness is greater during
the emergence of leaves than during the senescence. Although the occurrence of
causality is lower in summer than in spring, the strongest coefficients are observed in
deciduous broadleaf forest during summer, when leaves typically reach maturity. On the
other hand, the dry season (November–April), which is also referred to as the ‘cold half of
the year’, is characterized by a lower presence of LST to LAI causality. Thus, colder
temperatures are associated with a lower occurrence of causality, which is particularly
weak in winter, when the lowest temperatures are reached. These findings are overall in
line with what the global scale study of Liu et al. (2006) estimated for Mexico.

Regardless of the season, Granger causality from LAI to LST occurs less commonly than
causality in the opposite direction (Figure 5). The effect of LAI on LST is mainly direct in
autumn and inverse in the remaining seasons, except for evergreen needleleaf forest where
the effect is inverse only in summer (Figure 6). Despite the low presence of this causality,
there is a relatively higher occurrence in spring over deciduous broadleaf forest, where LAI
imposes a particularly strong inverse effect on LST, which suggests that leaf emergence has
a cooling effect on land surface. Kaufmann et al. (2003) also estimated an inverse effect of
NDVI on surface temperature for this forest type during spring in Eurasia. Another aspect to
highlight is that the strongest direct effect of LAI on LST occurs in winter over evergreen
needleleaf. This interaction is also consistent with Kaufmann et al. (2003), who found a
strong direct relationship from NDVI to surface temperature in winter over evergreen
needleleaf forests of North America and Eurasia. According to these authors, NDVI is not a
good indicator of vegetation greenness in winter. Instead, it can be a useful proxy of snow
cover extent as these variables are inversely correlated during this season. Thus, a reduction
in the extent of snow cover (i.e. an increase in vegetation greenness) increases the absorp-
tion of solar radiation and, consequently, raises surface temperature. This process creates a
direct correlation from vegetation greenness to surface temperature.

4.2. Challenges and opportunities

This research has a few limitations that can be addressed in future research. First,
Granger causality and IR coefficients were estimated using only LAI and LST.
However, other variables (e.g. precipitation, solar zenith angle, aerosol optical depth,
latitude) may also help to explain the behaviour between vegetation greenness and
surface temperature (Kaufmann et al. 2003; Papagiannopoulou et al. 2017). Therefore,
the inclusion of additional variables is considered as future step to improve these
models. Second, only pixels with stationary time series were considered for the analysis
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(Table 1b). However, the exclusion of non-stationary time series may be avoided by
detrending those trajectories or by implementing the Toda and Yamamoto (1995)
procedure, which allows for the examination of Granger causality in the context of
non-stationary data.

Third, there is a false continuity in the season-based time series. For example, the three
monthly anomalies of a particular winter were joined to the three monthly anomalies of
the following winter. This false seasonal continuity (e.g. winter 2002 and winter 2003)
provokes the model to estimate not only relationships occurring among anomalies of the
same season, but also between anomalies of a given season and anomalies of the
following season. Although, several authors do not discard an interaction between
anomalies of different seasons (e.g. Kaufmann et al. 2003; Wang et al. 2006; Kaufmann
et al. 2007; Jiang, Liang, and Yuan 2015) and there should not be a reason to discard it a
priori, this research may be extended to explore an alternative methodology that better
handles this false continuity on the season-based time series.

5. Conclusion

On a pixel-by-pixel basis of MODIS imagery, this research evaluated the annual and intra-
seasonal relationship between LAI and LST collected from 2002 to 2017 across the forest
vegetation of Central Mexico. The Granger causality approach was used detect the
presence of any relationship and an IR function was implemented to estimate the sign
and strength of the relationship. The main results indicate that, at any temporal scale,
Granger causality from LST to LAI occurs more consistently than causality in the opposite
direction. At the annual scale, the nature of the relationship is primarily inverse in both
directions and usually weaker from LAI to LST. At the seasonal scale, the occurrence of LST
to LAI causality is higher in spring and lower in winter. The effect of LST on LAI is
predominantly inverse and particularly strong in deciduous broadleaf forest during
summer, when leaves typically reach maturity. On the other hand, the effect of LAI on
LST is mainly direct in autumn and inverse in the remaining seasons, except for evergreen
needleleaf forest where the effect is inverse only in summer. The highest presence of LAI
to LST causality occurs in spring over deciduous broadleaf forest, where LAI imposes a
particularly strong inverse effect on LST, which suggests that leaf emergence has a
cooling effect on land surface.

These results support general conclusions presented in other studies (e.g. Zhou et al.
2003; Liu et al. 2006; Notaro, Liu, and Williams 2006) and reveal novel spatio-temporal
patterns of the relationship between vegetation greenness and surface temperature in
Central Mexico. As for the input data and methods, this research proposed LAI as an
alternative index to overcome the shortcomings of other widely used vegetation green-
ness indicators (i.e. NDV and EVI). Unlike traditional regression and correlation analysis,
the Granger causality approach enabled the examination of lagged effects of LAI on LST,
and vice versa. IR coefficients, which have been rarely used in the related literature, helped
to model the over-time response of a variable to a change of another variable.

The findings of this research suggest that the relationship between vegetation green-
ness and surface temperature varies depending on the temporal scale, forest type, and
causal variable. Therefore, caution has to be exercised when assuming a consistent
inverse relationship driven by vegetation, which seems to be the general consensus in
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much of the literature that makes use of these two variables to study an environmental
phenomenon (Lambin and Ehrlich 1996, 1997; Wan, Wang, and Li 2004; Mildrexler et al.
2007; Coops, Wulder, and Iwanicka 2009; Mildrexler, Zhao, and Running 2009). Finally, this
study is expected to be a contribution to the understanding of vegetation dynamics in
Mexico. Based on the results, surface temperature is a significant driver of vegetation
greenness in Mexican forests. Therefore, LST products can be considered a potential proxy
of vegetation greenness trajectories, especially in the context of a warming climate.
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