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Alberta, Canada – Implications for risk assessment and strategic planning” by J.L. Beverly and N.
McLoughlin

Monte Carlo simulations using wildland fire spread models have
been conducted to produce numerical estimates of fire likelihood,
project potential fire effects, and produce event sets of realistic wildfires
(Parisien et al., 2019). The application of these methods has greatly
expanded over the last few decades as a result of increased computation
capabilities, available data, and our fundamental understanding of
landscape fire dynamics. In their recently published article, Beverly and
McLoughlin (2019) attempt to assess the accuracy of fire likelihood
outputs (hereafter “burn probability” [BP]) they produced for five large
areas in Alberta, Canada, by testing the “correspondence between ob-
served burned areas and pre-fire burn probability maps” in order to
“explore how the expectations of decision-makers influenced our as-
sessment of map accuracy.” To do so, they superimposed BP estimates
computed with the Burn-P3 fire simulation model (Parisien et al., 2005)
with areas recently burned by wildfire from the reference year used in
Burn-P3 until 2017. Their results show a moderate statistical preference
of recent burns for high-probability areas in three study areas and no
preference in the remaining two. This leads them to conclude that “the
use of these maps for research or other applications should be ap-
proached with caution and consideration of their shortcomings and
apparent limitations.” In dismissing the accuracy of the BP estimates,
they are sending an erroneous message to managers and the research
community that BP maps are not useful.

We agree with Beverly and McLoughlin (hereafter B & M) that as-
sessing the skill of BP models—or any model—is necessary, but we
argue that the manner in which their evaluation was executed under-
mines (or even invalidates) some of their conclusions regarding the
utility and potential accuracy of fire simulation model outputs. We
display and discuss three major weaknesses in B & M’s analysis: (1) the
inappropriate method of assessing accuracy, (2) a misinterpretation of
BP outputs, and (3) data quality considerations. Finally, we propose
ways in which a discussion on assessing BP model skill could move
forward.

1. Inappropriate method of assessing accuracy

We should first provide a brief overview of how BP is calculated. In
models such as Burn-P3 (Parisien et al., 2005) and FSim (Finney et al.,
2011), the ignition and growth of individual wildfires are simulated
during a single pseudo-year (termed “iteration”) according to the nat-
ural variability one could expect within a fire season. Model inputs are
usually derived from historical databases representing wildfire patterns,
fuels, and weather and modeling processes simulate substantial year-to-
year variation. Some iterations, therefore, yield many wildfires that can
burn large proportions of the landscape, whereas others may simulate
none or few (similar to fire seasons observed in the real world). Model
runs are carried out for a large number of iterations (typically 104 to

106); that is, until the outputs have reached a “stable” estimate of pixel-
wise BP. Numerous outputs can be obtained from these models, one of
which is a measure of BP that, depending on the model formulation,
measures a conditional (i.e., given an ignition in a study area; e.g., Ager
et al., 2010) or annualized probability (Scott et al., 2013). Other out-
puts include maps of potential fire behavior components (e.g., fire in-
tensity, fuel consumption) and mapped ignitions and perimeters of the
simulated wildfires. Post-processing of model outputs has been used to
investigate a wide range of wildfire management issues, including
strategic placement of fuel treatments (Thompson et al., 2017), risk
transmission to the urban interface (Haas et al., 2014), and conserva-
tion of critical habitat (Ager et al., 2007).

B & M use Burn-P3 to generate BP maps for five study areas and then
compare BP values with subsequent observations of wildfire that oc-
curred during two- (n = 2 study areas), four- (n = 2), or thirteen-year
periods (n= 1) (Fig. 1). In their assessment of model skill, B & M imply
that model “performance” is contingent on observations of burned areas
coincident with high BP. Although this presumption may appear sen-
sible, it suffers from at least three related conceptual flaws.

The first flaw is illustrated in Fig. 2. Areas of high BP in Burn-P3
outputs represent “fire sinks” on the landscape; that is, locations where
many fires may originate, converge, or intersect (Ager et al., 2012).
Areas of high BP are the result of many (hundreds or thousands)
overlapping simulated fires. When the full extent (i.e., the fireshed) of
all of the fires that burn into, or originate from, a given area of high
probability is displayed, it is clear that most of these fires also burn
large areas of low and moderate BP across the landscape. While it is
reasonable to expect model outputs to reflect real-world fire activity, it
is highly unreasonable to expect that the area burned by observed in-
dividual wildfires will constrain themselves to a particular range of BP
values on the map: many wildfires (and especially large ones) will burn
across lands with a wide range of BP values. Indeed, the simulated
perimeters used to produce the BP maps themselves do not perfectly
align with high BP areas (Fig. 2c, d). Therefore, it is not surprising that
B & M found that “large portions of burned areas observed in the years
following burn probability simulations occurred in locations where
burn probabilities were relatively low.” Large fires burn under extreme
conditions and may cover vast areas that, under moderate conditions,
are generally of low flammability (and low BP) due to a lack of fuels
(e.g., urban areas, broadleaf stands, recently burned forests). An ex-
ample of one such fire from B & M’s set of observed fires that burned
indiscriminately across the landscape is evident in the FTMC study area
(Fig. 1).

The second flaw is in the attempted comparison of burned areas
with probabilities. Ideally, burned areas (units of hectares) need to be
compared with burned areas, and probabilities (units related to time,
i.e., per year) compared with probabilities. Instead, B & M go to great
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lengths to compare proportional burned area within subjectively de-
termined classified bins of probabilities. Although B & M claim that the
perceived accuracy of estimated BP outputs varies according to aspects
of symbology (e.g., number of bins of values, where one places the
value breaks), this is based on the false premise that one can compare
areas to probabilities. One option for comparison is to use the observed
burned areas to estimate empirical BPs, and then compare those
probabilities with simulated values. As an illustration, we calculated
observed BPs from burned areas estimated from 2013 to 2017 by the
Monitoring Trends in Burn Severity (MTBS) large-fire perimeter dataset
(Eidenshink et al., 2007) as the proportion of 50 × 50-km grid cells for
the conterminous US. We compared these observed BPs with BPs si-
mulated for 10,000 iterations for the same domain using landscape data
representing 2012 conditions (Short et al., 2016) (Fig. 3a). Binomial
confidence intervals (95%) were calculated for these simulated BPs (the
standard normal approximation, Brown et al., 2001) for a hypothetical
100- and 10,000-year observational sample. This illustrates the de-
creasing confidence (i.e., wider confidence intervals) with both the
smaller sample size and lower likelihood of burning (Fig. 3b). We at-
tempted to plot confidence intervals for 2013–2017, a period of similar
length to the evaluation period used by B & M. However, the confidence
intervals for this period of observations were not informative because
(as plotted on logarithmic axes) the upper-bound is about 0.5 and the
lower bound is 0.0 for nearly all predicted BPs, meaning that all 5-year
estimates of BP are within the confidence bands. In fact, even though
the hypothetical 100-year example represents an infeasibly long ob-
servational record, it still has confidence intervals sufficiently wide as

to encompass most of the actual 5-year estimates. Our conclusion is that
the variation in BPs of rare fire events (BP < 0.1) is so great that
quantitative comparisons are mostly meaningless with short-duration
event sets similar in length to those used by B & M (four out of five
study areas in B & M included ≤ 4 years of fire data). The method we
used to compare observed BPs to estimated BPs thereby highlights an
important third flaw (below).

This related conceptual flaw concerns the stochastic nature of
wildfire occurrence: individual wildfires can (and do) occur in low-BP
areas because of chance alone. Even if the superimposition of a handful
of observed burned areas and BP were a valid measure of model eva-
luation—flaws #1 and #2 show that it is not—, one should never expect
a particular outcome for a stochastic process. For example, just as one
would not expect six rolls of a die to yield a one, a two, a three, a four, a
five, and a six, we cannot expect individual wildfires to occur ex-
clusively within a particular BP range. In fact, recent wildfires across
the conterminous US do not all occur in high-BP areas (Fig. 3a). To
illustrate the effect of stochasticity, we recreated B & M’s results on the
burned area proportions by BP class (Fig. 5 in B & M) in Fig. 4 using
simulated data from two previously published studies that used Burn-
P3, one in the relatively flat boreal forest of northeast Alberta
(Stockdale et al., 2019) and one in the rugged terrain of south-central
British Columbia (Wang et al., 2016). For each of these, we drew 50
random samples of two, four, and 13 years (i.e., iterations) of simulated
fire data and evaluated how the area burned corresponded to the BP
values using a quantile classification scheme, which was found to be the
most “accurate” representation of data according to B & M. Of course,

Fig. 1. The five study areas from Beverly and McLoughlin (2019) in Alberta, Canada. The areas burned by wildfire in their evaluation period are shown in black,
while areas displayed as non-fuel in their analysis are shown in white.
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there is an important difference between observed data that occurred
over a multi-year time period and simulated wildfires burning on a
landscape that is “reset” at each iteration. Nevertheless, the results in
Fig. 4 show that many simulated fire perimeters from these randomly
selected iterations—the very same data that were used to compute the
BP maps—occur in the low-BP classes. Given extreme stochasticity in
fire occurrence patterns, low-BP areas should not be expected to be fire-
free in any given year, further emphasizing that comparisons of ob-
served area burned and predicted BP are inappropriate.

2. Interpretation and relevance of model outputs

B & M refer to manager “expectations” to question the relevance of
BP model outputs. As we have established, no one—and no mod-
el—could ever exactly predict individual wildfires, particularly given
the stochastic nature of wildland fires and the coarseness of fire spread
models currently used. In our experience, managers do not expect BP
models to provide this information. In fact, managers typically under-
stand that BP models are one of many tools they can use and do not
consider any model as a panacea. For instance, within the BP modeling
approach, model outputs other than BP can be mined to provide a wide
range of insights into the scale of risk, risk transmission, and effect of
landscape fragmentation on fire-management activities (Haas et al.,
2014). Perhaps most important, fire models are a key tool to design and
evaluate strategic fuel treatment programs. In this context, absolute
values of BP are less important than the relative change in BP and other
fire behavior metrics relevant to forest and fuel management programs.

A similar appraoch has recently been used to measure the effectiveness
of fire-suppression policies (Reimer et al., 2019). Also, in an era where
climate change is increasingly driving large fire events, fire simulation
models are providing valuable insights into “surprise” fires that are not
part of the historical record (Hulse et al., 2016).

We, therefore, submit that, if the fire-prediction systems and spread
algorithms on which BP models are based are largely accurate, BP
outputs are very useful, especially when combined with other equally
important metrics that collectively inform fire management strategies.
Properly parameterized BP models and their multitude of derived
products can be interpreted as the landscape-level potential of a given
location to experience a large wildfire of a certain intensity. Fire si-
mulation modeling such as Burn-P3, FSim, and FlamMap are meant to
inform strategic (i.e., long-term) fuel management programs as part of
larger, multifaceted forest restoration programs (Ager et al., 2011) and
not to predict where individual fires will occur in a given year (Scott
et al., 2013). Though it is extremely difficult (if not impossible) to know
where and when fire ignitions will occur, and which ones will “escape”
initial attack and become large, knowledge of where the landscape is
inherently more flammable is useful for whoever is living and working
in fire-prone areas. Annual BP values, which are low in B & M’s areas,
may not appear useful for a specific year, but they do reveal a non-
negligible likelihood for burning across the longer time horizons asso-
ciated with forest management planning (usually 10–20 years in Al-
berta). For example, if one assumes a simple Poisson process for discrete
events (which we know to be over-simplistic) and no major landscape
change, the range of annualized BP values reported by B & M

Fig. 2. Validation methods of Burn-P3 outputs in Beverly and McLoughlin (2019) presume significant overlap of real-world fires with areas of high burn probability
(BP). Panel A shows a section of a BP map (Stockdale et al 2019), classified by quantiles into 5 classes (1–5, low to high). A small high-BP target area is indicated with
the arrow for reference. Panel B: B & M’s accuracy analysis implies that fires should occur as the black or purple outlines: largely falling within classes 4 or 5, as
shown with these two sample wildfires drawn from the simulations. Panel C: these simulated fires burn large areas of BP classes 2 and 3, and would be considered
“poorly predicted fires” according to the authors. Panel D shows three more simulated fires derived from this event set of fires used to create this BP map. In total, 236
individual modeled fires intersected the target area, ranging from 71 to 138,978 ha in size (mean 21,600 ha). The embedded table shows the number of cells burned
by all 236 fires combined in each BP class. Most fires that burn through the area of high BP also burn large other areas of the landscape.
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(BP = 0.018 to 0.0616) translates to 20-year burn probabilities that
range up to 70.8%; certainly a value worthy of attention.

Any evaluation of model performance requires an in-depth under-
standing of what the model products are telling us. B & M seem to imply
that BP models should predict the occurrence of a selected set of in-
dividual wildfires occurring over a short window of time— yet Burn-P3
and other BP models were not designed nor meant to be used for this
purpose. The inability of Burn-P3 to predict a limited and select set of
observed fires led B & M to conclude that “burn probability maps may
not be useful for informing fine-scale activities in these landscapes.” We
dispute this claim. When high-quality data are used and inputs are
thoughtfully prepared, BP models produce a spatially resolved quanti-
tative estimate of fire likelihood that can inform strategic planning
(e.g., focus fuel management and pre-suppression planning efforts) and,

therefore, can complement fire-management tools that involve model-
ling active fires and support tactical (short-term) activities (Parisien
et al., 2005; Scott et al., 2013). BP models tell us, for instance, that very
large wildfires tend to converge where there are large tracts of high-
flammability vegetation in spite of relatively few ignitions (Ager et al.,
2012; Parisien et al., 2011), and that fire refugia (i.e., forests often
spared by lethal wildfires) are often found in areas of low BP where
vegetation is naturally fragmented or isolated, such as on the lee side of
large lakes (Ager et al., 2012). Furthermore, likelihood mapping is but
one of many possible outputs from BP models that provide useful in-
sights for fire and risk management decision making (Parisien et al.,
2019). For example, the models can take advantage of the simulation of
individual wildfires to compute “firesheds”, which consist of mapping
all potential ignitions that may reach a feature of interest (e.g., the

Fig. 3. Comparison of burn probability (BP) si-
mulated using FSim for the 2012-vintage LAND-
FIRE data (Short et al., 2016) with (A) burned
areas observed (2013–2017) from MTBS (black),
and (B) BP calculated as proportions of 50-km grid
cells burned by the wildfires shown in (A) plotted
against simulated BP. Plot B also shows 95% bi-
nomial confidence intervals calculated for dif-
ferent sample sizes (number of simulated or ob-
served years). Simulations have samples of
n = 10,000 iterations and relatively narrow con-
fidence limits, whereas samples of n = 100 years
are wide enough to encompass most of the esti-
mated probabilities estimated from five years of
wildfire activity (2013–2017). Upper and lower
confidence limits for n = 5 years are not dis-
played because they are roughly constant at 0.5
and 0.0, respectively, and encompass all ob-
servations.

Correspondence Forest Ecology and Management 460 (2020) 117698

4



wildland-urban interface) (Scott et al., 2012, Ager et al., 2019), and can
be used to evaluate the relative effect of innumerable fuel-change or
ignition-management scenarios compared to a baseline assessment
(Thompson et al., 2017). Without BP models, these types of analyses
would be exceptionally difficult to achieve.

3. Data quality considerations

Burn-P3 and related models such FSim and FlamMap are highly
sensitive to the quality of input data, such as the number and spatio-
temporal patterns of ignitions, the accuracy of mapped fuels, and the
care with which ignition frequency and fire size distributions are cali-
brated (Parisien et al., 2010). In light of this, Stratton (2009) empha-
sized the importance of performing a thorough ‘data critique’ before
embarking on any fire simulation project. Describing the source data,
how the inputs were created, and what modeling decisions were made
imparts some transparency to the modeling procedure and allows
managers and scientists to better interpret the modeling outputs. In the
B & M article, this important data-related information is only available
for one of the five study areas (WC), through a previous publication
(Beverly et al., 2009). Thus, it is impossible to know if problems or
inaccuracies in the source data or in the creation of inputs have con-
tributed to the model-performance metrics reported by B & M.

B & M mention that “observed burned areas were also 42–95 times
greater than median annual burned area in our Boreal and Foothills
study areas (WC, LLB, FTMC) and 26 to 1635 times greater in our Rocky
Mountain study areas (CLGY and WW).” This directly acknowledges
that the baseline against which they calibrated their models did not
match the conditions within the more recent, and potentially changed,
fire regime with which they attempt to validate their BP results. Such a
discrepancy can be due to either a poor parameterization of the model,
sheer luck (e.g., the occurrence of a very large fire within a two-year
evaluation period), or a lack of stationarity due to changes in climate or
human land use. Although current or future fire potential may greatly

exceed that of the recent past (Riley and Loehman, 2016), such a drastic
change from the simulation period to the evaluation period in B & M’s
article is surprising. We thus question the soundness of building inputs
from a period up to 53 years prior to the evaluation period. Rather, it
would have been preferable to build BP inputs to represent expected
conditions rather than attempt to closely match historical ones (Parisien
et al., 2013). Although B & M state that “core Burn-P3 modeling pro-
cesses do not vary from user to user”, a review of the literature suggests
otherwise: there is no strict prescription for the Burn-P3 model and, in
fact, this goes against the philosophy of the BP modelling approach,
whereby inputs and assessments of outputs are adjusted to best suit the
landscape under consideration and questions being asked (Parisien
et al., 2019).

In BP models, the quality and representativeness of mapped fuels
are critical to producing reliable outputs. In particular, updating fuels-
related data after large-scale disturbances is an essential, yet challen-
ging, aspect of this type of fire simulation modeling. Following a
wildfire in a forested area, there is a short period of time during which
fuel conditions can be regarded as non-fuel, as vegetation can recover
and become flammable within a few years (albeit less flammable than
mature forests) (Erni et al., 2017; Parks et al., 2018). Assumptions
about the temporal progression of fuel conditions used in simulation for
these disturbed areas can affect BP outputs. In Fig. 5, we highlight two
of the instances where B & M incorrectly assumed that non-fuels
mapped immediately after large wildfires remained largely unchanged
up until the evaluation period, many years after the fire. Specifically,
the fuels after two very large wildfires, the 1998 Virginia Hills fire
(168,819 ha) in the WC study area and the 2002 House River fire
(236,446 ha) in the LLB study area, were considered by B & M to be
largely composed of non-fuel (and grass in case of the Virginia Hills fire,
according to Beverly et al., 2009). The effect of this assumption on their
BP maps is evident in their results (Beverly and McLoughlin, 2019,
Fig. 3). However, in these two areas, the Enhanced Vegetation Index
computed from Landsat (Fig. 5) shows that vegetation recovered fairly

Fig. 4. The proportion of the sampled area burned by the quantile classification method (dashed boxes) used in Beverly and McLoughlin (2019) from two studies: one
in Cold Lake, AB and one in the Thompson-Okanagan area of BC. Every point represents the proportion of the area burned by class (proportion for the five
classes = 1) for 50 random samples of two (left column), four (middle), and 13 iterations (i.e. years) (right). The results are based on the samples of simulated fire
perimeters that were used in the calculation of the BP maps.
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rapidly after wildfire—naturally and through reforestation—and much
of these two areas has become flammable from the perspective of the
Canadian Fire Behavior Prediction System (Forestry Canada Fire
Danger Group, 1992) before or during the evaluation period. In fact,
one of the authors (M.-A. Parisien) sampled the vegetation of the House
River fire in 2018 and observed average dominant tree heights of 8.1 m.
The misclassification of fuels for such large areas will invariably affect
BP patterns. Although B & M are mindful of changes in fuels affecting
BP estimates (“[…] substantial land cover change over short time
periods that would quickly erode the representativeness of burn prob-
ability maps.”), in these instances we believe they have neglected to
adequately update fuels, thus diminishing the reliability of their outputs
and their subsequent ability to assess model skill.

4. Possible next steps

We agree with B & M that an evaluation of model skill is an im-
portant exercise for gauging predictive ability and for identifying ways
in which a model can be improved. However, in light of the issues
detailed here, we assert that B & M’s evaluation does not effectively
assess BP model (specifically, Burn-P3) performance. This said, we ac-
knowledge the challenging nature of model assessment, which perhaps
explains the dearth of examples in the published literature (e.g.,
Parisien et al., 2005; Paz et al., 2011). Moving forward, it would be
ideal to explore robust methods to evaluate BP model skill. As shown in
Figs. 2 and 3, comparing probability values with burned areas is pro-
blematic—in fact, it is a comparison between different entities having
different units; a probability-to-probability comparison would be

preferable. It could be useful, for instance, to compare statistically de-
rived probability surfaces of wildfires for different years and time
periods (e.g., year, month, week) with BP maps. Although outputs from
statistical models will never be perfectly congruent to those of simu-
lation models, they could be informative in assessing performance,
given that both types of models use similar fire-environment informa-
tion (e.g., vegetation, weather, topography, landscape and anthro-
pogenic features).

In their concluding statements, B & M appear dismissive of the
merits of BP modelling and claim that their results “could be used to
inform new approaches to fire risk mapping in northern forests eco-
systems”. They hint at an alternative method for “approximating fire
likelihood maps with readily known and easily mapped fire environ-
ment and fire regime factors known to influence burn probability values
[…].” We presume they are referring to statistical models of fire ac-
tivity. Although these are useful and easy to compute, they are not
designed to explicitly consider the landscape context in which fires
ignite and spread and as such, cannot fully capture spatial effects such
as “fire shadows” on the lee side of lakes and other landscape-scale
properties of large fires. Statistical models are additionally limited with
respect to testing “what-if” management scenarios (e.g., ignition pre-
vention programs, fuels management), and do not produce outputs
suitable for investigating the potential social and ecological effect of
individual fires (e.g. Ager et al., 2007). As illustrated in Fig. 3b, the
precision of observations in estimating likelihood of burning introduces
huge uncertainty and will likely be less reliable than carefully con-
ducted simulations.

A large number of authors seem to agree that commonly used BP

Fig. 5. Postfire vegetation recovery represented using a maximum likelihood classification of Enhanced Vegetation Index (EVI) for large wildfires of the LLB (a) and
WC (b) study areas of Beverly and McLoughlin (2019). There is a clear progression from non-vegetation (yellow) immediately after a fire to widespread treed
vegetation (dark green) after several years (right-hand panels). A map of the fuels used for modeling the WC study area (Beverly et al., 2009) shows that a large
proportion of the Virginia Hills fire was classified as non-fuels, whereas the smaller Agnes fire was entirely classified as grass. The EVI indicates that these two burns
were largely forested during the evaluation period.
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models such as Burn-P3, FSim, and FlamMap are quite useful, as
Parisien et al. (2019) found 133 published articles and reports using BP
models. At their most basic level, BP models “spatialize” the extreme
variability of large-scale fire growth and behavior. While fire-behavior
models have their shortcomings, striving to further their development
will provide immediate benefits to BP models and other spatial tools on
which they are based. This is not to say that the “exploration of alter-
native possible assessment methods”, as B & M suggest, is without
merit—it is—but rather than being dismissed, BP methods should be
used to complement outputs of other types of models (e.g., Barros et al.,
2019). The potential consequences of wildfires are such that no useful
information for predicting or understanding their likelihood, occur-
rence, or effects should be overlooked.
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