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A B S T R A C T

Boreal forests are globally extensive and store large amounts of carbon, but recent climate change has led to drier
conditions and increasing fire activity. The objective of this study is to quantify trends in fire size and frequency
using data spanning multiple scales in space and time. We use multi-temporal Landsat image compositing on
Google Earth Engine and validate results with reference fire maps from the Canadian Park Service. We also
interpret general fire trends through the concept of Self-Organized Criticality (SOC). Our study site is Wood
Buffalo National Park, which is a fire hot spot in Canada due to frequent lightning ignitions. The relativize
differenced normalized burn ratio (RdNBR) was the most accurate Landsat-based burn severity metric we
evaluated (52.2% producer's accuracy, 87.6% user's accuracy). The Landsat-based burn severity maps provided a
better fit for a linear relationship on the log-log scale of fire size and frequency than a manually drawn fire map.
Landsat-based fire trends since 1990 conformed to a power-law distribution with a slope of 1.9, which is related
to fractal dimensions of the satellite-based fire perimeter shapes. The unburned and low-severity patches within
the burn severity mosaic influenced the power-law slope and associated fractal dimensionality. This study de-
monstrates a multi-scale and multi-dataset technique to quantify general fire trends and changing fire cycles in
remote locations and establishes a baseline database for assessing future fire activity. Testing criticality by power
laws helps to quantify emergent trends of contemporary fire regimes, which could inform the strategic appli-
cation of prescribed fire and other management activities. Natural resource managers can utilize information
from this study to understand local ecosystem adaptability to large fire events and ecosystem stability in the
context of recent increasing fire activity.

1. Introduction

Over thirty percent of terrestrial global carbon is stored in boreal
forests, which represents a major sink absorbing CO2 from the Earth's
atmosphere (Kasischke et al., 1995). Recent climate change indirectly
causes increasing forest fire activity, especially in the boreal forest re-
gion via large-scale atmospheric circulation change (Amiro, 2001;
Kasischke and Turetsky, 2006; Skinner et al., 2002). The broad cir-
cumboreal forest, including Canada, Russia, and Alaska (Flannigan
et al., 2015), is vulnerable to drier climate conditions caused by tem-
perature rise (Kasischke and Turetsky, 2006). To monitor and track
large-scale changes, remote sensing techniques are an essential means
to identify tipping points and detect altered ecosystems (Barnosky et al.,
2012). Remote sensing techniques are additionally important for forest

fire monitoring in the boreal forest region due to difficult accessibility,
and the spatial scale of the boreal forest requires economically feasible
ways to use publicly available images like Landsat imagery from the
United States Geological Survey (USGS) and Sentinel images from the
European Space Agency.

To help diverse users access and analyze geospatial data, Google
Earth Engine (GEE) provides a cloud-based platform and a user-friendly
interface to display and analyze freely provided petabytes of satellite-
based and other imagery using built-in functions orchestrated by
JavaScript and Python programming interfaces. GEE promotes the ac-
cessibility of the publicly available data for any level of scientists,
general public, and policy makers who need to analyze geospatial in-
formation without the burden of downloading large amounts of data
(Gorelick et al., 2017), which enables novel applications and
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assessments of boreal fire activity. GEE has been used for analyzing
various scales from global (Hansen et al., 2013) to local (Soulard et al.,
2016) vegetation change mapping and monitoring.

In general, forest fire regimes are described by fire frequency, in-
tensity, and extent (Agee, 1993; Sugihara et al., 2006). All three attri-
butes are related to fire behavior, which is defined by three-way in-
teractions among topography, fuel, and fire weather (Sugihara et al.,
2006). It is important to understand contemporary fire extent and fre-
quency in terms of the historical range of variability, but the applica-
tion of the historical range to forest management is complicated by
recent climate change (Keane et al., 2009). For example, shorter cycles
of stand-replacing fire reduce stand density and residual tree height,
which influences the landscape mosaic and impacts fire refugia, post-
fire species composition, and trajectories of fuel accumulation
(Meddens et al., 2018; Schoennagel et al., 2017; Turner et al., 2001).
Changing fire regimes also makes it more difficult to understand gen-
eral fire trends in the contemporary fire record (Reilly et al., 2017).

To measure general forest fire trends, a heuristic approach called
Self-Organized Criticality (SOC) has been proposed (Bak, 1996) and
utilized to understand trends of sporadically occurring natural hazards
(Malamud and Turcotte, 1999). The theory was initially demonstrated
from a sandpile model (Bak, 1996) and has been applied to natural
disasters such as earthquakes and forest fires (Albano, 1995; Drossel
and Schwabl, 1992; Hergarten, 2002; Malamud et al., 1998; Malamud
and Turcotte, 1999; Perry, 1995; Ricotta et al., 2001, 1999; Siegfried
et al., 1996; Song et al., 2001). If the forest condition reaches a critical
state (self-cycle state), any change caused by natural events follows the
power-law distribution between their size and frequency and forms a
straight line on log-scaled x and y axes (Fig. 1). If the size and frequency
are separately displayed, the data match between them is not clear (left
side of Fig. 1). However, if they are plotted in the log-log scales (the
right side of Fig. 1), the slope indicates trends of the disturbance events.
A steeper slope represents smaller sized events occurring on a more
frequent basis (Malamud and Turcotte, 1999). To obtain the slope,
continuous and long-term observation data are required (Ricotta et al.,
2001, 1999; Song et al., 2001).

Collecting long-term fire records is labor intensive and limited by
the spatial interpolation of discrete samples. For example, charcoal

records in lake sediment and tree-ring records are from discrete sample
locations and are not necessarily applicable to contemporary fire re-
gimes (Bowman et al., 2011; MacDonald et al., 1991). To understand a
large-scale fire trends, a fire scar network was established to collect
more widespread samples across large areas (Falk et al., 2011). How-
ever, time series data can be derived from the digital image archives of
satellite imagery available from long-term Landsat observations since
the 1970s. Multi-temporal Landsat image analysis makes it feasible to
track contemporary fire frequency and the area burned in a spatially
explicit manner (Meddens et al., 2018). To map forest fires, the pre- and
post-fire difference of the Normalized Burn Ratio (NBR) has been ex-
tensively used for applications such as Burned Area Reflectance Clas-
sification (BARC, Geospatial Technology and Application Center, USDA
Forest Service), Monitoring Trends in Burn Severity (MTBS), and Rapid
Assessment of Vegetation Condition after Wildfire (RAVG, USDA Forest
Service). However, until recently general forest fire trends (including
whether large or small fire activity is increasing) have not been quan-
tified automatically from satellite observations due to landscape com-
plexity and data limitations.

In addition to satellite imagery, fire maps are also created by local
agencies. Although such locally derived fire maps represent the best
available ground truth for long-term records, there are some specific
challenges for accuracy assessments. Specifically, the data were com-
monly prepared by drawing fire perimeter outlines, which can include
errors and generalized fire patterns. Chuvieco and co-authors (2019)
extensively reviewed burned area (BA) detection papers from all re-
motely sensed data and concluded that the standardized collection of
remote sensing data can enable consistent data quality over space and
time and overcome uncertainty of data analysis across different agen-
cies and countries. The accuracy and precision of BA product are critical
for identifying key fire-related environmental variables such as topo-
graphy (Barros et al., 2013, 2012; Krawchuk et al., 2016), physiography
and climate (Mansuy et al., 2014), and ecozone (Parisien et al., 2006)
and creating scenarios of future global fire activity (Krawchuk et al.,
2009). The spectral indices are effective ways to select images needed
for BA detection from Landsat time-series in prior studies (Bastarrika
et al., 2011; Goodwin and Collett, 2014; Hawbaker et al., 2017). A
particularly important issue is the uncertainty of how fire perimeter

Fig. 1. The concept of Self-Organized Criticality.
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polygons include unburned and low-severity areas (i.e., fire refugia;
A.J.H. Meddens et al., 2018a).

The objectives of this study are: (1) to map fire extent and frequency
usingmulti-temporal Landsat images and to validate these maps with
existing manually drawn fire maps from the Canadian Park Service; (2)
to compute and interpret general fire trends with the concept of Self-
Organized Criticality. For the first objective, we use Google Earth
Engine (GEE) to compute and evaluate the accuracy of dNBR and
RdNBR (defined below) with maximum NDVI (pre-fire condition) and
minimum NBR (post-fire condition) image composites during the fire
season. For the second objective, we test the power-law distribution on
log-log scales using Kolmogorov-Smirnov (KS) statistics and compare
fire trends obtained from multi-temporal satellite data since 1990 with
the reference map since 1950.

2. Study site

Our study site is Wood Buffalo National Park (WBNP) in the
Northwest Territories and Alberta, Canada (Fig. 2). The park provided
habitat for wildlife animals such as wood buffalo (Bison bison atha-
bascae) and whooping crane (Grus americana). Trees composition is
dominated mainly by jack pine (Pinus banksiana), aspen (Populus tre-
muloides), balsam poplar (Populus balsamifera), white spruce (Picea
glauca), black spruce (Picea. Mariana), and tamarack (Larix laricana). In
the site, fires are typically ignited by lightning (Campos-Ruiz et al.,
2018; Kochtubajda et al., 2006) and need to be monitored. WBNP is one
of the largest parks in North America and has had major fire events
recorded since 1950s. The park is located in a fire hot spot of Canada

(Gillett et al., 2004; Stocks et al., 2002). The number of fire events in
recent years has gradually increased, and the total area burned has
dramatically increased (Stocks et al., 2002). The forest fire cycle is
around 70 years (Larsen et al., 2012), however the cycle varies among
forest types from 39 to 96 years (Larsen, 1997). Our study site has no
forest management activities and has been protected as national park
since 1922, which makes it an ideal place to test SOC. To study general
fire trends under the concept of self-organized criticality, we compare
the fire cycle derived from long-term satellite images with that from a
reference fire map. The park has been assessed with satellite-based fire
monitoring in several prior studies (Larsen, 1997; Soverel et al., 2011,
2010; Wilson et al., 2018), however the fire maps created from prior
efforts are different from the fire map created from this study using
Landsat time-series analysis.

3. Methods

We use Landsat image archive on Google Earth Engine to create a
new fire map using a composite image approach on time-series images
(Chuvieco et al., 2008). To make clear images, a composite image ap-
proach has been applied using high frequency 1 km resolution global
images for the Canadian boreal forest (Chuvieco et al., 2008). Prior BA
mapping was restricted by the image resolution, although 1 km re-
solution was enough to detect fire ignition with only 1.8% false de-
tection (Hantson et al., 2013). The two-phase approach (Bastarrika
et al., 2011) has also been implemented successfully to detect BA. The
accuracy of this method relies on the image quality of identified post-
fire images during the first-phase, and multiple spectral indices can be

Fig. 2. Study site is located at Wood Buffalo National Park in the Northwest Territories, Canada (fire map is produced by Canadian Park Services).
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combined to reduce errors selected post-fire images. A particularly
important advantage of the time-series approaches is the ability to
conduct image compositing, which has been mainly applied to cloud-
reduced mosaics created via multi-day image composites (Chuvieco
et al., 2008; Parks et al., 2018) and maximum albedo-based image
compositing (Barbosa et al., 1998). Image compositing can detect forest
fire without any prior knowledge about when a fire occurred. When
identifying forest fires, conventional satellite image analysis requires
specific dates to select bi-temporal images (pre- and post-fire images) to
assess fire severity (Epting et al., 2005; Roy et al., 2006), ideally by
anniversary date to account for consistent phenological status (French
et al., 2008; Lentile et al., 2009; Lu et al., 2004; Veraverbeke et al.,
2010a). Choosing the scenes using a scene-based search adds un-
expected spectral variation, contains different day time illumination in
terrain conditions (Verbyla et al., 2008), and requires cloud free
images. Although these difficulties can be addressed with calibration
methods like the optimality method (Roy et al., 2006; Verstraete and
Pinty, 1996) which enables less noisy spectral reflectance using the
distance and angle change in the two spectral domains, compositing is a
more powerful way to leverage the full information content of available
data. In this study, to avoid the challenges of the scene-based ap-
proaches, we apply a pixel-based image compositing approach (White
et al., 2014) to track fire-induced change at the pixel scale. Satellite
images used for image compositing in this study were from the top of
atmosphere (TOA) Tier 1 Landsat image collection and we included
only images with less than 10% cloud cover according to the collection
metadata. We computed key spectral indices, including NBR and NDVI.
NBR is the differentiated value between short-wave infrared and near
infrared red spectral band, while NDVI is the differentiated value be-
tween near-infrared red and red spectral band.

NBR = 1000 × (ρMIR - ρNIR)/(ρMIR + ρNIR)

NDVI = (ρNIR - ρRed)/(ρNIR + ρRed)

The areas burned by fire are identified by the indices below (Miller
and Thode, 2007).

dNBR = (NBRprefire - NBRpostfire)

= ABS NBRRdNBR    dNBR  /  ( /1000)prefire

where ρ MIR is Mid-Infrared, ρ NIR is Near-Infrared, and ρ Red is red
spectral reflectance band. The NBR and RdNBR ranges from −1000 to
1,000, and dNBR ranges from −2000 to 2000 (Key and Benson, 2006).

The reference fire map was provided by the Canadian Park Service
from 1950 to 2016 as fire boundary polygons, which were digitized
manually and updated within the park from several resources such as
satellite images, historical aerial photos, and GPS collection from field
crews.

Conventionally, the specific date of fire is identified using the
spectral change over a given Landsat scene or region (Cohen et al.,
2010; Kennedy et al., 2010; Zhu and Woodcock, 2014). However, this
study uses composite images based on specific indices. For example, a
maximum NDVI composite image is a single image derived from a time-
series of images. Each pixel in the maximum NDVI composite stores the
spectral values from the pixel in the time-series stack at that location
with the maximum NDVI value. This image composite process mitigates
cloud and shadow effects, because the indices go to zero when the pixel
has the same values of all bands over cloud and shadow. Even though
WBNP has flat terrain and has minimal topographic effects, the lower
azimuth sun angle in the high latitude causes lower illumination and

Fig. 3. The NDVI and NBR value change before and after fire during 2015. The maximum NDVI value was used to find pre-fire and the minimum NBR was used to
find post-fire days within the fire season from 1st June to 30th Sept in this study site. This figure demonstrates that the maximum NDVI and minimum NBR can pick
up pre- and post-fire days.
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reflectance values. In this case, the image compositing process max-
imizes the opportunity to collect more illuminated pixels to mitigate
this effect. GEE has a collection of image processing algorithms to
identify the area burned from multi-temporal images. There is also a
series of image compositing functions to compute a value by pixel from
a stack of multi-temporal images. Pixel-based analysis through GEE is
faster than conventional for-loop commands with a kernel visiting each
pixel, because in GEE all pixel values are computed in parallel across
multiple computers (Gorelick et al., 2017).

We only analyzed satellite images during the fire season, which runs
from June 1st to September 30th. The spectral reflectance of the max-
imum NDVI during the season is assumed to represent pre-fire condi-
tions, and the spectral reflectance of the minimum Normalized Burn
Ratio (NBR) during the season is assumed to represent post-fire con-
ditions (Fig. 3). Fig. 3 demonstrates how the spectral indices enable
identification of pre- and post-fire days within the fire season. The
maximum NDVI and minimum NBR are only searched within the fire
season because mid-Infrared spectral region is sensitive to snow. Out-
side of the range, NBR values goes under the minimum and is not re-
lated to fire. For the site used to create Fig. 3, the fire came to the site
where a thermal sensor was installed. The sensor detected and recorded
the actual day of burn. For each pixel, the pre- and post-fire date are
identified to store values to make an image composite for all bands,
then NBR is computed from the pre-fire and post-fire composite images.
The difference between the two NBR images is then used to compute
dNBR and RdNBR. The year range of satellite images used in this study
is from 1986 to 2016, which includes the Landsat 5, 7, and 8 sensors.
We used the best combination of different sensors, and the sensor
availability is the overlap of sensor duration: Landsat 5 is used from
1990 to 2011, Landsat 7 is used from 1999 to 2016, and Landsat 8 is
used from 2014 to 2016.

When identifying burned area using dNBR or RdNBR, we im-
plemented a threshold to avoid subjective decisions using the Otsu
method (Otsu, 1979). The Otsu method has been used to determine the
threshold in a bimodal distribution to create a binary image in com-
puter vision (Shapiro and Stockman, 2001). When the bimodal dis-
tribution is divided into two regions, the Otsu method finds the
threshold point that minimizes the inter-class variance (Otsu, 1979).
The implementation of the Otsu method requires both burned and
unburned areas. The unburned area is collected using the minimum
bounding boxes from the surrounding area burned. Because the spectral
calibration is variable among Landsat sensors, we computed the
threshold value computed by each sensor (Landsat 5, 7 and 8) for dNBR
and RdNBR respectively. After computing threshold values for dNBR
and RdNBR, we chose one fixed threshold value to apply to all data to
maintain a consistent thresholding process.

After creating the binary images (value 1 is assigned for the area
burned and value 0 is for unburned) from dNBR or RdNBR images,
there was still noise left in the images so we applied multiple noise
filtering steps (see Fig. 4). The first filtering removed water bodies (lake
or stream) using NDVI more than 0.2 in a maximum NDVI composite
image. The second filtering removed small segments using connected
component analysis, which labels separate index numbers to all seg-
ments and computes the area for each. The segments with an area less
than 3 ha are removed through this step. The 3 ha is similar to the
striping noise on images (mainly on Landsat 7 images). After the first
and second filtering steps were applied, we smoothed the remaining
area using morphological image operations (Shapiro and Stockman,
2001). The smoothing process is required to make the result compar-
able to the reference data which has a smoothly outlined fire perimeter
(Goodwin and Collett, 2014; Zhang, 2008). Morphological image fil-
tering with opening and closing operations is applied with a 5 x 5
window to remove isolated noise on the binary image. To complete the
process, we saved the burned area results as a mask. We retained the
burned area mask in the following 10 years to avoid duplicated areas
burned in the following years.

We evaluated the satellite results using a reference map provided by
the Canadian Park Service, which we used for accuracy assessment
(user's and producer's accuracy and commission and omission errors).
There are important challenges when comparing results between sa-
tellite-based analysis and manually digitized reference data. The re-
ference polygon is drawn as an outline representing a fire perimeter and
does not capture the detailed mosaic patterns inside the boundary, in-
cluding variations in burn severity and unburned areas. Relatively low
accuracy values stem from this unavoidable technical difference. To
understand this effect, we prepared and created fire perimeter bound-
aries excluding any interior unburned patches from satellite results to
conduct the accuracy assessment.

3.1. The concept of self-organized criticality

To understand the relationship between the area burned and the
frequency of forest fire, the two are plotted in log-log XY space to assess
whether they follow the power-law distribution, which indicates a
critical (self-maintained) state (Malamud and Turcotte, 1999). When
the power-law relationship is indicated, the slope of the size-frequency
relationship provides the general trends of forest fire. To validate the
log-log scale and relationship, we applied a validation technique pro-
posed by Clauset et al. (2009). The power-law distribution is for-
mulated below.

p(x) ~ x −α.

This implies the log-log scale formula below.

log p(x) = -α log(x) + c

Where the probability density of p(x) is the frequency or histogram of x,
α is the scaling factor of this power-law, and c is the noise and constant
which is not normally distributed because of the transposed logarithm
value.

To test whether the distribution follows the power-law or not,
Clauset et al. (2009) provide two steps. First, maximum likelihood es-
timators are used in the doubly logarithmic axes to determine the
scaling parameter α (the slope) of the equation above. Second, the
lower bound xmin is determined. The power-law relationship is only
established when x is above some lower bound xmin. We used, the
Kolmogorov-Smirnov (KS) statistic to quantify xmin and to identify the
best fit of the power-law distribution with the condition: x > xmin. The
KS statistic is

= −
≥

P x P xD max ( ) ( )
x xmin

emp power

where Pemp(x) is the empirical cumulative distribution function (CDF)
and Ppower(x) is the CDF of the power-law model best fitted to Pemp(x).
The minimum value of D can be chosen with variable values of xmin.

With the determined variables of α and xmin, we conducted a
goodness-of-fit test for the relationship between the fire extent and fre-
quency. The hypothesis (the two distributions are the same) is tested
using the distance between the empirical and the power-law through
bootstrap sampling. If the p-value is more than 0.05, the difference is
within the variation expected statistically. If it is less than 0.05, the
power-law is ruled out. When the relationship follows a power-law
distribution, the system reaches the self-organized state.

4. Results

(1) Fire mapping with Landsat multi-temporal image analysis using
GEE

Based on the Otsu method (Fig. 5), the threshold values for each
Landsat sensor between burned and unburned values was 584.31 for
both the dNBR and RdNBR indices. The main difference between the
two indices is the smaller burned extent detected by dNBR compared to

A. Kato, et al. Remote Sensing of Environment 237 (2020) 111525
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RdNBR, which occurred because the normalization of RdNBR with pre-
fire vegetation expanded the area (A and D in Fig. 6). RdNBR was better
in identifying the area burned than dNBR when compared with the
reference data, but dNBR better avoided misclassifying unknown pixels
than RdNBR (Fig. 7). Fig. 7 showed that RdNBR detects more area than
dNBR because of the normalization of RdNBR. In addition, when
creating fire boundaries, RdNBR matched the reference map better than
dNBR did. When noise filtering was applied, the user's accuracy

increased from 87.3% to 93.3% and 63.1% to 87.6% for dNBR and
RdNBR respectively (Table 1). The overall producer's accuracy of
RdNBR was better than that of dNBR by 13.6% while user's accuracy
exhibited only a 5.7% difference between two (Table 1). As a result,
RdNBR (with noise filtering) was optimal for creating annual fire maps
from multi-temporal Landsat images.

After RdNBR was found to be optimal, an accuracy assessment was
conducted only for RdNBR with the referenced fire map to provide

Fig. 4. Schematic diagram on Google Earth Engine analysis.

Fig. 5. The collection of threshold values of various Landsat sensors for dNBR and RdNBR from bounding box analysis. The dashed line is one threshold value set and
used for this study.
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overall producer's and user's accuracy by each year (Fig. 8). From Fig. 8,
the accuracy depended on the size of BA; small areas had wide variation
of accuracy, while large areas had relatively higher accuracy. The
weighted average of producer's accuracy was 52.2% and user's accuracy
was 87.6%.

To show the effect of noise filtering, we presented the increasing
and decreasing errors as a percentage (100% is the initial area of the
misclassified error) and sorted by the area before the noise filtering.
More than 100% means increasing misclassification after the noise fil-
tering (left in Fig. 9), and less than 100% means decreasing mis-
classification after the noise filtering (right in Fig. 9). The commission
errors were increased by 9.1% (the weighted average) and omission

Fig. 6. dNBR and RdNBR images with and without filtering noises (2016 forest fire case, A: dNBR without noise removal, B: dNBR with noise removal, C: reference
2016 fire map from Canadian Park Services, D: RdNBR without noise removal, E: RdNBR with noise removal).

Fig. 7. dNBR and RdNBR images with filtering noise (A: the location from 2016 data in our research site, B: reference data, C: dNBR result, D: RdNBR result).

Table 1
Overall accuracy assessment before and after the noise filtering for dNBR and
RdNBR.

(unit: %) index user's
accuracy

producer's
accuracy

commission
errors

omission
errors

Before noise filtering dNBR 87.3 41.0 59.0 12.7
RdNBR 63.1 55.9 44.1 36.9

After noise filtering dNBR 93.3 38.6 61.4 6.7
RdNBR 87.6 52.2 47.8 12.4

A. Kato, et al. Remote Sensing of Environment 237 (2020) 111525
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errors decreased dramatically by 82.9% (the weighted average) when
100% was set to the area of errors before the noise filtering was applied.
Thus, the noise filtering used in this study significantly reduced the
omission errors without substantially increasing commission errors.

Fig. 10 shows the difference between satellite results including
unburned patches and manually digitized reference data excluding
unburned patches. After unburned patches are excluded from satellite
results to compare the accuracy with the reference data, the accuracy
was increased from 52.2% to 62.0% (increased by 10%) for the pro-
ducer's accuracy while 87.6% of user accuracy was the same.

(2) General trends of fire with the concept of self-organized criticality

The general fire trends obtained in the log-log space indicated a
linear distribution from satellite results and a curved (non-linear) dis-
tribution from the reference map (Fig. 11). The slopes were 1.91 for the
satellite imagery and 1.73 for the reference data (Table 2). The slope
from the satellite result was steeper than that of the reference map. The
minimum area that did not include the power-law relationship was
0.49 km2 for the satellite map and 29.46 km2 for the reference map,
respectively. The bootstrap hypothesis testing using KS statistics re-
jected the distribution of the reference map (p value < 0.05), in-
dicating that the distribution was not power-law. However, the satellite
result was not rejected (p value > 0.05), indicating a power-law dis-
tribution. The goodness-of-fit based on KS statistics also indicated that
the satellite result was closer to a power-law distribution than the

reference map was. Fig. 12 shows the sensitivity of slopes by the dif-
ferent observation intervals from 1990 to 2000 (10 years), from 1990 to
2005 (15 years), from 1990 to 2010 (20 years), and from 1990 to 2016
(26 years). The longest interval was derived by the referenced data
from 1950 to 2016 (66 years). The slopes from the reference map and
the satellite result exhibited different sensitivities and responded dif-
ferently to recent large fire events. The slope from the reference data
since 1990 changed from 1.5 to 1.7 with the last six years especially
influenced by large fire events, while the slope of reference data since
1950 was not sensitive and remained around 1.6 for the last six years.
Collectively, these multiple lines of evidence showed that the satellite-
based maps are more consistent with the status of self-organized criti-
cality than the reference maps are.

5. Discussion

(1) Fire mapping with Landsat multi-temporal image analysis using
GEE

This study highlights the advantage of using image compositing
approaches to identify the area burned, which does not require any
prior knowledge about specific fire dates. This is especially important in
remote locations where multiple fires are happening in different loca-
tions and times throughout the fire season. In addition to avoiding the
issue of which day to choose images (Verbyla et al., 2008), this tech-
nique provides a mask to keep the area burned within the last ten years

Fig. 8. RdNBR user's and producer's accuracy of this analysis (left: producer's accuracy, right: user's accuracy).

Fig. 9. Change of errors by noise filtering (left: commission error, right: omission error, more than 100% means increasing errors and less than 100% means
decreasing errors relative to 100% which is set to the area of errors before the noise filtering was applied).
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to avoid duplicating recently burned locations or to quantify patterns of
recurring fire. Ten years represent a window wherein vegetation and
fuel recovery generally precludes a new fire in the same location in this
study area, but this window can be variable among different sites and
species (Larsen, 1997). Moreover, this masking technique is useful to
monitor ecological responses after fire because the mask can track post-
fire trajectories of vegetation change within a given burned area.

An advantage of this study is the application of spectral indices such
as NDVI and NBR (and RdNBR) to find the Best-Available-Pixel (White
et al., 2017) for pre and post fire condition through the pixel-based
image compositing (White et al., 2017). In this way, the first phase
process in the two-phase algorithm (Bastarrika et al., 2011) can be
simplified, because spectral indices are integrated to the pixel-based
image compositing. In addition, we introduced and applied multi-step
noise-filtering during post-processing to reduce confusion errors. In
future studies, the Best-Available-Pixel can be improved by increasing
images from more frequent satellite observations or integrating addi-
tional sensors such as Sentinel. The second phase of the two-phase al-
gorithm (Bastarrika et al., 2011) uses an iterative region growing and is
computationally expensive when scaled over a large region.

Manually drawn fire maps have been used to demonstrate SOC in
studies over a large area like this study (Hantson et al., 2016; Moreno
et al., 2011), but our study showed the finer detail fire boundary pro-
vide a better fit for the log-log linear relationship on Figs. 11 and 12.
The significant difference between satellite image analysis and

manually digitizing on Fig. 10 has also been shown in previous research
(Cocke et al., 2005; Reilly et al., 2017). Problems with detecting fire
boundaries using manually digitized aerial photos are well known
(Andison, 2012; Andison and McCleary, 2014). Within a given polygon,
there are unburned or spectrally unchanged patches left by variable
burn severity (Fig. 10). When unburned islands were excluded, the
user's accuracy was increased by 10% with the reference fire map only
contains outlined fire perimeters. This confirmed that the unburned and
low-severity areas influenced the accuracy. The omission and com-
mission errors were also associated with the reference data quality,
demonstrating the advantage of using more fire perimeters as reference
data.

Another key uncertainty is associated with phenological differences
between conifer and deciduous forests. The spectral difference ap-
proach employed in this study has the capacity to detect not only the
area burned by fire but also the phenological changes within deciduous
stands. For example, the misclassified burned area which should not be
burned in Fig. 9 included the seasonal change in deciduous trees. This

Fig. 10. Issues of producer's accuracy within the referenced fire map (producer's accuracy is 48.5% for this case. A: the location from 2004 data in our research site,
B: the black area is a binary image to indicate the area burned with the shaded polygon from the referenced fire map, C: the original RdNBR image ranged from black
to white to show low to high RdNBR value).

Fig. 11. Power law analysis of different data source from 1990 (left: the referenced fire map with p value < 0.05 of KS statistics, right: satellite result with p
value > 0.05 of KS statistics).

Table 2
The power-law relationship of results (gof is goodness-of-fit from KS statistics).

α xmin (km2) p-value gof

Reference data (from 1990) 1.73 29.46 0.003 0.1066
Satellite result (from 1990) 1.91 0.49 0.083 0.0193
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issue exhibited a maximum error size of 1.19 km2, which represents
unavoidable errors associated with seasonal phenology. However, when
we delineated seasonally deciduous forests with the Otsu threshold, the
difference between pre- and post- NBR values over the burned area was
larger than the difference due to seasonal change in the deciduous
forest. Importantly, the same threshold technique can be applied to
different ecosystem to account for local species composition.

One additional constraint of the technique used in this study is the
range of input data from June 1st to September 30th, which limits the
detection capability of spectral indices to snow-free time periods. When
spectral indices are used as criteria to select images, the spectral sen-
sitivity needs to be considered for the seasonal range (e.g. short-wave
infrared red is sensitive to snow condition). Future application of this
technique is in other regions could leverage thermal images to exclude
snow from images while including data from a broader date range.

(2) General trends of fire with the concept of self-organized criticality

To date, forest fire events have been recognized as exhibiting SOC in
simulation-based studies (Drossel and Schwabl, 1992; Hergarten, 2002)
and with forest fire maps in natural stands of Yellowstone National Park
(Malamud et al., 1998). In this study, Landsat time series indicated a
power-law relationship, but the non-linear result from the reference fire
map since 1990 did not follow the power-law (Fig. 11 and Table 2).
Ricotta and co-authors (1999) found a similar result (i.e., non-linear,
curved relationship) and they needed to divide the curve into several
periods to fit the linear power-law relationships (Ricotta et al., 2001).
Our study found that the curved shape comes from fire extent over-
estimation due to the outlined fire boundary (Fig. 10). Smaller fires are
not influenced by this overestimation because the area tends to have
more homogeneous severity and less complex perimeter patterns.
However, larger fires are more susceptible to this overestimation be-
cause of mixed-severity mosaics within fire perimeters (Agee, 1993;
Meddens et al., 2018).

In our study, the power-law relationship suggests that the Landsat
data since 1990 provides a long enough record to assess general fire
trends with the concept of SOC. However, questions remain in terms of
how long the observation record needs to be to get reliable fire trends or
how sensitive the slope is to the length of the time series and non-
stationary behavior, such as recent increases in fire activity. From
Fig. 12, the observation period from 1990 may not be long enough to
stabilize the slope when compared with the slope created from 1950.
This instability of the slope is reflected in the power-law distribution. As
such, the sufficient time-series length depends on data quality. Our
satellite results indicate that since 1990 the slope was around 2.0 and
has not been changed by recent large fire events (Table 3).

In prior studies, the log-log slope was reported from 1.3 to 1.5 from
Montana in the US, 1.1 to 2.0 in China, 2.2 from Californian in the US,

and 1.0 to 1.2 from computer simulation result (Clauset et al., 2009;
Malamud and Turcotte, 1999; Song et al., 2001). The slope difference
was from the combustible materials (the amount of fuel), weather and
climate (ecological zone), and fire suppression or control (fire fre-
quency) (Malamud and Turcotte, 1999). Mandelbrot (1982) showed the
fractal dimension is associated with α (the slope), and Song et al.
(2001) compared the different fractal dimensions in different sites for
SOC. In prior fire studies, the fractal index has been measured as the
ratio between the perimeter and the area of the polygon (Turner et al.,
2001) and our study shows how the slope difference between the re-
ference map and the satellite result is influenced by the fractal di-
mensions of the fire boundary (Fig. 10).

The slope of SOC can be also related to the local fire behavior which
is limited by abiotic or biotic condition such as topography and land-
scape physiography (Mansuy et al., 2014) and local ecozone (Parisien
et al., 2006). For instance, fire behavior can be oriented along wa-
tershed (Barros et al., 2013, 2012). The local abiotic condition also
determines general fire trends and patterns especially in boreal forest
where climate is the limiting factor for forest fire. As such, landscape
units such as watersheds or ecozones can be used to understand and
interpret fire trends in the context of SOC.

Additional factors influencing the slope of SOC include input data
resolution and human activity. The slope has been compared globally
using 1 km resolution Moderate Resolution Spectroradiometer (MODIS)
(Hantson et al., 2015b) and 30m resolution Landsat imagery (Hantson
et al., 2015a). Importantly, although the SOC concept itself is scale
invariant and applicable to any scale of data, the slope can be variable
from the input data from coarse to fine resolution (Hantson et al.,
2015b). Because our study showed that the power-law slope was in-
fluenced by the perimeter or mosaic patterns, finer-resolution global
coverage satellite such as Sentinel-2 (10m resolution, ESA), RapidEye
(5m resolution, Planet Inc.), and Planetscope (3m resolution, Planet
Inc.) may confirm the optimum resolution to determine the slope of
SOC. BA maps have already been created by Sentinel-2 over a large area
of Africa (Roteta et al., 2019), and future studies could address SOC
when the time series data archive is long enough.

Because the SOC slope was also influenced by human activity and
socioeconomic dynamics (Hantson et al., 2015a, 2015b; Weiguo et al.,

Fig. 12. Change of power-law relationship in different year intervals (left: reference data since 1950, center: reference data since 1990, right: RdNBR data since 1990,
△ markers are years by 2000, □ markers are years by 2005, ∗ markers are years by 2010, 〇 markers are years of all data by 2016.

Table 3
The slope change of the power-law relationship in different intervals.

Reference data
since 1950

Reference data
since 1990

RdNBR
since 1990

by 2000 1.63 (50 years) 1.56 (10 years) 1.97 (10 years)
by 2005 1.66 (55 years) 1.51 (15 years) 2.00 (15 years)
by 2010 1.65 (60 years) 1.50 (20 years) 2.00 (20 years)
all data 1.67 (66 years) 1.73 (26 years) 1.91 (26 years)
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2006), it is important to assess potential shifting fire regimes in areas
with and without substantial anthropogenic impacts. Our study site
represents a good global reference site for boreal forests to understand
how contemporary fire dynamics can be influenced by indirect an-
thropogenic impacts, including global warming.

Another key implication of this study is that if the site has been
substantially disturbed by human activities, the site may not reach the
critical state unless the human disturbance cycle is similar to the nat-
ural disturbance cycle. In the other words, this SOC concept can be a
good indicator of sustainable landscapes adapted to fire disturbance
within the historical range of variability. Testing criticality by power
laws helps to understand general trends of contemporary fire regime,
which could inform the sustainable use of prescribed fire and other
management activities.

6. Conclusions

The rapid development of cloud-based satellite data analysis using
GEE allows users to handle many images from satellite data archive
without downloading the data. This study shows that Landsat time
series composites can capture relatively fine-scale spatial patterning of
fire perimeters, enabling the understanding of contemporary fire trends
in a fire-prone area in boreal Canada, Wood Buffalo National Park. Our
SOC assessment indicates that fire trends obtained from satellite data
since 1990 followed a power-law relationship to produce the slope of
1.9, whereas the manually drawn reference map did not follow the
power-law, potentially due to coarsely delineated fire perimeters. This
technique reveals the fractal dimensionality of contemporary fire
perimeters and establishes a baseline database for assessing future fire
activity, which is likely to continue to increase in boreal forests. As
such, this study elucidates fire trends directly from satellite data across
a relatively large and remote boreal forest, which is very vulnerable to
global warming.
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