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ABSTRACT: Thermal regimes of rivers and streams profoundly affect aquatic ecosystems, but are poorly
described and classified in many areas due to the limited availability of annual datasets from extensive and rep-
resentative monitoring networks. By mining a new temperature database composed of >23,000 site records that
spans the western United States (U.S.), we extract annual monitoring records at 578 sites on perennial streams
to describe regimes in this diverse region. Records were summarized using 34 metrics that described regime
aspects related to magnitude, variation, frequency, duration, and timing. The metrics were used in a multivari-
ate cluster analysis to classify streams into seven distinct regime types and in a principal components analysis
(PCA) to examine patterns of redundancy among metrics. The PCA indicated that 2–5 orthogonal PC axes
accounted for 74%–89% of the variation in thermal regimes at the monitoring sites. Most of the variation in PC
scores that defined the two dominant axes was in turn predictable from a suite of geospatial covariates in multi-
ple linear regressions that included elevation, latitude, riparian canopy density, reach slope, precipitation, lake
prevalence, and dam height. Our results have parallels to previous flow regime analyses that describe the utility
of small numbers of PCs or allied metrics in regime characterization, and can be used to better understand and
parsimoniously represent thermal regimes in the western U.S.
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INTRODUCTION

Stream scientists, regulators, and aquatic ecolo-
gists have long recognized the importance of tempera-
ture (Ide 1935; Brett 1952; Himmelblau 1960) and
recent decades of work have continued to elucidate
linkages with stream metabolism (Demars et al.
2011; Bernhardt et al. 2018), water chemistry (Beau-
lieu et al. 2011; Comer-Warner et al. 2018), food-web
structure (Kishi et al. 2005; Woodward et al. 2010),
and species distributions and abundance (Hill and
Hawkins 2014; Isaak et al. 2017b; K€archer et al.
2019). Moreover, the importance of temperature will

only increase this century as climate change pro-
gresses and effects on lotic systems and communities
comprised of ectothermic organisms are realized
(Heino et al. 2009; Whitney et al. 2016). In fact, it
might be argued that thermal considerations of are of
secondary importance only to the presence of flowing
water as a physical characteristic defining streams
and rivers. Previous description of spatiotemporal
variation in flow regimes based on suites of descrip-
tive metrics was key to uncovering fundamental
insights about aquatic ecosystems and regime analy-
sis now serves as a basis for the subdiscipline of eco-
logical flows (Poff et al. 1997, 2010). Those
contributions would have been impossible without

Paper No. JAWRA-19-0089-P of the Journal of the American Water Resources Association (JAWRA). Received June 13, 2019; accepted
May 11, 2020. © Published 2020. This article is a U.S. Government work and is in the public domain in the USA. Discussions are open
until six months from issue publication.

Rocky Mountain Research Station, U.S. Forest Service, Boise, Idaho, USA (Correspondence to Isaak: disaak@fs.fed.us).
Citation: Isaak, D.J., C.H. Luce, D.L. Horan, G.L., Chandler, S.P. Wollrab, W.B. Dubois, and D.E. Nagel. 2020. "Thermal Regimes of

Perennial Rivers and Streams in the Western United States." Journal of the American Water Resources Association 1–26. https://doi.org/10.
1111/1752-1688.12864.

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION JAWRA1

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION

AMERICAN WATER RESOURCES ASSOCIATION

https://doi.org/10.1111/1752-1688.12864
https://doi.org/10.1111/1752-1688.12864
http://crossmark.crossref.org/dialog/?doi=10.1111%2F1752-1688.12864&domain=pdf&date_stamp=2020-06-25


data from discharge gauge monitoring networks and
the availability of flow records to the research com-
munity. Comparable knowledge about thermal
regimes is needed, but has lagged because tempera-
ture data are not recorded at most flow gauges and
datasets of annual records have been difficult to
obtain from more than a few sites or watersheds (Orr
et al. 2015; Isaak et al. 2018b). In recent years, data
limitations have begun to ease with the advent of
inexpensive, reliable temperature sensors and grass-
roots monitoring efforts are becoming common
throughout much of Europe and North America (e.g.,
Hilderbrand et al. 2014; Trumbo et al. 2014; Nussl�e
et al. 2015; Daigle et al. 2016; Jackson et al. 2016;
Mauger et al. 2016).

Previous data limitations have not constrained the
number of studies that address temperatures in lotic
systems, which is a popular topic with reviews com-
mon in both the physical science (Webb et al. 2008;
Gallice et al. 2015; Dugdale et al. 2017) and ecological
literatures (Ward 1985; Poole and Berman 2001;
Caissie 2006; Olden and Naiman 2010; Steel et al.
2017). By necessity, however, a primary focus has
often been the description and modeling of thermal
characteristics at a small number of sites or across
areas of limited geographic extent. Comparatively lit-
tle is known about broader regime characteristics
and how these may relate to regional physiographic
controls, although previous studies do provide
insights that are useful for setting expectations. For
example, temperature dynamics at a stream site cov-
ary with changes in air temperature, discharge, and
solar radiation conditions that affect stream heat
budgets through multiple mechanisms (Stefan and
Preud’homme 1993; Isaak and Hubert 2001; van Vliet
et al. 2010). Thermal regimes, therefore, should gen-
erally reflect annual cycles in those conditions, with
distinctions potentially emerging between streams
flowing at different elevations, draining watersheds
that are mesic or arid, or flowing through coastal
areas vs. those more continental with greater climatic
extremes, to name a few possibilities. Additional ther-
mal nuances may arise in association with network
topology because watershed conditions sometimes
change dramatically at confluences (Benda et al.
2004; O’Sullivan et al. 2019), or due to the physical
properties of water, such as its high specific heat
value that dampens variability in larger rivers and
the 0°C lower temperature bound in streams exposed
to subzero air temperatures. Local factors may also
affect thermal regimes and override macroscale
effects, as when riparian vegetation conditions
change abruptly or where geologic formations with
high water yields create spring streams with rela-
tively stable flow and temperature conditions
(O’Driscoll and DeWalle 2006; Kelleher et al. 2012).

Similarly, dams and reservoirs may create abrupt
serial discontinuities in thermal conditions depending
on the size of reservoirs and depth of water intakes
or local water management policies (Olden and Nai-
man 2010; Maheu et al. 2016; Isaak et al. 2018b).

In recent years, several studies have developed
thermal regime classifications that condense the
range of observed variability into a set of categories
based on similar characteristics. For example, Rivers-
Moore et al. (2013) used principal components analy-
sis (PCA) and clustering techniques with temperature
records from 82 sites in South African streams to
summarize regimes into 11 categories based on
descriptive metrics. Chu et al. (2010) and Daigle
et al. (2019) summarized stream temperature records
from glaciated terrain in eastern Canada and used
multivariate techniques to describe associations with
landscape and physicochemical conditions. At a much
broader scale, Maheu et al. (2015) used temperature
records from 135 gauging stations across the United
States (U.S.) to classify streams into six categories
based three parameters (magnitude, amplitude, and
timing) derived from a Fourier analysis of annual
temperature cycles. However, attempts at classifica-
tion have yet to be made that use large, spatially
extensive temperature datasets drawn from geo-
graphically and climatically diverse areas, to not only
characterize thermal regimes at discrete monitoring
sites, but also to extend those efforts with predictive
models applied throughout networks. Regime map-
ping is a common and useful practice within the more
mature flow regime literature (Snelder et al. 2009;
Olden et al. 2012) and would be useful for rendering
thermal regime domains and the environments avail-
able to aquatic organisms or that drive ecosystem
processes in river networks.

Aiding predictive mapping efforts and coincident
with the recent increase in temperature monitoring
efforts, has been a proliferation of complimentary data-
sets and geospatial resources for organizing and
attributing stream observations to conduct synthetic
analyses (sensu Poisot et al. 2016). These consist of two
primary components, first of which are nationally con-
sistent geospatial frameworks that provide vector or
raster streamline representations of drainage net-
works with unique reach identifiers for use in geo-
graphic information system environments (Cooter
et al. 2010; Stein et al. 2014). Tiered to those networks
are a number of covariate databases that describe
reach attributes (e.g., length, elevation, slope) or those
of the associated watersheds (e.g., contributing area,
proportion of land cover types, geologic composi-
tion; Domisch et al. 2015; Hill et al. 2016; McManamay
and DeRolph 2019), which provide a convenient and
powerful means of attributing stream observations.
Reach and watershed descriptors can also be used as
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covariates in analyses and to visualize or map results,
thus providing an important bridge for scaling from
local observations to network patterns that may pro-
vide additional insights.

One place opportunities exist to advance thermal
regime research is the western U.S. (hereafter, the
“West”) where a convergence of factors related to aqua-
tic species of concern, climate change, and water tem-
perature standards has motivated considerable efforts
to monitor temperature in recent years (Nehlsen et al.
1991; USEPA 2003; USGCRP 2018). Moreover, the
region is large and physiographically diverse, which
suggests that the thermal signatures of its flowing
waters will be equally diverse and perhaps inclusive of
conditions in other geographic areas. Enabling this
research is the NorWeST temperature database, which
is a compilation of temperature records from >23,000
stream and river sites that were collected by profes-
sional biologists and hydrologists employed by state,
federal, tribal, and private resource agencies in the
West (Isaak et al. 2017a). Here, we mine the database
to extract a representative set of annual records that
were taken contemporaneously over a multiyear per-
iod, summarize the records using a set of descriptive
metrics, and then use multivariate analyses to
describe metric commonalities and discern those that
convey the most information about thermal regimes.
Predictive models of key regime elements are devel-
oped using climatic, geomorphic, landscape, and
hydrologic covariates and used to map thermal
regimes throughout the network of perennial streams
and rivers in the West. Results are discussed with
regards to the thermal patterns that are observed, fac-
tors contributing to these patterns, implications for
thermal ecology, and future directions in regime
research given rapid growth in the availability of tem-
perature data and geospatial resources for streams.

STUDY AREA

The West as circumscribed in this study encom-
passes 2,584,000 km2, most or all of eleven states
from the Pacific Ocean to the Great Plains in the cen-
tral U.S., and is drained by an extensive network of
rivers, streams, and intermittent channels (Benke
and Cushing 2005; Palmer and Vileisis 2016; Fig-
ures 1 and 2). Major river drainages within the West
include the Columbia-Snake River drainage and
upper Missouri River of the northwest, the Colorado
River and Rio Grande River drainages of the south-
west, and Sacramento-San Joaquin River drainage of
California. The area is topographically complex,
with broad basins and numerous mountain ranges, the

latter dominated by the Cascade Range and Sierra
Nevada near the coast and the Rocky Mountains fur-
ther inland with peak elevations exceeding 4,400 m.
Climate is characterized by seasonally variable tem-
peratures with annual air temperatures that are
approximately 10°C warmer at the southern border
with Mexico than at the northern Canadian border.
Much of the region is arid although coastal areas and
higher elevations are relatively mesic. Most precipita-
tion occurs during fall and winter months, except in
the southwest where summer monsoons are important
(Mock 1996). Precipitation accumulates as snow at
high elevations and northern latitudes during the win-
ter and meltwater runoff the following spring creates
pronounced hydrologic peaks in most streams. The
exceptions are lower-elevation coastal streams, where
peak runoff usually occurs in association with winter
rains, and low-elevation southwestern streams where
flashy peak flows sometimes occur during monsoons.

Vegetation types are diverse, track local climatic
conditions, and include alpine tundra, forests, shrub-
lands, grassland steppe, and deserts. Human popula-
tions are large in coastal areas, but small throughout
most of the interior except for scattered urban cen-
ters. Agricultural development occurs primarily in
river valleys at the lowest elevations to take advan-
tage of consistent summer water supplies and fertile
floodplains. Most mid- to high-elevation lands are
publically owned and federally administered by the
U.S. Forest Service, U.S. Bureau of Land Manage-
ment, and National Park Service for a variety of
land-use, recreational, and conservation purposes.
Dams built for flood control, irrigation, and hydro-
electrical production are not uncommon, but mostly
occur on larger rivers, so free-flowing streams and
rivers occur throughout major portions of the regional
network. A diverse ichthyofauna inhabits the West,
but cold-water fishes such as salmon, trout, and charr
often dominate societal interests and conservation
investments (Nehlsen et al. 1991; Isaak et al. 2018b).
Exceptions occur, however, in warmer, drier areas
such as California, the Great Basin, and desert por-
tions of the southwest where numerous mussel spe-
cies, amphibians, and nonsalmonid fishes are also of
conservation concern (Minckley and Deacon 1968;
Hershler et al. 2014; Howard et al. 2015).

METHODS

River Network and Temperature Dataset

Rivers and streams within the study area were
delineated using the medium resolution 1:100,000-
scale National Hydrography Dataset-Plus (NHD-Plus;
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FIGURE 1. Study area map showing 578 river and stream temperature monitoring sites, locations of dams that exceed 30 m in height, and
rivers with mean annual daily discharge >6 m3/s in the western United States (U.S.) (a; thick blue lines denote major regional rivers). (b)

Temperature monitoring sites relative to the mean annual daily discharge and elevation of all reaches in the 343,000 km perennial network.
Supporting Information includes a high-resolution map showing this information in more detail. NHD, National Hydrography Dataset.
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http://www.horizon-systems.com/NHDPlus/index.php)
to take advantage of the extensive geospatial datasets
that are available to describe reach attributes (e.g.,

McKay et al. 2012; Hill et al. 2016; Isaak et al. 2017a).
However, the full NHD-Plus network contains many
reaches that are unlikely to support aquatic species

(a) (b)

(c) (d)

(f)(e)

FIGURE 2. The western U.S. hosts a diversity of flowing waters that include high-elevation mountain streams and rivers like the South
Fork of the Payette River in central Idaho (a, photo credit: Dan Isaak), spring streams like Tilson Creek associated with karst geology in the
Black Hills of South Dakota (b, photo credit: Steve Hirtzel), impounded rivers like the Colorado River downstream of Glen Canyon Dam in
northern Arizona (c, photo credit: U.S. Bureau of Reclamation), low elevation coastal streams like Plaskett Creek that drain into the Pacific
Ocean (d, photo credit: David Smith), mid-elevation streams flowing through rangelands and steppe like the Bruneau River in southern
Idaho (e, photo credit: Dan Isaak), and desert streams like the Rio Chama in New Mexico (f, photo credit: Charles Burgess).
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due to either topographic steepness in mountainous
areas or flow intermittency in arid regions that are
common across much of the West. To highlight the
perennial subset of the network that was most ecologi-
cally relevant, therefore, reaches coded as intermittent
in the NHD-Plus network (Fcode = 46003) were
deleted, as were those with mean annual flows
<0.03 m3/s, or reaches with channel slopes >15%. The
flow values were obtained from the Western U.S.
Stream Flow Metrics website (http://www.fs.fed.us/rm/
boise/AWAE/projects/modeled_stream_flow_metrics.
shtml) and were previously validated by Wenger et al.
(2010), whereas the slope and intermittency informa-
tion were integral to the NHD-Plus stream dataset.
These filtering criteria were based on our observations
during extensive field research in the West and pat-
terns of fish and amphibian species occurrence at thou-
sands of stream survey sites that have previously been
linked to the NHD-Plus network (Wenger et al. 2011;
Isaak et al. 2017b). Filtering reduced the original net-
work extent from 1,632,000 to 343,000 km within the
study area, with remaining streams flowing at eleva-
tions of 0 m along the Pacific Ocean coast to 3,900 m at
the highest elevations in the Rocky Mountains of Col-
orado (a high-resolution map of the study network and
regional topography is provided in the Supporting
Information).

The NorWeST database consists of >300,000,000
hourly temperature recordings at more than 23,000
unique stream and river sites that were provided by
numerous natural resource agencies, checked for
quality assurance, and georeferenced accurately to
the NHD-Plus network (Isaak et al. 2017a). The large
majority of site records in the database span only 1–
3 years during summer months, so the database had
to be queried to extract a subset of annual records
useful for regime analysis. To do that, we intersected
the filtered perennial NHD network with the Nor-
WeST database of daily temperature summaries
(Chandler et al. 2016) and extracted data for sites
that had values on at least 70% of the days during the
five-year period of December 1, 2010 to November 30,
2015. In portions of the network where site monitor-
ing records were clustered and particularly dense,
they were rarified by eliminating sites that occurred
within 10 km of other sites to obtain a better spatial
balance of samples and to reduce the possibility of
spatial autocorrelation that often occurs in stream
temperatures at short network distances (Isaak et al.
2010; Zimmerman and Ver Hoef 2017). Site deletions
within a cluster were performed randomly until only
one site remained with a 10 km radius. We also
excluded temperature records that were located
<1 km downstream from the base of dams as these
were more indicative of the upstream reservoir tem-
peratures than thermal conditions in flowing waters.

By requiring a minimum of 70% record completion,
our database query also ensured that the records
included considerable amounts of data representing
conditions during the annual thermal cycle, which is
necessary to characterize several important regime
aspects (Maheu et al. 2015; Isaak et al. 2018a). Fur-
thermore, targeting a consistent five-year period
ensured that monitoring sites experienced similar
intra and interannual variation in hydroclimatic con-
ditions. Although a longer recording period would be
desirable and has been recommended in thermal
regime research (Jones and Schmidt 2018), broad
installation of monitoring sites to record annual data
rather than summer-only data is a relatively recent
phenomenon in the West and the number of long-term
annual records is very limited (Isaak et al. 2012,
2018b). Thus, our dataset struck a balance between
accurately representing individual sites, providing
consistency among sites, and spanning a broad geog-
raphy to encompass a range of thermal conditions.

Similar to our previous regime work (Isaak et al.
2018a), we defined the thermal year as starting on
December 1 because temperatures usually reach their
annual lows by this date and the three-month period
thereafter constitutes a logical winter season (i.e.,
December, January, February) that matches the con-
vention used in the climatology literature (e.g., Abat-
zoglou et al. 2014). Subsequent three-month periods
were considered to be spring (March, April, May), sum-
mer (June, July, August), and fall seasons (September,
October, November). Because temperature records
often consisted of recordings at different subdaily inter-
vals, they were standardized by summarization to mean
daily temperatures. Data were collected using different
sensor models, which had measurement accuracies of
�0.2°C to �0.5°C and resolutions of 0.02°C to 0.14°C
(Stamp et al. 2014). All temperature records were sub-
ject to standard quality assurance-quality control mea-
sures as described elsewhere (Chandler et al. 2016) and
have been used extensively in previous research that
subjected them to additional scrutiny (e.g., Luce et al.
2014; Isaak et al. 2016, 2017a, 2018a, b).

The final stream temperature dataset consisted of
records from 578 sites distributed throughout the
perennial network of western streams and rivers (Fig-
ure 1). Although we set the minimum threshold for
record completeness at 70% during the five-year per-
iod, the average completeness of records was higher
at 86%. Missing daily values were imputed using the
MissMDA package (Missing Values with Multivariate
Data Analysis; Josse and Husson 2016) in R (R Devel-
opment Core Team 2014) because temporal covaria-
tion among proximate stream temperature sites is
usually strong. That was confirmed in our dataset by
the high correlations between observed mean daily
temperatures and predictions from the imputation
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technique, which ranged from r = 0.85 to r = 1.0, but
averaged r = 0.98. After the imputation process, all
temperature records at the 578 sites were complete
and consisted of 1,825 mean daily temperatures from
December 1, 2010 to November 30, 2015.

To describe the temperature records, 34 summary
metrics were calculated in association with five cate-
gories related to magnitude, variability, frequency,
timing, and duration (Table 1). Twenty-eight of the
metrics were identical to those used previously in a
smaller-scale thermal regime study of mountain
streams (Isaak et al. 2018a) and were calculated after
the five-year records of 1,825 daily temperatures at
each site had been averaged to create representative
values for one year of 365 days. Five additional

metrics were calculated using the full five-year
records to describe interannual variability in a subset
of thermal characteristics (metrics V9–V13, Table 1).
We also calculated a metric to describe the variability
in temperatures during August (V5) because it is a
critical low-flow period during the warmest portion of
the year when discharge in regulated reaches is often
actively managed for ecological purposes (Keefer and
Caudill 2015; Isaak et al. 2018b).

Data Analysis

Thermal metric values were normalized to zero
means and unit standard deviations to accommodate

TABLE 1. Temperature metrics used to describe thermal regimes of perennial rivers and streams in the western U.S.

Category Thermal metric Definition

Magnitude M1. Mean annual temperature Average of mean daily temperatures during a year
M2. Mean winter temperature Average of mean daily temperatures during December, January, and February
M3. Mean spring temperature Average of mean daily temperatures during March, April, and May
M4. Mean summer temperature Average of mean daily temperatures during June, July, and August
M5. Mean August temperature Average of mean daily temperatures during August
M6. Mean fall temperature Average of mean daily temperatures during September, October, and November
M7. Minimum daily temperature Lowest mean daily temperature during a year
M8. Minimum weekly average temperature Lowest seven-day running average of mean daily temperature during a year
M9. Maximum daily temperature Highest mean daily temperature during a year
M10. Maximum weekly average
temperature

Highest seven-day running average of mean daily temperature during a year

M11. Annual degree days Cumulative total of degree days during a year (1°C for 24 h = 1 degree day)
Variability V1. Annual standard deviation Standard deviation of mean daily temperature during a year

V2. Winter standard deviation Standard deviation of mean daily temperature during winter months
V3. Spring standard deviation Standard deviation of mean daily temperature during spring months
V4. Summer standard deviation Standard deviation of mean daily temperature during summer months
V5. August standard deviation Standard deviation of mean daily temperature during the month of August
V6. Fall standard deviation Standard deviation of mean daily temperature during fall months
V7. Range in extreme daily temperatures Difference between minimum and maximum mean daily temperatures during a

year (M9 minus M7)
V8. Range in extreme weekly temperatures Difference between minimum and maximum weekly average temperatures

during a year (M10 minus M8)
V9. Interannual standard deviation of mean
annual

Interannual standard deviation in mean annual temperature

V10. Interannual standard deviation of
minimum weekly

Interannual standard deviation in minimum weekly average temperature

V11. Interannual standard deviation of
maximum weekly

Interannual standard deviation in maximum weekly average temperature

V12. Interannual standard deviation of 5%
degree days

Interannual standard deviation in date of 5% of degree days

V13. Interannual standard deviation of 50%
degree days

Interannual standard deviation in date of 50% of degree days

Frequency F1. Frequency of hot days Number of days with mean daily temperatures >20°C
F2. Frequency of cold days Number of days with mean daily temperatures <2°C

Timing T1. Date of 5% degree days Number of days from December 1 until 5% of degree days are accumulated
T2. Date of 25% degree days Number of days from December 1 until 25% of degree days are accumulated
T3. Date of 50% degree days Number of days from December 1 until 50% of degree days are accumulated
T4. Date of 75% degree days Number of days from December 1 until 75% of degree days are accumulated
T5. Date of 95% degree days Number of days from December 1 until 95% of degree days are accumulated

Duration D1. Growing season length Number of days between the 95% and 5% of degree days (T5 minus T1)
D2. Duration of hot days Longest number of consecutive days with mean daily temperatures >20°C
D3. Duration of cold days Longest number of consecutive days with mean daily temperatures <2°C
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the different measurement scales among the metrics
and agglomerative hierarchical cluster analysis was
used to classify the 578 sites. The analysis was done
using the Cluster Procedure in SAS (SAS Institute
Inc 2015) based on Euclidean distances and a group
average joining method wherein the distance between
groups was defined as the average of all the dissimi-
larities between all possible pairs of points such that
one of each pair was in each group. To determine the
number of groups, the pseudo-T2 criterion was used
(SAS/STAT 14.3 User’s Manual Proc CLUSTER) and
group membership results were also mapped to judge
their geographic interpretability. Next, a PCA was
done to describe and summarize relationships among
the metrics (Pearson 1901; Sergeant et al. 2016)
using the Princomp Procedure in SAS (SAS Institute
Inc 2015). The first principal component (PC) axis
accounted for the largest possible variance in the
metric dataset and succeeding components accounted
for the largest portions of the remaining variance
along axes that were orthogonal (i.e., uncorrelated) to
the preceding component axes. PCA axes were not
rotated to maintain their orthogonality because the
dominant axes were generally interpretable (Richman
1986). PC scores were used to create an ordination
plot in which temperature sites were displayed by
their group membership from the cluster analysis fol-
lowing Rivers-Moore et al. (2013). Correlations, or
loadings, between each metric and the PCs were also
calculated and summarized in a biplot to aide inter-
pretation of the PCs.

To understand the aspects of landscapes, networks,
and meteorology that affected thermal regime charac-
teristics, PCA scores from the first two component
axes were used as response variables in multiple lin-
ear regressions as is common practice (Richman
1986; Luce et al. 2014). Most covariates used in the
regressions described spatial variation in characteris-
tics among reaches and were derived from nationally
available geospatial datasets that were used previ-
ously in the NorWeST project to develop climate
change scenarios of mean August stream tempera-
tures (Isaak et al. 2017a). Those covariates were ele-
vation, latitude, longitude, reach slope, riparian
canopy density, baseflow index, average annual pre-
cipitation, the prevalence of lakes (both natural lakes
and reservoirs), and watershed drainage area.
Because our previous research indicated that stream
temperature magnitude often conveys information
about thermal variability (Luce et al. 2014; Isaak
et al. 2016), we used mean August stream tempera-
ture from a NorWeST scenario representing a base-
line climate period as a covariate if a PC response
metric was indicative of variability rather than mag-
nitude. We also considered three covariates that
described time-averaged, spatial variation among

reaches in flow regime characteristics during the
same baseline climate period, which were mean
annual daily flow (a measure of stream size), the
number of days with high flows during the winter (a
measure of flashiness), and the date at which the cen-
ter of annual flow mass occurred (a measure of runoff
timing) as defined in Wenger et al. (2010). Descrip-
tive attributes of these spatial covariates at the 578
temperature sites are summarized in Appendix A,
and additional details regarding hypothesized effects
on water temperatures and the data sources used to
quantify covariates are summarized in Appendix B.

To compliment the spatial covariates described
above, covariates were also developed to describe the
temporal variability in air temperatures and dis-
charge that occurred during the monitoring period
because these factors correlate with variability in
water temperatures (Chen et al. 2016; Laiz�e et al.
2017). The same set of variability metrics described
previously (V1–V13) was calculated from time series
of mean daily air temperature and discharge that
were obtained at or near the 578 water temperature
sites for the five-year period from December 1, 2010
to November 30, 2015. Mean daily air temperature
data were downloaded as contiguous 4-km2 raster
grids that spanned the West from the PRISM climate
website (Parameter–Elevation Regressions on Inde-
pendent Slopes Model; http://prism.oregonstate.edu/),
whereas daily discharge data were downloaded from
the National Water Information System database
(NWIS; https://waterdata.usgs.gov/usa/nwis/nwis) for
all western gauges that were active during the study
period. Because water temperature sites and flow
gauges were rarely co-located, discharge variability
metrics were assigned to temperature sites from the
nearest gauge. An exception occurred if a water tem-
perature site on a free-flowing reach was closest to a
gauge on a regulated reach downstream from a dam.
In that instance, discharge variability metric values
were instead assigned from the nearest gauge on an
unregulated stream.

Water releases from dams and reservoirs have well
documented effects on thermal regimes (Langford
1990; Olden and Naiman 2010), so each of the 578
temperature sites was classified based on their occur-
rence downstream of dams at least 30 m in height.
The U.S. Army Corp of Engineers National Inventory
of Dams database (USACOE 2016; (http://nid.usace.a
rmy.mil/cm_apex/f?p=838:1:0::NO::APP_ORGANIZA
TION_TYPE,P12_ORGANIZATION:8) was used to
provide the locations and heights of dams. Dam
height was used as an index to reservoir depth that
was included in the multiple linear regressions as a
covariate. Because many shallow reservoirs often act
as natural lakes to warm downstream rivers (Maheu
et al. 2016) while especially deep reservoirs with cold
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hypolimnions cause cooling (Olden and Naiman 2010;
Rivers-Moore et al. 2013), this differential effect was
assessed using a quadratic dam height term in the
regression models. Some evidence supporting this
characterization was also apparent in our dataset
from examination of time-series plots of paired moni-
toring sites immediately upstream and downstream
of eight dam sites (Supporting Information). In addi-
tion to the dam height covariate, the lake covariate
provided an additional measure of potential dam
effects on thermal regimes because reservoirs are
treated as lakes in the geospatial covariate descrip-
tors available for NHD-Plus (Appendix B).

After attributing the temperature sites and all
reaches in the perennial network with covariate val-
ues, the stepwise option in the Reg Procedure of SAS
was used to fit a series of models in which covariates
were added one by one, but remained in the model
only if their statistical probability was <0.15. After
the addition of a new covariate, the procedure per-
formed subsequent checks to delete covariates that
were no longer significant before another new covari-
ate was considered. The stepwise process ended when
none of the variables outside the model had statisti-
cal significance in the model and every variable in it
did. To avoid problems that multicollinearity could
cause regarding parameter estimate interpretability,
covariates that were strongly correlated with another
covariate (i.e., r > 0.7; Dormann et al. 2013) were not
included in the same model. Models from the step-
wise option were ranked and final models selected
based on Akaike information criterion (AIC) scores
(Anderson and Burnham 2004). Akaike weights and
their ratios were calculated to indicate the plausibil-
ity of the best-fitting models compared to other mod-
els. The robustness of the final models was assessed
by five-fold cross-validation involving 1,000 model fits
to 80% of the data and average r2 values were calcu-
lated from relationships between PC scores predicted
at 20% of the withheld sites and observed values. The
final regression models were used to visualize ther-
mal regime characteristics by predicting PC1 and
PC2 scores throughout the perennial stream network
by multiplying the covariate values for each reach by
the regression model parameter estimates.

RESULTS

The 578 water temperature monitoring sites were
not distributed randomly, but spanned a wide geo-
graphic range and set of environmental conditions
and probably represented most stream and river
types in the West (Figure 1; Appendix A). A plot of

site locations relative to elevation and mean annual
daily discharge for the reaches within the perennial
network suggested good coverage along these impor-
tant gradients (Figure 1b). Few temperature records
occurred in the Great Basin and the driest portions of
the southwestern U.S., but these areas also have few
perennial streams. Of the 578 temperature records,
101 occurred in reaches downstream of dams at least
30 m in height. Summaries of thermal conditions rep-
resented by the 34 metrics are provided in
Appendix C. Highlighting the variability in the data-
set, mean annual water temperatures ranged by
almost an order of magnitude from 2.19°C to 19.1°C,
annual standard deviations of mean daily tempera-
tures varied from 0.023°C to 8.48°C, and growing sea-
son lengths ranged from 98 to 333 days. Plots of the
five-year temperature site monitoring records also
revealed large amounts of intra and interannual vari-
ability associated with meteorological variation (see
Supporting Information).

Cluster analysis of the 34 temperature metrics
suggested that the monitoring records could be
grouped into seven distinct thermal classes (Table 2).
Mapping those categories at the monitoring sites
revealed geographic differences between coastal and
inland areas, as well as northern and southern areas.
There was also a mix of classes in some areas, proba-
bly due to local gradients in elevation and other fac-
tors that strongly affect thermal dynamics over short
distances in complex terrain (Figure 3a). Stream sites
in the coastal regime class occurred at low elevations
along the Pacific Ocean and were characterized by
warm winters, early spring onsets, and moderate
summer temperatures (Figure 3b). Often in close
proximity were streams with mid-elevation mountain
regimes, which occurred in the Cascade Mountain
range of Oregon and Washington and were scattered
in parts of the Rocky Mountains. These streams had
cold temperatures during both the winter and sum-
mer and a limited annual range. High mountain ther-
mal regimes were common throughout the Rocky
Mountain region and characterized by streams with
winter temperatures near 0°C for prolonged periods,
cold summers, and spring onset that was one to three
months later than other classes. Streams with conti-
nental regimes were also common in the Rocky
Mountain region, but occurred at lower elevations
and had warmer summer temperatures and larger
annual temperature ranges. Sites with spring ther-
mal regimes were rare in our sample and had tem-
perature profiles that were distinct from the other
regime types by their near constant temperatures
(Figure 3b). Most spring streams were cold with
mean annual temperatures of ~7°C, but one stream
was comparatively warm with a mean temperature of
15.1°C and may have been geothermally influenced.
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Another uncommon regime type was the river-reser-
voir class, which had cold winters, warm summers,
peak temperatures that occurred relatively late in
the year, and little short-term variability despite the
presence of seasonal cycles similar to most other
classes. Sites in this class were limited to run-of-the-
river reservoirs along the Columbia and Snake Riv-
ers, which are the two largest rivers by discharge in
the West (mean annual discharge >1,550 m3/s). Hot
streams comprised the last thermal class and were
mostly confined to the southwestern portion of the
West and inland parts of southern California.

PCA of the temperature metrics indicated that five
PCs had eigenvalues greater than one and accounted
for 89.1% of the variation in the 34 metrics (Table 3).
The first PC explained 46.1% of the variation and cor-
related strongly with most of the metrics that repre-
sented magnitude, frequency, duration, and timing
(Figure 4). The second PC accounted for 27.9% of
variation and was primarily associated with variabil-
ity metrics for seasonal and annual time periods.
Variation explained by the remaining three PCs was
much smaller and their interpretability decreased by
the lack of metrics with strong loadings. Metrics
designed to represent interannual variability (i.e.,
V9–V13) did not load consistently or especially
strongly on any PC. An ordination plot of the PC1
and PC2 scores at the 578 sites revealed a continuous
data cloud with stream sites in the high mountains
and hot categories representing the extreme condi-
tions along the first axis (Figure 4). Large values on
the PC2 axis indicated greater variability, which is
where streams with continental regimes plotted oppo-
site spring streams that showed little variability. The
101 sites downstream of large dams were also high-
lighted in the ordination plot, although except for the
river reservoir category, they did not create distinct
clusters and were instead scattered throughout the
hot, continental, and coastal regime types.

Multiple linear regressions predicted most of the
variation in PC1 scores (Table 4 and Appendix D),
with two covariates, elevation and latitude, account-
ing for 79% of the variation in PC1 scores. The best
model explained 87% of PC1 score variation and
included seven variables (in decreasing order of effect
size): elevation, latitude, riparian canopy, reach slope,
annual precipitation, lake prevalence, and a quadra-
tic effect for dam height. That model was 6.3 AIC
points lower and almost 23 times more plausible than
the second ranked model, while also having an
Akaike weight of 0.93 in the regression set. The best
regression model for PC2 accounted for 63% of the
variation in PC2 scores and included eight covariates.
The three dominant variables in the PC2 model were
mean August water temperature, elevation, and lati-
tude. Smaller effects were associated with the

standard deviation of August air temperatures, ripar-
ian canopy, drainage area, lake prevalence, and a lin-
ear effect for dam height. Both final regression
models also appeared to be robust, with five-fold
cross-validation r2 values of 0.86 for PC1 and 0.63 for
PC2 that showed little or no decrease relative to the
model fits based on the full dataset (Table 4).

A map of PC1 scores predicted by the multiple linear
regression model showed considerable heterogeneity
across the West, with high scores indicative of warm
streams, early spring onsets, long growing seasons,
and few cold days common at low elevations in Califor-
nia, coastal Oregon, and the southwest (Figure 5a).
Streams with low PC1 scores and contrasting regime
characteristics were prevalent in mountainous areas
and adjacent foothills throughout the Sierra Nevada
Range of eastern California, the interior Rocky Moun-
tain region, and the Cascade Range of western Oregon
and Washington. The PC2 map of thermal variability
(Figure 5b) showed broadly similar spatial patterns as
the PC1 map in that stream thermal regimes through-
out coastal areas were generally distinct from streams
in the Rocky Mountain region. However, streams with
particularly low PC2 scores and variability were most
common in coastal and mountain areas of Oregon,
Washington, and northern California, whereas low
variability streams inland occurred only at the highest
elevations in the central Rocky Mountains and por-
tions of northern Idaho and northwest Montana. The
highest PC2 scores occurred in the western interior
and foothill areas that bordered mountains, as well as
moderate elevation steppe and range landscapes
throughout the region.

DISCUSSION

Thermal Regimes in the West

Our results highlight the diversity and key attri-
butes of thermal regimes in perennial rivers and
streams across the West, as well as many of the envi-
ronmental factors that broadly shape these regimes.
Despite this diversity, much of the information in
temperature records could be summarized by a few
PCs, indicating that distinct regime components were
limited in number and that the underlying regime
structure was relatively simple. The first PC repre-
sented many metrics associated with magnitude,
duration, timing, and frequency, whereas most of the
variability metrics loaded heavily on PC2. Metrics
describing interannual variation were not prominent
in defining either of the dominant PCs, which sug-
gests that relatively short time series of annual
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records (e.g., 1–3 years) may be adequate in some
cases, at least for initial regime characterizations.
Interestingly, Rivers-Moore et al. (2013) documented
a similar split between the types of metrics that rep-
resented PC1 and PC2 in an analysis of temperature
records from a broad set of South African streams.
That is encouraging because it suggests a basic set of
attributes which transcend physiographic boundaries
and regions may be operable and broadly definitive of
thermal regimes. Confirming that possibility and
reaching a general consensus, however, will require
consideration of additional datasets from a breadth of
regions to facilitate comparisons. Because many ther-
mal metrics loaded heavily on a few PCs, our results
also indicate that considerable redundancy exists
among them and that careful selection and use of a
few metrics could represent most of the information
about thermal regimes in many ecological or physical
science applications. Such screening would also help
minimize problems associated with multicollinearity
that may arise when multiple, highly correlated tem-
perature metrics are used as covariates in statistical
models (Dormann et al. 2013).

Use of a few key thermal metrics served as the
basis of the regime classification system developed by
Maheu et al. (2015) for the contiguous U.S. Our
results support that simplified approach, and we note
that some of the regime categories proposed by

Maheu (i.e., variable cold and cool, stable cold and
cool) in the West have analogues in a subset of our
categories (i.e., coastal, continental, and mountain).
Our use of a larger, denser sample of monitoring site
records, however, helped identify rarer regime types
(e.g., spring and river reservoir regimes) and better
resolved the geographic domains where thermal
regimes occurred. That resolution was enhanced by
using PC score summaries, which provided continu-
ous, information-rich variables that were easily mod-
eled and predictively mapped to provide a network
context for the patterns observed at the 578 tempera-
ture sites. The spatial patterns and covariate rela-
tionships associated with the PC1 map and model
met our expectations given the concordance of this
PC with summer magnitude metrics, the considerable
amount of research that has focused on modeling
these metrics (e.g., Rivers-Moore et al. 2013; Deten-
beck et al. 2016; Isaak et al. 2017a), and the domi-
nant effects of elevation and latitude throughout the
region. The PC2 variability map is a more novel con-
tribution, but the predictive skill of the underlying
model was somewhat weaker. Elevation and latitude
were again important factors in the model, as was
mean August stream temperature, which was
expected based on patterns observed in previous
research (Luce et al. 2014; Isaak et al. 2016). How-
ever, the contributions of additional covariates were

TABLE 2. Mean and variance (standard deviation) of selected temperature metrics associated with seven thermal regime classes.

Thermal
regime class
(n)

M2. Mean win-
ter temperature

(°C)1

M4. Mean sum-
mer tempera-

ture (°C)

T1. Date of
5% degree

days2 General comments

1. Coastal (82) 7.26 (1.95) 16.9 (2.32) 30.7 (7.16) Streams and rivers along the Pacific Ocean coast, but with
extensions into the southwest. Warm winters, early spring
onset, and moderate annual temperature range

2. Mid-
elevation
mountain
(76)

3.71 (1.24) 11.2 (2.03) 37.5 (10.7) Streams in mid-elevation mountainous basins near coast with
some extensions inland. Cold temperatures, early spring onset,
and small annual temperature range

3. High
mountain
(281)

0.61 (0.51) 11.3 (2.58) 118 (29.2) Streams in high-elevation inland mountain basins. Cold
temperatures, often extended winter periods at 0°C, late spring
onset, and moderate annual temperature range

4. Continental
(105)

2.15 (1.43) 18.5 (2.53) 87.5 (26.4) Streams and rivers located inland in rangeland and steppe
environments. Cold winters, warm summers, late spring onset,
and large annual temperature range

5. Spring (7) 7.59 (3.57) 8.60 (3.62) 18.7 (7.6) Uncommon and restricted to geologies with high local water
yields. Little temperature variation. Depending on water source,
temperatures may be warm or cold

6. River
reservoir (7)

4.43 (0.50) 18.9 (0.66) 41.3 (9.36) Uncommon and restricted to run-of-the-river reservoirs on largest
rivers like the Columbia and Snake Rivers. Cold winters and
warm summers

7. Hot (20) 9.68 (2.28) 23.2 (1.41) 32.7 (6.04) Streams and rivers in southwest and portions of inland
California. Warm summer and winter temperatures, early
spring onset, and large annual temperature range

1Column headers match the thermal metrics described in Table 1.
2Days from December 1, which was considered the beginning of a thermal year.
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FIGURE 3. Regime classes from an agglomerative hierarchical cluster analysis mapped for 578 river and stream temperature monitoring
sites in the western U.S. (a). Blue lines denote rivers with mean annual daily discharge >6 m3/s; thick white line denotes the eastern extent
of the study area. Archtypical annual thermographs for the regime classes derived by averaging mean daily temperature values across sites

within the stream records in each class (b).
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minor and more than a third of the total variation in
PC2 scores was not predicted. This contrasts with
statistical stream temperature models built for indi-
vidual monitoring sites that commonly account for
80%–90% of water temperature variability using air
temperature and discharge covariates (Van Vliet
et al. 2010; Chen et al. 2016). We speculate that con-
densing the five-year stream temperature records
into coarser summary metrics for the analysis may
have contributed to that loss of predictive perfor-
mance, as could the imprecisions which arose from
using air temperature and discharge datasets that
were not based on sensors co-located with the water
temperature sensors. Both factors were undesirable,
but compromises necessary to conduct a regime anal-
ysis across a broad area.

The effects of dams and reservoirs on thermal
regimes are important given their abundance in
many areas, as well as current trends to decommis-
sion or build new dams in different parts of the world
(Zarfl et al. 2015; Bellmore et al. 2017). Both dam
height and lake prevalence, which included reservoir
extent, had discernable effects on thermal regimes
across the western U.S. that were usually indicative
of warming and dampened variability, except down-
stream of especially tall dams where cooling trends
occurred. That these effects were detectable across
such a large and diverse region is noteworthy, and
indicative of broader cumulative effects on thermal
regimes that are not yet well studied or understood.
Nonetheless, when stream and river sites affected by
large dams were viewed within the ordination plot of
PC scores, the sites largely fell within the observed
ranges of unregulated sites and rarely were distinct
regime categories created. The river reservoir class
could be viewed as an exception, but this category
was limited to a small number of sites that occurred
within the largest regional rivers and was also closely
bracketed by regime categories which exhibited simi-
lar thermal dynamics. This contrasts with classifica-
tion results from a warmer region like South Africa
where cold dam tail-waters created a regime cluster
that was strongly differentiated from all other

TABLE 3. Loadings of temperature metrics on the first five PCs in
a PCA of annual temperature records from perennial streams and
rivers in the western U.S. Values in bold indicate the highest corre-

lation between a metric and individual PC.

Temperature metric PC1 PC2 PC3 PC4 PC5

M1. Mean annual
temperature

0.98 0.10 �0.04 �0.02 0.08

M2. Mean winter
temperature

0.85 �0.45 0.02 �0.09 0.20

M3. Mean spring
temperature

0.97 0.06 �0.13 �0.07 0.06

M4. Mean summer
temperature

0.84 0.53 �0.07 �0.04 0.01

M5. Mean August
temperature

0.81 0.57 0.05 0.05 0.03

M6. Mean fall
temperature

0.97 0.03 0.06 0.11 0.05

M7. Minimum daily
temperature

0.77 �0.53 0.01 �0.14 0.23

M8. Minimum weekly
average temperature

0.78 �0.53 0.02 �0.14 0.22

M9. Maximum daily
temperature

0.79 0.60 0.02 �0.02 0.02

M10. Maximum weekly
average temperature

0.79 0.60 0.02 �0.01 0.02

M11. Annual degree days 0.98 0.10 �0.04 �0.02 0.08
V1. Annual SD 0.24 0.95 �0.03 0.06 �0.13
V2. Winter SD 0.82 0.19 0.05 0.26 �0.06
V3. Spring SD 0.36 0.76 �0.27 �0.15 �0.27
V4. Summer SD �0.29 0.55 0.54 0.29 0.10
V5. August SD 0.06 0.71 0.15 �0.43 �0.12
V6. Fall SD 0.10 0.96 �0.01 0.10 �0.08
V7. Range in extreme
daily temperatures

0.34 0.92 0.02 0.06 �0.13

V8. Range in extreme
weekly temperatures

0.33 0.93 0.02 0.07 �0.12

V9. Interannual SD of
mean annual
temperature

0.46 0.21 0.74 �0.18 0.05

V10. Interannual SD of
minimum weekly
temperature

0.71 �0.34 0.18 �0.06 �0.00

V11. Interannual SD of
maximum weekly
temperature

0.16 0.34 0.45 �0.56 �0.11

V12. Interannual SD of
5% degree days

�0.34 0.26 0.42 0.01 0.07

V13. Interannual SD of
50% degree days

�0.12 �0.19 0.75 �0.30 0.23

F1. Frequency of hot days 0.66 0.43 �0.14 0.20 0.45
F2. Frequency of cold days �0.87 0.32 �0.06 �0.06 0.31
T1. Date of 5% degree
days

�0.75 0.56 �0.11 �0.09 0.19

T2. Date of 25% degree
days

�0.80 0.53 0.11 0.15 0.08

T3. Date of 50% degree
days

�0.75 0.41 0.31 0.35 0.02

T4. Date of 75% degree
days

0.13 �0.38 0.52 0.63 �0.11

T5. Date of 95% degree
days

0.76 �0.53 0.17 0.18 �0.20

(continued)

TABLE 3. (continued)

Temperature metric PC1 PC2 PC3 PC4 PC5

D1. Growing season
length

0.76 �0.56 0.12 0.10 �0.20

D2. Duration of hot days 0.65 0.40 �0.14 0.21 0.48
D3. Duration of cold days �0.85 0.32 �0.07 �0.07 0.33
Variance explained (%) 46.1 27.9 7.1 4.6 3.4
Cumulative variance (%) 46.1 74.0 81.1 85.7 89.1
Eigenvalue 15.7 9.49 2.42 1.58 1.16
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clusters describing the region’s thermal landscapes
(Rivers-Moore et al. 2013).

One of the rationales frequently offered for classifi-
cation systems, especially in the study of hydrologic
regimes which has a longer history, is as a means of
diagnosing anthropogenic impairments. That basis, at
least presently, however, does not seem compelling
for thermal regime classifications at broad scales. A
large anthropogenic effect associated with dams was
detectable in our models, but it ranked as one of the
smallest effects, and yet smaller effects would be
expected for less dramatic and more diffuse sources

of thermal impairment that are common within land-
scapes such as land use and riparian alterations, or
flow diversions (Moore et al. 2005; Elmore et al.
2015). Moreover, detailed local inventories of more
subtle impairment factors have yet to be done sys-
tematically in a manner that would enable integra-
tion with classification schemes. Some progress is
being made on these fronts, especially with regards
to better characterization of riparian vegetation and
shade potential from remote sensing and near-Earth
sensing (Dauwalter et al. 2015; Wawrzyniak et al.
2017), but these efforts are nascent and often done
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FIGURE 4. Ordination plot of principal component (PC) scores that summarize 34 water temperature metrics describing thermal records at
578 monitoring sites in the western U.S. (a). Sites were classified into seven regime types using hierarchical agglomerative cluster analysis
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for project specific purposes. Nonetheless, it is impor-
tant to expand and improve efforts to better describe
local thermal impairments given their prevalence in
many landscapes, and because meaningful ecological
restoration can often be achieved by their remedia-
tion (Nussl�e et al. 2015; Null et al. 2017).

Ecological Implications of Thermal Regimes

Although no new ecological applications of thermal
regimes were explored in this study, such efforts are
a logical next step so the prediction maps of PC1 and
PC2 have been formatted as geospatial datasets and
are available at the NorWeST project website. Previ-
ous research in the West has used similar geospatial
scenarios of mean August stream temperature, also
developed from the NorWeST database and closely
allied with PC1, to begin addressing at least some
thermal ecology questions. These include predicting
where in river networks species invasions, range con-
tractions from climate warming, and hybridization
zones may occur near thermally mediated boundaries
(Al-Chokhachy et al. 2016; Young et al. 2016; Ruben-
son and Olden 2019); understanding phenological
cues for aquatic insects (Anderson et al. 2019), devel-
oping accurate species distribution models to estimate
the effect of temperature relative to other environ-
mental covariates (Isaak et al. 2017b; Wilcox et al.
2018), assessments of migration success and inter-
specific competition (Westley et al. 2015; Myrvold and
Kennedy 2017; Rinnan 2018); and precise identifica-
tion of climate refuge streams throughout the ranges
of species of conservation concern (Isaak et al. 2015;
Palmer 2017; Young et al. 2018). None of these early

applications have relied on datasets derived from
simultaneous collection of temperature and biological
datasets, but instead as Hill and Hawkins (2014) also
demonstrate, simply referenced existing biological
survey information from separate sources against
accurate stream temperature scenario maps.
Although applications to date involve biological phe-
nomena, maps of thermal regime characteristics
might also be useful for deriving estimates of stream
metabolism (Demars et al. 2011; Rodriguez-Castillo
et al. 2019), solubility and concentrations of gases in
water (Himmelblau 1960), and emission fluxes of
greenhouse gases at scales broader than those tradi-
tionally considered (Beaulieu et al. 2011; Comer-War-
ner et al. 2018). Even if temperature and thermal
effects are not the principal focuses of research, the
use of temperature as a model covariate may often
account for nuisance variation and lead to better esti-
mates for factors of interest.

Previous considerations of temperature in stream
ecology have relied heavily on summer magnitude
metrics due to limited data availability for other sea-
sons. Therefore, it was reassuring that many temper-
ature metrics in different categories correlated
strongly with summer magnitude metrics and repre-
sented a large portion of the information about ther-
mal regimes. The obvious departures from that
association were the variability metrics that largely
defined PC2. It has been hypothesized that thermal
variability is important to many ecological processes
(Steel et al. 2012; Dillon et al. 2016), but empirical
proofs for stream organisms are often limited to labo-
ratory settings and scenarios that may be unlikely to
occur in nature (e.g., Johnstone and Rahel 2003;
Steel et al. 2012). Separation of variability

TABLE 4. Summaries of final multiple linear regression models selected to predict PCs of thermal regimes in the western U.S.

Model Covariate Parameter estimate (standard error) t statistic p value r2 r2CV
1

PC1 Intercept 7.36 (0.23) 31.4 <0.01 0.87 0.86
Elevation �0.00104 (0.0000239) �43.6 <0.01
Latitude �0.129 (0.00528) �24.5 <0.01
Riparian canopy �0.00593 (0.000683) �8.68 <0.01
Reach slope �3.32 (0.584) �5.69 <0.01
Annual precipitation �0.000200 (0.0000385) �5.20 <0.01
Lake 0.0671 (0.0153) 4.38 <0.01
Dam height 0.00213 (0.00114) 1.88 <0.01
Dam height2 �0.0000203 (7.02 9 10�6) �2.89 0.06

PC2 Intercept �11.1 (0.567) �19.5 <0.01 0.63 0.63
August mean stream temperature 0.276 (0.010) 27.6 <0.01
Elevation 0.00107 (0.0000518) 20.7 <0.01
Latitude 0.120 (0.0115) 10.4 <0.01
August SD of air temperature 0.381 (0.125) 3.04 <0.01
Riparian canopy 0.00275 (0.00117) 2.34 0.02
Drainage area �1.24 9 10�6 (6.18 9 10�7) �2.01 0.05
Lake �0.0498 (0.0254) �1.96 0.05
Dam height �0.00124 (0.000837) �1.48 0.14

1Based on 1,000 five-fold cross validation model fits.
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information as PC2 from other aspects of thermal
regimes and the availability of this information as a
geospatial dataset opens new possibilities for testing
that hypothesis and understanding the role that

variability may play in lotic ecosystems of the West.
The same is also true for evaluating other aspects of
thermal regimes represented by additional PCs, or
distinctive metrics that may not load heavily on

(a)

(b)

FIGURE 5. Maps of thermal regime PC scores (a: PC1; b: PC2) predicted by multiple linear regression models for the 343,000 km network
of perennial streams and rivers in the western U.S.
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individual PCs. A more nuanced understanding of
thermal ecology should result that will be useful for
ascertaining the various pathways by which phenom-
ena such as climate change and habitat degradation
affect ecological processes (Garcia et al. 2014).

Temperature Databases and Geospatial Resources

As this research highlights, data from existing tem-
perature datasets can be successfully repurposed and
a regime analysis is just one of many ways that a spa-
tiotemporally rich database can be queried and subset
for new research when guided by useful questions. It
is important that researchers have access to extensive
temperature records because many important ques-
tions pertaining to thermal ecology have yet to be ade-
quately addressed (McCullough et al. 2009; Dillon
et al. 2016), and new types of temperature models and
inference will be needed at a variety of scales. In the
western U.S., the NorWeST database provides a valu-
able resource to assist in those endeavors because the
578 temperature site records used here were only a
small subset of records from the >23,000 unique sites
in the database (Chandler et al. 2016; Isaak et al.
2017a). Most of the database consists of short records
taken during the summer in 1–3 years, but annual
records and those of greater length are becoming more
common as database updates are done periodically.
Despite the recency of the database, it has already
yielded datasets that enabled thermal research on dif-
ferences among streams in sensitivity to climatic vari-
ation (Luce et al. 2014; Isaak et al. 2016), description
of thermal regimes in mountain river networks (Isaak
et al. 2018a), estimation of recent warming trends in
rivers from climate change (Isaak et al. 2018b), and
provided spatially dense datasets to develop high-res-
olution climate change scenarios and forecasts (Isaak
et al. 2017a). Data repurposing is not a new concept
for those working with flow regimes because discharge
data have traditionally been obtained from sources
like NWIS or other state-sanctioned monitoring pro-
grams and centralized databases. Different, however,
is the grassroots nature of temperature databases,
which are growing because declining sensor costs are
democratizing data acquisition efforts. Temperature
sensors with multi-year data logging capacities cost
U.S. $20–200, for example, are available from several
manufacturers, and are easily deployed using stan-
dard protocols (Stamp et al. 2014), which has spawned
an array of local monitoring networks by natural
resource agencies and watershed councils in many
countries (e.g., Trumbo et al. 2014; Daigle et al. 2016;
Jackson et al. 2016; Mauger et al. 2016).

Geospatial representations of stream networks fur-
ther enhance the value of temperature databases by

facilitating their organization and linkage to descrip-
tive covariates. Although it is possible to create cus-
tom networks from digital elevation models, doing so
requires specialized skills and is often labor inten-
sive, so most stream ecologists will benefit from using
existing networks like those that now exist for many
individual countries (e.g., Cooter et al. 2010; Stein
et al. 2014) or global representations (Lehner and
Grill 2013; Yamazaki et al. 2015). Once observations
are linked to reaches in the network, attribution with
covariates is straightforward and facilitates model
development and mapping of results. Often important
in that regard is the proper contextualization and
representation of results by network subsetting. In
our western U.S. study area, for example, the NHD-
Plus network spans more than 1,600,000 km, but
most reaches are dry channels or are too steep and
small to serve as habitat for most aquatic species.
Thus, the network of primary concern had to be high-
lighted through application of simple network filters
chosen based on previous field experience and empiri-
cal biological relationships (Wenger et al. 2011; Isaak
et al. 2017b). Similar network queries, when coupled
with observational databases, would also be useful
for identifying gaps in monitoring network coverage
for strategic supplementation with additional data
collections (DeWeber et al. 2014). Similarly, the
design and implementation of new monitoring net-
works or surveys can often be done efficiently by
using geospatial queries to describe and stratify net-
works prior to sample allocation (Som et al. 2014;
Jackson et al. 2016). Used collectively, the suite of
increasing geospatial capabilities and expanding
aquatic databases should prove useful for better
resolving what Bishop et al. (2008) have referred to
as Aqua Incognita and a persistent uncertainty
regarding the extent and characteristics of flowing
water networks.

CONCLUSION

As was the case two decades ago with the need for
better flow regime information to understand ecologi-
cal effects (Poff et al. 1997), the time is ripe and the
needs are similar for improving our understanding of
thermal regimes. Then, as now, the potential for
advances was triggered in part by the availability of
data. Rapidly growing databases are making new
analyses possible, and where temperature data are
lacking, can be developed relatively quickly using
inexpensive sensors and broadly available geospatial
tools to guide strategic monitoring. In the western
U.S., our regime analysis benefitted from the pre-
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existence of the NorWeST database that was easily
mined to yield a set of annual records for perennial
streams that were spatially extensive and representa-
tive. Several distinct regime types were identified
that were predictably related to geomorphic, climatic,
vegetative, and anthropogenic controls. This informa-
tion could enable subsequent biophysical investiga-
tions to further highlight and elucidate the important
role that thermal regimes play in western streams
and rivers. We suspect that similar information about

thermal regimes will prove useful in many places
given the mechanistic basis for temperature in bio-
physical processes, as well as the global reach of cli-
mate change and habitat degradation associated with
growing human populations and land uses. As ther-
mal regime research proliferates and matures, it
should complement the corpus of knowledge sur-
rounding flow regimes and broaden our understand-
ing of hydroclimates and biophysical processes in
flowing waters.

APPENDIX A

TABLE A1. Descriptive statistics for geospatial covariates at 578 river and stream temperature monitoring sites with annual records in the
western U.S. Appendix B provides additional information about covariates including data sources.

Covariate Mean Median SD Minimum Maximum

Latitude (decimal degrees) 43.23559 43.92683 3.42 31.62596 48.99712
Longitude (decimal degrees) �115.134 �115.336 5.48 �124.059 �103.764
Elevation (m) 1,292 1,331 804 2.57 3,476
Annual precipitation (mm) 757 636 499 29.1 2,757
Reach slope (m/m) 0.0241 0.0128 0.0310 0 0.15
Riparian canopy (%) 35.5 33.0 27.8 0 91.4
Lake upstream (%) 0.415 0.061 1.04 0 14.8
Baseflow index (%) 64.1 67.0 12.7 2.0 88.0
Drainage area (km2) 8,053 113 44,445 1.36 570,000
Mean annual daily flow (m3/s) 58.2 1.57 349 0.03 5,597
Days with winter high flows (days) 5.46 3.31 5.46 0 17.7
Median flow date (date) 188 194 25.4 127 244
Mean August water temperature (ᵒC) 14.6 13.9 4.09 6.45 26.5
Dam height (m) 85.2 70 44.8 30 219
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APPENDIX B

TABLE B1. Descriptions and sources of covariate data used to describe and model temperature regimes in rivers and streams of the western
U.S.

Covariate Definition and rationale References Data source

Elevation
(Ele)

Elevation at the water temperature site.
Cooler air temperatures and greater snow
and precipitation accumulations (cooler
groundwater inputs) at higher elevations
should cool stream temperatures

Smith and Lavis (1975);
Isaak and Hubert (2001);
Sloat et al. (2005)

Digital elevation models (30-m resolution)
associated with NHDPlus, downloaded from
http://www.horizon-systems.com/NHDPlus/
NHDPlusV2_home.php

Slope (Sl) Slope of the stream reach at a water
temperature site. Steeper slopes should cool
stream temperatures by increasing flow
velocities and decreasing equilibration with
warmer microclimatic conditions at lower
elevations

Sloat et al. (2005); Webb
et al. (2008); Isaak et al.
(2010)

NHDPlus Value Added Attribute = SLOPE,
downloaded from http://www.horizon-syste
ms.com/NHDPlus/NHDPlusV2_home.php

Lake (Lk) Percentage of watershed upstream of a
temperature site composed of lake or
reservoir surfaces. Lakes absorb heat, slow
water transit times through watersheds,
and should increase downstream
temperatures while dampening variability

Dripps and Granger (2013);
Maheu et al. (2016)

NHDPlus Value Added
Attribute = NLCD11PC, downloaded from
http://www.horizon-systems.com/NHDPlus/
NHDPlusV2_home.php

Annual
precipitation
(AP)

Mean annual precipitation in watershed
upstream of temperature site. Wetter
landscapes have higher water yields and
more groundwater that should cool streams
and dampen their variability

Isaak and Hubert (2001) NHDPlus Value Added Attribute = PrecipV,
downloaded from http://www.horizon-syste
ms.com/NHDPlus/NHDPlusV2_home.php

Longitude
(Long)

Longitude coordinate at a water temperature
site. Temperatures in coastal streams may
be moderated by ocean proximity, whereas
inland streams could exhibit greater
variability from exposure to continental
climates with larger temperature extremes

Driscoll and Yee Fong
(1992); Shinker (2010)

Temperature site meta-data from the
NorWeST website at https://www.fs.fed.us/
rm/boise/AWAE/projects/NorWeST.html

Latitude (Lat) Latitude coordinate at a water temperature
site. Air and groundwater temperatures are
cooler further north and should cool
streams. At higher latitudes, variability
may also be dampened during winter due to
increased frequency of 0°C days when air
temperatures are subzero

Ward (1985); Meisner et al.
(1988)

Temperature site meta-data from the
NorWeST website at https://www.fs.fed.us/
rm/boise/AWAE/projects/NorWeST.html

Mean annual
flow (MAF)

Mean annual daily discharge value a water
temperature site. Larger streams are
insolated over a greater length and are less
shaded by riparian vegetation, which should
result in warmer temperatures. Larger
streams also have greater mass and
thermal inertia, which may dampen
variability

Ward (1985); Moore et al.
(2005); Webb et al. (2008);
Garner et al. (2013)

Shapefile attribute = MAF for NHDPlus
reaches, downloaded from the Western U.S.
Streamflow Metrics website at https://www.f
s.fed.us/rm/boise/AWAE/projects/modeled_
stream_flow_metrics.shtml

Center of flow
mass (CFM)

The date on which the center of annual flow
mass occurs at a water temperature site.
Streams with different runoff dates may be
differentially affected by seasonal air
temperature variation

Wenger et al. 2010; Isaak
et al. (2018a, b)

Shapefile attribute = CFM for NHDPlus
reaches, downloaded from the Western U.S.
Streamflow Metrics website at https://www.f
s.fed.us/rm/boise/AWAE/projects/modeled_
stream_flow_metrics.shtml

Winter high
flow
frequency
(WHFF)

The number of days with high flows during
the winter season at a water temperature
site. A measure of hydrologic flashiness that
differentiates between snowmelt and
rainfall runoff regimes, which are the two
primary hydrologic types in the western
U.S. Streams with more winter discharge

Hockey et al. (1982); Gu
et al. (1998); Elmore et al.
(2016)

Shapefile attribute = W95 for NHDPlus
reaches, downloaded from the Western U.S.
Streamflow Metrics website at https://www.f
s.fed.us/rm/boise/AWAE/projects/modeled_
stream_flow_metrics.shtml

(continued)
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TABLE B1. (continued)

Covariate Definition and rationale References Data source

variability are expected to show more
winter thermal variability

Dam height
(DH)

Height of the nearest, tallest dam upstream
from a water temperature site that is >30 m
in height. Especially tall dams with deep
reservoirs have cold hypolimnions that
often cool downstream reaches and may
dampen thermal variability. Smaller dams
and reservoirs may act as heat sinks and
effectively operate as natural lakes to
increase temperatures and dampen thermal
variability

Preece and Jones (2002);
Olden and Naiman (2010);
Maheu et al. (2016)

Dam heights and locations were obtained
from the U.S. Army Corp of Engineers 2016
National Inventory of Dams database at
http://nid.usace.army.mil/cm_apex/f?p=838:
1:0::NO::APP_ORGANIZATION_TYPE,P12_
ORGANIZATION:8

August water
temperature
(AWT)

Mean August temperature at water
temperature site for a historical climate
period that represents the average of
condition from 1993 to 2011. Streams which
are cold during the summer receive
considerable groundwater contributions and
exhibit dampened variability

Luce et al. (2014); Isaak
et al. (2016)

Scenario S1 (1993–2011) shapefile attribute
for NHDPlus reaches downloaded from the
NorWeST website at https://www.fs.fed.us/
rm/boise/AWAE/projects/NorWeST.html

Baseflow
index (BFI)

Baseflow index values at water temperature
site calculated as the ratio of baseflow to
total flow and expressed as a percentage.
Sites with larger baseflows relative to peak
flows have larger groundwater contributions
that should cool streams and dampen
variability

Mayer (2012); Kelleher et al.
(2012)

Data developed by Wolock (2003) and
downloaded from http://ks.water.usgs.gov/
pubs/abstracts/of.03-263.htm

Drainage area
(DA)

Drainage area of watershed upstream of
sensor that is a surrogate for stream size.
Larger streams are insolated over a greater
length and are less shaded by riparian
vegetation, which should result in warmer
temperatures. Larger streams also have
greater mass and thermal inertia, which
may dampen variability

Ward (1985); Moore et al.
(2005); Webb et al. (2008);
Garner et al. (2013)

NHDPlus Value Added
Attribute = TotDASqKM, downloaded from
http://www.horizon-systems.com/NHDPlus/
NHDPlusV2_home.php

Riparian
canopy (RC)

Canopy value associated with the 1-km
stream reach that encompasses a sensor
site. Higher canopy values are associated
with more shade, cooler streams, and
dampened variability

Moore et al. (2005); Cristea
and Burges (2010); Garner
et al. (2014); Nussl�e et al.
(2015)

Percent canopy derived from the NLCD 2011
USFS Tree Canopy Cartographic layer
averaged over 1 km stream reaches.
Downloaded from https://www.mrlc.gov/nlcd
11_data.php

Air
temperature
variability
(ATV)

Air temperature variability at a water
temperature site. The same set of 13
variability metrics that were calculated for
water temperature (V1–V13 in Table 1)
were also calculated for air temperature.
Air temperature covaries with several
factors that affect stream heat budgets, so
more variable air temperatures often result
in more variable river and stream
temperatures

Webb and Zhang (1997);
Mohseni et al. (1999); Isaak
et al. (2018a, b); Garner
et al. (2013)

Daily mean air temperature records were
downloaded as 4 km2 resolution raster grids
from the Parameter–Elevation Regressions
on Independent Slopes Model website
(http://prism.oregonstate.edu/)

Discharge
variability
(DV)

Flow discharge variability at a water
temperature site. The same set of 13
variability metrics that were calculated for
water temperature (V1–V13 in Table 1)
were also calculated for discharge. Flow
discharge covaries with several factors that
affect stream heat budgets, so more variable
discharge often results in more variable
river and stream temperatures

Hockey et al. (1982); Gu
et al. (1998); Isaak et al.
(2018a, b); Elmore et al.
(2016)

Daily discharge records were downloaded
from the USGS National Water Information
System (http://waterdata.usgs.gov/nwis/rt)
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APPENDIX C

TABLE C1. Descriptive statistics for temperature metrics used to describe thermal regimes at 578 monitoring sites in perennial rivers and
streams of the western U.S.

Temperature metric Mean Median SD Minimum Maximum

M1. Mean annual temperature (°C) 7.87 7.13 3.43 2.19 19.10
M2. Mean winter temperature (°C) 2.71 1.37 3.00 �0.60 14.95
M3. Mean spring temperature (°C) 6.47 5.68 3.81 0.05 19.12
M4. Mean summer temperature (°C) 13.83 13.24 4.35 5.23 25.90
M5. Mean August temperature (°C) 14.84 14.30 4.24 5.89 26.05
M6. Mean fall temperature (°C) 8.36 7.38 3.68 2.48 21.38
M7. Minimum daily temperature (°C) 1.82 0.48 2.62 �0.96 13.99
M8. Minimum weekly average temperature (°C) 1.99 0.65 2.69 �0.94 14.16
M9. Maximum daily temperature (°C) 15.90 15.33 4.51 5.92 28.22
M10. Maximum weekly average temperature (°C) 15.60 14.98 4.48 5.92 27.60
M11. Annual degree days (DD) 2,873 2,604 1,250 800 6,972
V1. Annual SD (°C) 4.63 4.48 1.51 0.023 8.48
V2. Winter SD (°C) 0.49 0.42 0.35 0.005 1.96
V3. Spring SD (°C) 1.96 1.86 0.87 0.014 5.36
V4. Summer SD (°C) 1.66 1.62 0.68 0.014 4.45
V5. August SD (°C) 0.47 0.43 0.21 0.0062 1.62
V6. Fall SD (°C) 3.45 3.36 1.15 0.0061 6.44
V7. Range in extreme daily temperatures (°C) 14.1 13.5 4.44 0.078 25.8
V8. Range in extreme weekly temperatures (°C) 13.6 13.0 4.39 0.074 25.4
V9. Interannual SD of mean annual temperature (°C) 0.63 0.59 0.29 0.004 2.62
V10. Interannual SD of minimum weekly temperature (°C) 0.43 0.24 0.46 0.000 3.09
V11. Interannual SD of maximum weekly temperature (°C) 1.08 1.01 0.49 0.0065 4.04
V12. Interannual SD of 5% degree days (DD) 11.7 10.2 7.02 0.71 46.4
V13. Interannual SD of 50% degree days (DD) 5.09 5.03 1.85 0.84 19.1
F1. Frequency of hot days (days) 13.2 0 30.8 0 172
F2. Frequency of cold days (days) 78.9 88 70.1 0 246
T1. Date of 5% degree days (days) 84.4 87 44.8 16 202
T2. Date of 25% degree days (days) 173.8 180 27.5 90 235
T3. Date of 50% degree days (days) 229.3 232 11.8 182 261
T4. Date of 75% degree days (days) 276.7 276 4.72 264 295
T5. Date of 95% degree days (days) 328.9 328 9.95 300 349
D1. Growing season length (days) 244.5 241 54.3 98 333
D2. Duration of hot days (days) 11.8 0 29.3 0 167
D3. Duration of cold days (days) 73.5 66 69.0 0 246

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION JAWRA21

THERMAL REGIMES OF PERENNIAL RIVERS AND STREAMS IN THE WESTERN UNITED STATES



APPENDIX D

SUPPORTING INFORMATION

Additional supporting information may be found
online under the Supporting Information tab for this
article: (1) a high-resolution digital map showing
578 water temperature monitoring sites, locations of
dams, and 343,000 km perennial stream and river
network in the western U.S., (2) time-series plots of
mean daily water temperatures at fifteen representa-
tive stream and river sites, and (3) time-series plots
of mean daily water temperatures upstream and
downstream of eight dams.

DATA AVAILABILITY

All water temperature data used in this study are
available at the NorWeST website (https://www.f
s.fed.us/rm/boise/AWAE/projects/NorWeST.html). An
ArcGIS shapefile with values of PC1 and PC2 scores
predicted by multiple linear regressions at 1-km reso-
lution throughout the 343,000 km network of peren-
nial streams in the western U.S. is also available at
the NorWeST website. The data set used for analyses
with covariates and water temperature metrics is
available at the lead author’s ResearchGate profile
(https://www.researchgate.net/profile/Daniel_Isaak).
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TABLE D1. Stepwise model selection results for multiple linear
regressions that predict scores of the first two PCs of thermal
regimes at 578 stream and river sites. Models are ranked from
most plausible (DAIC = 0) to least plausible; p is the number of

parameters. The ratio of Akaike weights (wI/wi) indicates the plau-
sibility of the best-fitting model compared to other models. Models

shown in bold font were selected to predict values of the PCs
throughout the network of perennial streams in the western U.S.

PC Covariates p DAIC r2

Akaike
weight
(wi) wI/wi

PC1 Ele, Lat, RC,
Sl, AP, Lk,
DH, DH2

8 0 0.87 0.93 1.00

Ele, Lat, RC,
Sl, AP, Lk,
DH

7 6.3 0.87 0.04 22.7

Ele, Lat, RC,
Sl, AP, Lk

6 7.2 0.87 0.03 34.7

Ele, Lat, RC,
Sl, AP

5 26.8 0.86 0.00 6.13 9 105

Ele, Lat,
RC, Sl

4 48.8 0.86 0.00 3.61 9 1010

Ele, Lat, RC 3 92.7 0.84 0.00 1.21 9 1020

Ele, Lat 2 250 0.79 0.00 1.81 9 1054

Ele 1 734 0.52 0.00 1.68 9 10159

PC2 AWT, Ele, Lat,
ATV5, DH,
RC,
DA, Lk

8 0 0.63 0.61 1.00

AWT, Ele, Lat,
ATV5, DH, RC,
DA

7 1.8 0.63 0.25 2.39

AWT, Ele, Lat,
ATV5, DH, RC

6 3.5 0.63 0.11 5.46

AWT, Ele, Lat,
ATV5, DH

5 6.5 0.62 0.03 2.39 9 101

AWT, Ele, Lat,
ATV5

4 15 0.62 0.00 1.65 9 103

AWT, Ele, Lat, 3 26.2 0.61 0.00 4.40 9 105

AWT, Ele 2 221.7 0.45 0.00 1.23 9 1048

AWT 1 402.5 0.25 0.00 2.23 9 1087

Notes: DH2, quadratic effect of dam height; ATV5, standard devia-
tion of mean August air temperature.
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