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Abstract

Context Habitat loss and fragmentation are the most

pressing threats to biodiversity, yet assessing their

impacts across broad landscapes is challenging.

Information on habitat suitability is sometimes avail-

able in the form of a resource selection function model

developed from a different geographical area, but its

applicability is unknown until tested.

Objectives We used the Mexican spotted owl as a

case study to demonstrate howmodels developed from

different geographic areas affect our predictions for

habitat suitability, landscape resistance, and connec-

tivity. We identified the most suitable habitats and

core areas for dispersal and movement for the species.

Methods We applied two multi-scale habitat selec-

tion models—a local model and a non-local model—

to a broad study area in northern Arizona. We

converted the models into landscape resistance sur-

faces and used simulations to model connectivity

corridors for the species, and created composite

habitat and connectivity models by averaging the

local and non-local models.

Results While the local and the non-local models

both performed well, the local model performed best

in the part of the study area where it was built, but

performed worse in areas that are beyond the extent of

the data used to train it. The composite habitat model

improved performances over both models in most

cases.

Conclusions With rigorous testing, multi-scale habi-

tat selection models built on empirical data from other

geographical areas can be useful. Averaging predic-

tions of multiple models can improve performance,

but the effectiveness is subject to the performance of

the reference models.

Keywords Connectivity � Corridor � Endangered
species � Fragmentation � Habitat loss � Habitat
selection � Landscape resistance � Mexican spotted

owl � Resource selection function � Scale

Introduction

Species extinction is accelerating exponentially as a

consequence of intensified anthropogenic activities
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(Barnosky et al. 2011; Ceballos et al. 2015; De Vos

et al. 2015). Habitat loss and fragmentation are

considered the most pressing threats to biodiversity

and the leading causes of species extinction (Fahrig

2003; Pimm et al. 2014; Newbold et al. 2015). Climate

change compounds these threats, exerting further

stress on species and exacerbating habitat and biodi-

versity loss (Thomas et al. 2004; Bellard et al. 2012).

Fragmentation diminishes connectivity and dispersal,

leading to reduced gene flow, smaller effective

population size, and increased genetic drift and

inbreeding, all of which accelerate local species

extinction (Frankham 1996; Young and Clarke 2000;

Stockwell et al. 2003). One of the greatest challenges

to assessing the impacts of habitat loss and fragmen-

tation on populations and their connectivity is how to

reliably predict and model these effects across broad

landscapes. Often the only information available is in

the form of a model developed from another geo-

graphical area or time period. However, extrapolating

research findings and model predictions beyond the

spatial or temporal scope of inference suggested by a

study is generally scientifically indefensible and may

lead to incorrect findings and misdirected manage-

ment decisions (Burnham and Anderson 1998; Cush-

man et al. 2013b).

The validity of a model is uncertain when it is

applied to a different landscape, because the accuracy

and error rates relevant to the original landscape do not

necessarily apply to a new landscape, especially when

the two landscapes differ in ecological traits, such as

biophysical characteristics, climate, and disturbance

regimes (Cushman et al. 2013b). If several high-

performance models are available from different

geographic areas, it is important to take into account

all of them. One rigorous approach to this is to conduct

a meta-analysis, which is an analytical process that

combines the habitat attribute values for all of the

models and creates a generalized model (Hedges and

Olkin 1985; Gurevitch and Hedges 1993; Gates 2002).

Another valuable approach is to quantitatively com-

pare the predictions of the models developed in

different places when applied in the same location

(Wan et al. 2017). This enables the researcher to

formally describe the differences in their predictions.

The Mexican spotted owl (Strix occidentalis

lucida) is a listed Threatened species under the

Endangered Species Act (U.S. Department of the

Interior 1993). The main threat to the owl is habitat

loss and fragmentation from past timber management

activities and increasing uncharacteristically large and

severe fires (U.S. Department of the Interior 2012).

Landscape-scale restoration and fuels reduction treat-

ments that aim to reduce risk of large and high-severity

wildfires and promote forest health and resilience have

been planned and implemented, with some treatment

areas coinciding with habitats used by the Mexican

spotted owl (U.S. Department of Agriculture 2014).

Some treatments may aid in reducing habitat loss from

wildfires in the long run (Ager et al. 2007; Waltz et al.

2014; Roccaforte et al. 2015; Jones et al. 2016; Chiono

et al. 2017; Ziegler et al. 2017). Conversely, because

Mexican spotted owls typically nest in areas with high

canopy cover, some treatments may degrade owl

habitat in the short run (Meiman et al. 2003; Seamans

and Gutiérrez 2007; Odion et al. 2014; Tempel et al.

2014; Bond 2016; Stephens et al. 2016). Identifying

important movement areas and linkages between core

habitats provides critical information for designing

treatment plans that can sustain the imperiled species

while meeting management objectives in various

locations.

In this study, we compared habitat suitability and

landscape resistance predictions produced for a com-

mon region by two different modeling studies con-

ducted on the Mexican spotted owl in different parts of

its range. Both studies used multi-scale resource

selection functions to predict and map habitat suit-

ability. We applied both of these models to a wide area

in the range of the Mexican spotted owl and used

individual-based simulations and resistant kernel

connectivity modeling to predict landscape connec-

tivity for the Mexican spotted owl based on each of

these two habitat models, and evaluated the similar-

ities and differences in their predictions. We also

tested different dispersal distance thresholds in the

models to deal with uncertainty regarding the dispersal

ability of the Mexican spotted owl. In addition, we

created a composite model based on the two resource

selection functions to see if it would improve the

accuracy of predictions.

We had three goals: (1) to evaluate how models

developed from different geographic areas affected

our predictions for habitat suitability, landscape

resistance, and connectivity; (2) to identify the most

suitable habitats for the Mexican spotted owl by

comparing predictions from different habitat selection

models; and (3) to identify core areas important for
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dispersal and movement of the Mexican spotted owl

by comparing predictions from different models. We

had several a priori hypotheses: First, we expected that

the habitat model developed locally would outperform

the habitat model developed for a non-local region.

Second, we expected that the local model would

perform better in the part of the study area where it was

built than in parts of the study area that were beyond

the extent of the data used to train it. Third, we

expected that the model predictions would differ more

for predictions of habitat suitability than predictions of

connectivity, since connectivity spatially smooths

local habitat differences.

Methods

Study area

The study spanned the area along and south of the

Mogollon Rim in Arizona (latitude 32.6–35.4�N,
longitude 108.6–112.1�W; Fig. 1). It covered an area

of approximately 9.3 million ha and encompassed the

full extent of the Apache-Sitgreaves, Coconino, and

Tonto National Forests. The boundary of the study

area was defined by the farthest latitude and longtitude

of these forests, extended by a 5000-m buffer.

Elevation ranged from 300 to 3846 m. Mean annual

precipitation ranged from * 50 mm to[ 5800 mm.

A diverse array of vegetation occurred along the

elevational climatic gradient (McClaran and Brady

1994). The lowest elevation consisted of desert and

semi-desert ecosystems that were populated by arid

shrub and grassland species including big sagebrush

(Artemisia tridentata). Above the desert and semi-

Fig. 1 Map of the study

area within Arizona, USA.

Blue lines indicate the

boundaries of the Apache-

Sitgreaves, Coconino, and

Tonto National Forests. The

Mogollon Rim generally

follows the southern border

of the Apache-Sitgreaves

and Coconino National

Forests from interstate

highway I-17 to the White

Mountains. (Color

figure online)
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desert, juniper-pinyon woodland dominated and alli-

gator bark juniper (Juniperus deppeana), pinyon pine

(Pinus edulis), and Utah juniper (Juniperus osteos-

perma) were common. At mid-elevation, ponderosa

pine (Pinus ponderosa) forest dominated, stretching

almost continuously from the south rim of the Grand

Canyon to the White Mountains in eastern Arizona. A

mixture of blue spruce (Picea pungens), corkbark fir

(Abies lasiocarpa), Douglas-fir (Pseudotsuga men-

ziesii), Engelmann spruce (Picea engelmannii), south-

western white pine (Pinus strobiformis), white fir

(Abies concolor), and quaking aspen (Populus tremu-

loides) dominated higher elevational forests

([ 2800 m).

The Recovery Plan for the Mexican spotted owl

(U.S. Department of Interior 2012) recognized five

large Ecological Management Units (EMUs) to help

focus understanding of spatial variability in distribu-

tion and ecology of Mexican spotted owls across their

broad and ecologically variable geographic range. Our

study area containedmost of the Arizona portion of the

Upper Gila Mountains (UGM) EMU, as well as the

adjacent northern portion of the Basin and RangeWest

(BRW) EMU. The owl population within the UGM

EMU represented the core population within the

United States (Ganey et al. 2011; U.S. Department

of Interior 2012). The UGM EMU is based on the

central location within the range of the owl, and has

large numbers and widespread distribution of owls.

Models suggest that there is high geographic connec-

tivity between the owl population in this EMU and

other populations (Keitt et al. 1997; Urban and Keitt

2001). There is also evidence of high gene flow

between this and other populations (Barrowclough

et al. 2006). Thus, our study area focused on a

geographic area of high importance to Mexican

spotted owls.

Within this study area, Mexican spotted owls

sometimes nest in rocky cliffs or caves in steep

canyons with sparse forest cover, but more frequently

are associated with forested habitat (Ganey et al. 2011;

U.S. Department of Interior 2012). They primarily

nest in mixed-conifer forests dominated by Douglas-

fir, white fir, and ponderosa pine, but also nest less

frequently in pine-oak forests. In both forest types,

nesting habitat typically contains large trees and

features high canopy cover (Ganey et al. 2011, 2016).

Habitat suitability models

This paper compares the predictions of two resource

selection functions developed from previous work

(Timm et al. 2016; Wan et al. 2017). Briefly, Timm

et al. (2016) and Wan et al. (2017) developed resource

selection functions [hereafter local model (Timm et al.

2016) and non-local model (Wan et al. 2017). Both

resource selection functions used the same multi-scale

optimization modeling approach and habitat variables,

but were applied to owl nests and roosts data sets that

were collected from two geographic locations, the

Mogollon Plateau of Arizona (n = 208; located within

our current study area, in the Apache-Sitgreaves and

Coconino National Forests) and the Sacramento

Mountains within the Lincoln National Forest of

New Mexico (n = 2070; located approximately

400 km from our study area) respectively. Terrain in

the Mogollon Plateau consisted of high plateaus with

incised canyons and volcanic mountains, whereas the

Sacramento Mountains consisted of high elevation

montane sky islands.

For both models, a set of a priori habitat variables

potentially important to the Mexican spotted owl were

selected based on existing literature. These variables

were classified into three categories: forest composi-

tion, topography, and climate. Forest composition

variables included percent canopy cover, percent

cover of mixed-conifer, percent cover of ponderosa

pine, forest edge density, and forest edge proximity.

Topographic variables included elevation, slope,

topographic roughness index, and topographic posi-

tion index. Climatic variables included total monsoon-

season precipitation, cumulative annual degree days,

and solar radiation index. Timm et al. (2016) and Wan

et al. (2017) used a univariate logistic regression

model to identify the optimal functional form (linear

vs. quadratic) and the optimal operative scale for each

habitat variable based on a discrete set of a priori

scales (100–5000 m radii at 100 m increments for a

total of 50 scales), with the best scale and functional

form determined using Akaike’s Information Criterion

corrected for small sample size (AICc). The scale-

optimized habitat variables, in the optimal functional

forms, were then subjected to all-subsets model

averaging based on AICc weights. The main differ-

ences between the two models were the optimal scales

identified for individual variables and relative impor-

tance of habitat variables. For example, percent
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canopy cover showed a broad-scale relationship

(2700-m radius) relationship in the local model, but

had a fine-scale (100-m radius) relationship in the non-

local model; additionally, percent cover of ponderosa

pine was an important variable in the local model but

not in the non-local model (Wan et al. 2017). The

differences in optimized spatial scales between the

models suggest that habitat selection of the Mexican

spotted owl is nonstationary across different

landscapes.

As a first step in the current study, we fitted the two

models to our study area, producing two predicted

probability maps of suitable habitat for Mexican

spotted owls. When fitting the models, we followed

Timm et al. (2016) and Wan et al. (2017) and used the

earliest LANDFIRE (2001) GIS products to develop

forest composition and topographic habitat variables

to best match the validation owl location data set

temporally (see ‘‘Predictive performance assessment’’

below). Climatic variables were calculated using

30-year normal (1981–2010) PRISM climate data

(PRISM Climate Group 2014). We examined the

relative performance of the two models, and whether a

composite model improved performance over either

model (see ‘‘Composite habitat suitability model’’

below). All raster layers used to develop the models

and the output prediction raster had a 30 m 9 30 m

pixel resolution. We expected the local model to

perform better than the non-local model in the

Apache-Sitgreaves and Coconino National Forests

because it was developed with data collected within

those areas, but expected poorer performance in the

adjacent Tonto National Forest. We expected the non-

local model to performworse because the study area in

which the non-local model was developed differed

considerably in physiography and vegetation compo-

sition from most of the current study area.

Composite habitat suitability model

We created a composite habitat model by averaging

the two habitat models to account for uncertainty

between the two model predictions. This was done by

summing the two raster surfaces of habitat suitability

models and then dividing by two. This essentially

produced a raster representing the composite predic-

tion that was equally weighted between the local and

the non-local models. This composite prediction raster

had a range between 0 and 1. High values (i.e., near 1)

and low values (near 0) indicated great model

agreement with higher or lower habitat suitability,

respectively. Intermediate values could result either

from lower habitat suitability estimated by both

models, or by disagreement between the models. We

used this method to create composite prediction

models for high and low dispersal ability scenarios

(see ‘‘Connectivity corridor network simulation’’ for

details on the scenarios).

Predictive performance assessment

We used an independent data set of owl locations to

evaluate the predictive performance of the habitat

suitability models. This data set was collected in 1993

and consisted of nest and roost locations (n = 442) in

the Apache-Sitgreaves (n = 175), Coconino

(n = 171), and Tonto National Forests (n = 96). We

used the k-fold cross-validation resampling approach

(k = 10) and calculated a suite of metrics to evaluate

the predictive performance of the habitat models for

each of the National Forests, and for all three National

Forests combined.

To assess predictive performance, we began by

calculating the area-adjusted frequency, which was a

predicted-to-expected index suitable for validating

presence-only data (Boyce et al. 2002). We partitioned

the habitat suitability range into 10 equal-interval

classes (i.e., 0–0.1, 0.1–0.2, etc.); and for each class,

we calculated the predicted and expected frequencies

of points. The predicted frequency was the number of

observations in each habitat suitability class divided

by the total number of observations among all classes,

and the expected frequency was the area covered by

each habitat suitability class divided by the total study

area. We then divided the predicted frequency by the

expected frequency to obtain the area-adjusted fre-

quency for each class. A post hoc evaluation of the

results revealed that the higher habitat suitability

classes comprised a very small proportion of total

study area (e.g.,\ 1e-10 in some cases). This created

erratic results in which the area-adjusted frequency of

the higher classes would either be zero or astronomical

when only one validation point was within the habitat

suitability class. To obtain meaningful results, we

reduced the volatility by grouping classes 8–10 (i.e.,

habitat suitability C 0.7) into the same class and

recalculated area-adjusted frequency. We used Spear-

man rank correlation to evaluate the strength of
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relationships between area-adjusted frequency and

habitat suitability class. A good predictive model

would show a monotonically increasing trend and the

Spearman correlation coefficient would be near 1

(Boyce et al. 2002).

We calculated five other accuracy metrics, includ-

ing the percentage of cases correctly classified (PCC),

sensitivity (i.e., true positive rate), specificity (i.e., true

negative rate), kappa statistics, and area under curve

(AUC) using the PresenceAbsence R package (Free-

man and Moisen 2008). PCC evaluates model accu-

racy by identifying the overall percentage of points

that have been correctly classified. Sensitivity and

specificity calculate the percentage of presences and

absences correctly classified respectively. Kappa takes

into account the possibility of points being classified

correctly by chance, and can be viewed as the

percentage improvement over expected accuracy.

AUC evaluates model performance at all possible

probability thresholds dividing presences and

absences. In general, AUC[ 0.7 indicates a useful

model (Swets 1988). Computing these metrics

required samples representing both presence and

absence of owls, but our validation data set contained

presence-only data. Consequently, we generated a

number of pseudo-absence points (Zaniewski et al.

2002; Engler et al. 2004) equal to the number of nest

and roost sites in the validation set for each National

Forest using the pseudo.absense function in spatialEco

R package (Evans 2017). This function generates

pseudo-absence samples based on kernel density

estimate of known locations, such that pseudo-absence

samples are located further away from the occurrence

points (Hengl et al. 2009). Because PCC, sensitivity,

specificity, and kappa statistics were sensitive to the

threshold dividing positive and negative outcomes,

instead of selecting a specific threshold, we examined

a series of thresholds that spanned from 0–1 at

intervals of 0.1, with the optimal threshold determined

by the highest kappa statistic.

Landscape resistance

To estimate landscape resistance, we converted the

predicted probability maps of suitable habitat into

raster surfaces that represented the relative perme-

ability of landscape features to species movement

using an exponential decay function:

R ¼ 1000ð�1�HSÞ;

where R represented the cost resistance value assigned

to each pixel and HS represented the predicted habitat

suitability derived from the suitability models

described above (Mateo-Sanchez et al. 2015a, b).

We used 1000 as the base of our exponential decay

function such that areas with[ 0.3 habitat suitability

would have low cost resistance. We rescaled the

resistance values to a range between 1 and 10 by linear

interpolation, such that minimum resistance (Rmin)

was 1 when HSwas 1, and maximum resistance (Rmax)

was 10 when HS was 0 (Fig. 2). Under the concept of

landscape resistance, low resistance values indicate

areas through which a species might move easily,

whereas high resistance values indicate areas that a

species is unlikely to traverse. Because the Mexican

spotted owl is a fairly mobile species (e.g., it can fly

over structurally disconnected or fragmented habitat

patches), an exponential decay function is appropriate

for converting habitat suitability to resistance values,

such that most habitats have low resistance values and

only highly unsuitable habitats have high resistance

values. Previous research on other species also sup-

ported using negative exponential functions to trans-

form habitat suitability into resistance (e.g., Mateo-

Sanchez et al. 2015a, b; Keeley et al. 2016; Fig. 2).

Fig. 2 Exponential decay functional curve used to transform

habitat suitability to landscape resistance. The function used the

formula: R = 1000(-1 9 HS) where R represented the cost

resistance value assigned to each pixel and HS represented the

predicted habitat suitability from a resource selection function

(RSF) model
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Two resistance surfaces were created in this step (i.e.,

converted from the local and non-local models

respectively), which were used as inputs in simula-

tions for evaluating connectivity and gene flow of

Mexican spotted owl.

Connectivity corridor network simulation

We used landscape connectivity simulation software

UNICOR (Landguth et al. 2012) to model patterns of

connectivity corridors for Mexican spotted owls. We

used the predicted probability maps of suitable habitat

described above to randomly generate 1000 habitat-

suitability weighted nodes on the landscape (i.e.,

higher predicted habitat suitability had more random

nodes). These nodes represented the starting locations

of individual owls on the landscape. We applied a

spatial filter such that each node was at least 2 km

from its nearest node to approximate nearest neigh-

borhood distances from demography studies (Peery

et al. 1999; May and Gutiérrez 2002). We used the

cumulative resistant kernel approach in UNICOR for

mapping connectivity corridors. This approach calcu-

lates the least-cost dispersal Gaussian kernel around

each source node up to a cost distance threshold, and

then sums all kernels to produce a density map

predicting connectivity strength at each location on the

landscape (Compton et al. 2007). Simulations were

conducted separately on resistance surfaces derived

from the local model and non-local models.

In addition, because of the uncertainty regarding

the maximum dispersal distance of the Mexican

spotted owl, we tested two cost distance thresholds

200 km (low dispersal ability) and 300 km (high

dispersal ability), which corresponded to 200,000 and

300,000 cost units, respectively, on a uniform land-

scape of minimum resistance value of 1. These

distances reflected our best estimates of the range of

uncertainty based on known Mexican spotted owl

ecology. During natal dispersal, radio-marked juvenile

owls moved distances up to 92 km from their natal

sites, and moved through highly variable terrain

(Ganey et al. 1998). These observed distances were

considered minimum estimates of natal dispersal

capacity, however, because most radio-marked juve-

niles disappeared during tracking or died before

settling on a territory (Ganey et al. 1998; Willey and

van Riper 2000). Although observed movements of

adult owls between breeding territories (i.e., breeding

dispersal) were relatively short (\ 15 km) for most

banded owls (Ganey et al. 2014), such owls at least

occasionally move long distances, with documented

movements of two banded owls covering approxi-

mately 187 km (Gutiérrez et al. 1996) and 462 km

(Ganey and Jenness 2013). Collectively, these data

suggest that Mexican spotted owls are able to move

long distances through highly variable terrain. The

edge-to-edge distance of the study area was 301 km,

and therefore, we restricted the dispersal limit of the

high dispersal scenario to 300 km in the simulation.

Correlation analysis

To compare predictions in habitat suitability, resis-

tance surfaces, and connectivity between the local and

the non-local models, we performed a moving window

correlation analysis (30 9 30 pixel window) and

calculated pixel-by-pixel Pearson coefficients among

model predictions using the rasterCorrelation function

in the spatialEco R package (Evans 2017). This

produced a raster of correlation coefficients with a

range between 1 and - 1 at any given pixel, with a

correlation coefficient near 1 indicating higher agree-

ment, and a value near - 1 indicating higher dis-

agreement between predictions of the two models. We

also calculated the mean correlation coefficient for the

whole raster.

Composite connectivity model

We created a composite connectivity model by

averaging the predictions of the local and non-local

connectivity models to account for uncertainty

between the two model predictions. This was pro-

duced the same way as the composite habitat suitabil-

ity model, except connectivity surfaces were used

instead of habitat suitability surfaces. Composite

models were created for the high and low dispersal

ability scenarios described above.

Results

Predicted habitat suitability

The local and non-local models predicted different

patterns of potential suitable habitat for the Mexican

spotted owl. Suitable habitats predicted by the local
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model were concentrated in the White Mountains

region in the southeastern portion of Apache-Sitg-

reaves National Forests, and in the northern portion of

the Coconino National Forest (Fig. 3a). While the

non-local model also predicted suitable habitat in

those general areas, predicted habitat under this model

was less concentrated and more widely dispersed

(Fig. 3b), as opposed to the more aggregated patches

predicted by the local model. The non-local model

also predicted many of the forested mountains and

canyons in the Tonto National Forest as potential

habitats, whereas the local model did not (Fig. 3a, b).

The composite habitat suitability map predicted that

theWhite Mountains region contains some of the most

concentrated habitats for the Mexican spotted owl in

the study area (Fig. 3c). Topography also appeared to

be an important feature as predicted habitat often was

associated with linear canyon systems (Fig. 3c).

Habitat model predictive performance assessment

For all three National Forests combined, the composite

model was the best overall model in terms of highest

PCC (0.76), sensitivity (0.58), kappa statistic (0.51),

and AUC (0.92; Fig. S1a) among all models. It also

ranked second in area-adjusted frequency analysis

(rs = 0.62; Fig. 4a). Although the non-local model

performed better in area-adjusted frequency (rs-
= 0.79; Fig. 4a), it had lower PCC (0.66), sensitivity

(0.38), kappa statistic (0.32), and AUC (0.88;

Fig. S1a). The local model performed the worst based

on area-adjusted frequency (rs = 0.48; Fig. 4a), but

had better PCC (0.75), sensitivity (0.55), kappa

statistic (0.49), and AUC (0.91; Fig. S1a) than the

non-local model. Specificity was high and similar

among the models (0.93–0.94).

For the Apache-Sitgreaves National Forest, the

composite model also appeared to be the best model. It

had high AUC (0.90; Fig. S1b) and PCC (0.76), and

fairly high sensitivity (0.63) and kappa statistics

(0.51). It also performed well in area-adjusted fre-

quency (rs = 0.81; Fig. 4b). Although the local model

performed slightly better than the composite model in

terms of PCC (0.79), sensitivity (0.69), kappa statistic

(0.58), and AUC (0.92; Fig. S1b), it did not perform

well in area-adjusted frequency because of poor

predictions in areas with high suitability (rs = 0.57;

Fig. 4b). The non-local model had the lowest PCC

(0.67), sensitivity (0.43), kappa statistic (0.34), and

AUC (0.87; Fig. S1b), but performed better than the

local model on area-adjusted frequency (rs = 0.69;

Fig. 4b). Specificity was high and similar among the

models (0.89–0.91).

For the Coconino National Forest, the local model

outperformed other models and had the highest PCC

(0.84), sensitivity (0.73), kappa statistic (0.67), and

AUC (0.95; Fig. S1c). The composite model also

performed well and had identical AUC (0.95;

Fig. S1c) but slightly lower PCC (0.78), sensitivity

(0.61), and kappa statistic (0.57) compared to the local

Fig. 3 Habitat suitability predicted across the study area based

on predictive habitat models: a a locally-developed predictive

model (AUC = 0.91, Timm et al. 2016), b a non-local predictive
model developed in the Sacramento Mountains, New Mexico

(AUC = 0.88; Wan et al. 2017), and c a composite model based

on averaging the two individual models (AUC = 0.92). Blue

lines indicate the boundaries of the Apache-Sitgreaves,

Coconino, and Tonto National Forests. The orange line is the

boundary of the White Mountain Apache Reservation. Black

markers represent nest locations used to evaluate model

performance. (Color figure online)
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model. The non-local model ranked last, with lowest

PCC (0.60), sensitivity (0.23), kappa statistic (0.20),

and AUC (0.89; Fig. S1c). None of the models

performed well in area-adjusted frequency, but the

local model still ranked first (rs = 0.24; Fig. 4c).

Specificity was high and similar among the models

(0.95–0.98).

For the Tonto National Forest, the non-local model

and the composite model both performed well, with

the former showing slightly better performance. The

non-local model had the highest PCC (0.74), sensitiv-

ity (0.55), and kappa statistic (0.48) among the

models. It also had high AUC (0.91; Fig. S1d) and

performed well in area-adjusted frequency (rs = 0.91;

Fig. 4d). The composite model performed slightly

better in AUC (0.93; Fig. S1d) and area-adjusted

frequency (rs = 1.00; Fig. 4d), but had lower PCC

(0.70), sensitivity (0.44), and kappa statistic (0.41).

Performance of the composite model was impacted by

poor prediction by the local model, in this area, which

resulted in no area predicted to have high suitability

and both upper classes of predicted suitability being

missing in the area-adjusted frequency plot (Fig. 4d).

The local model performed poorly. It predicted nearly

no Mexican spotted owl habitat in the Tonto National

Forest (Fig. 3a), which contributed to poor PCC

(0.50), sensitivity (0.00), kappa statistic (0.00), and

AUC (0.61; Fig. S1d). Specificity was high and similar

among the models (0.97–1.00). See Table S1 for

complete results for PCC, sensitivity, specificity,

kappa, and AUC.

Landscape resistance

Resistance surfaces produced by the local model and

the non-local model showed similar patterns as habitat

Fig. 4 Area-adjusted

frequencies of the local

model, the non-local model,

and the composite model by

habitat suitability classes

over a the three National

Forests (Apache-Sitgreaves,

Coconino, and Tonto)

within the study area, b the

Apache Sitgreaves National

Forest, c the Coconino
National Forest, and d the

Tonto National Forest. Error

bars represent 95%

confidence interval.

Spearman’s correlation (rs)

and p values (p) are shown in

parentheses in the legend
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suitability predictions. Areas of low resistance were

confined mostly to the Apache-Sitgreaves National

Forests and the Coconino National Forest in the local

model (Fig. 5a), whereas areas of low resistance were

patchier but more broadly distributed in the non-local

model (Fig. 5b).

Connectivity corridor network

Resistant kernel analyses predicted patterns of synop-

tic connectivity for the Mexican spotted owl across the

study area. Both models identified extensive connec-

tivity in the White Mountains region, but the local

model predicted higher and more highly concentrated

connectivity in that area (Fig. 6). Patterns of connec-

tivity in the local model were similar between both

high and low dispersal ability scenarios, with slightly

broader extent of cumulative resistant kernel for the

high dispersal scenario (Fig. 6a, c). In contrast,

dispersal ability showed a stronger effect on connec-

tivity strength under the non-local model, with the

high dispersal ability scenario producing a broader and

more connected network than the low dispersal ability

scenario (Fig. 6b, d). The most noticeable difference

between the two models occurred within the Tonto

National Forest and White Mountain Apache Reser-

vations south of the Mogollon Rim. This region was

predicted to provide important connectivity for the

Mexican spotted owl under the non-local model but

not under the local model. The composite connectivity

map showed high connectivity strength in the White

Mountains region under both high and low dispersal

ability scenarios (Fig. 7). The map also identified a

network of multiple corridors (more obvious in the

low dispersal ability scenario) that provided linkages

across the study area (Fig. 7), although those linkages

were relatively weak.

Correlation analysis

Agreement between the two predictive habitat models

varied spatially (mean correlation = 0.37), but gener-

ally appeared negative in the southern half and

positive in the northern half of the study area (Fig. 8a).

Correlation between the landscape resistance surfaces

also varied (mean correlation = 0.46) and had a large

cluster of positive correlation pixels in the upper

portion and many small patches of negative correla-

tion pixels scattered across the study area (Fig. 8b).

For the connectivity models, under both high and low

dispersal ability scenarios, correlation was generally

high and positive (mean correlation = 0.80 and 0.86

respectively). As expected, we generally observed

high positive correlation in areas where connectivity

strength was predicted to be either very high or very

low (Fig. 8c, d).

Discussion

Given the urgency of habitat loss and fragmentation it

is critical to obtain reliable knowledge about patterns

of habitat suitability and population connectivity for

species of conservation concern so conservation

Fig. 5 Landscape resistance surfaces used in connectivity

corridor network simulations. a Landscape resistance estimated

with the local model. b Landscape resistance estimated with the

non-local model. Higher resistance values indicate less likeli-

hood of species traversing that area

123

512 Landscape Ecol (2019) 34:503–519



planning can be undertaken. However, there is a

severe shortage of quantitative research on habitat

quality and connectivity for most species. For many

species in many areas there are no locally developed

quantitative habitat or connectivity models available.

Thus, it is important to consider how well models that

are produced in different locations or different times

perform in predicting habitat suitability and connec-

tivity (Cushman et al. 2013b), in order to determine

whether the knowledge gained from existing models

can be extrapolated to new areas. If several models are

available from different geographic areas, it is impor-

tant to compare them and their predictions. In this

paper we quantitatively compared the predictions of

two models of habitat suitability and connectivity for

Mexican spotted owl. One of these models was locally

derived and the other was developed several hundred

kilometers from the focal study area. The two areas

differed considerably in topography and vegetation

composition (Timm et al. 2016; Wan et al. 2017).

Each of our a priori hypotheses received some

support from the results. Consistent with our first

Fig. 6 Resistant kernel connectivity models calculated using

individual-based simulations. Simulations were conducted on

the landscape resistance surfaces of the local (left) and the non-

local (right) models under high (top) and low (bottom) dispersal

ability scenarios

Fig. 7 Composite

connectivity map under

a high dispersal ability

scenario and b low dispersal

ability scenario.

Connectivity was calculated

with the local and the non-

local connectivity models

both having equal weights
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hypothesis we found that the local model had gener-

ally higher performance in predicting an independent

spotted owl occurrence data set than the non-local

model for most of the study landscape when AUC was

the performance criterion (Table S1). When area-

adjusted frequency was considered, however, the non-

local model often outperformed the local model. Area-

adjusted frequency predicts conditional probability of

presence, evaluates presence-only locations, and is

sensitive to the number of bins and their boundaries.

The area-adjusted frequency performance of the local

model was by disparaged by the fact that few presence

data were in areas belonging in the upper bins (i.e.,

predicted highly suitable habitat). But if we look at bin

1–6, the local model performs mostly better than the

non-local model (Fig. 4). Therefore, the differences

between area-adjusted frequency and AUC results

were at least partly due to the sensitivity of bins in

area-adjusted frequency. Additionally, because AUC

measures discrimination and considers both presence

and absence locations, this also contributes to the

differences between area-adjusted frequency and

AUC results. Remarkably, our composite model that

combined the two predictions had somewhat higher

overall performance. Consistent with our second

hypothesis we found that the local model performed

best in the parts of the study area where it was

parameterized (e.g., Coconino and Apache-Sitgreaves

National Forest) and worse in areas where it was not

(e.g., Tonto National Forest). Importantly, the local

model performed extremely poorly in the Tonto

National Forest, where it predicted an absence of

suitable spotted owl habitat. In contrast, the non-local

model performed very well in that part of the study

area. There were some similarities in topography

between this region and the landscape where the non-

local model was developed, as the Tonto National

Forest contained numerous mountain ranges. How-

ever, the Tonto National Forest was generally lower in

elevation, drier, and far less dominated by mixed-

conifer forest than the area where the non-local model

was developed. Thus, the relatively strong predictive

power shown by the non-local model in this area was

somewhat surprising, but may indicate convergence in

habitat selection between owls in these different

landscapes.

Consistent with our third hypothesis, we found that

there was much higher agreement between the

connectivity models produced by the two habitat

models than between the habitat suitability models

themselves. We expected this to be the case because

habitat quality is a multi-scale function of local

Fig. 8 Correlation of

a predicted habitat

suitability, b landscape

resistance surfaces,

c connectivity under high

dispersal scenario, and

d connectivity under low

dispersal scenario between

the local and the non-local

models. Positive correlation

indicates agreement, and

negative correlation

indicates disagreement

between the two models
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conditions, and models that include different variables

or different scales for the same variables will produce

divergent predictions of habitat quality. In contrast,

connectivity predictions are based on habitat quality

but also are influenced by spatial contagious spread

processes, which smooth the differences between

models. Indeed, we found dramatically higher simi-

larity between the predicted connectivity models than

between the habitat suitability models. There has been

much debate and discussion around the topic of how to

best estimate and optimize landscape resistance (e.g.,

Rudnick et al. 2012; Zeller et al. 2012; Cushman et al.

2013a). The observation made here that differences in

resistance surface have relatively modest effects on

predictions of connectivity for a highly mobile

species, at least in comparison to how the differences

in models affect predictions of habitat suitability itself,

is encouraging and suggests that connectivity model-

ing may be more robust to uncertainty in resistance

surfaces than has previously been assumed. It remains

to be tested whether our results apply to less mobile

species.

Resource selection functions developed with data

sets collected from different geographic locations lead

to differences in predicted habitat suitability and

landscape resistance patterns (Figs. 3, 5, 8). Con-

versely, connectivity model predictions showed high

correlation and agreement even when they were

derived from different source nodes and resistance

surfaces (Fig. 7, 8). This suggested that, in our case,

the individual-based resistant-kernel models were

relatively insensitive to differences in resource selec-

tion functions. Uneven sensitivity of habitat suitabil-

ity, landscape resistance, and connectivity to resource

selection functions could be related to differences in

specificity and precision in nesting versus dispersal

habitats. Spotted owls have more specific and local-

ized requirements for selecting nesting habitat but can

use more general and diverse habitats for dispersal

(Forsman et al. 2002).

Our composite habitat model was able to calibrate

prediction uncertainty arising from sensitivity to

different resource selection functions and improved

performance over the two habitat models in the

Apache-Sitgreaves National Forest and in the com-

bined area of the three National Forests. The improve-

ments were likely a result of reduction in over-

projection from either model. The composite model

did not, however, improve performances in the

Coconino National Forest and the Tonto National

Forest, where the best models were the local model

and the non-local model respectively. The inability to

provide improvement was a result of poor perfor-

mance by one or both models. For example, the local

model showed extremely poor performance in the

Tonto National Forest, and the composite model

suffered from such poor performance. Based on our

results, we think that when the reference models

perform reasonably well, the composite modeling

approach can create an even better model that provides

greater precision in predicting suitable habitats. On the

other hand, when one (or more, in the case of[ 2

models) of the reference models is bad, the composite

modeling approach is not as useful.

White Mountains region

The local, non-local, and composite models all

predicted the White Mountains region as important

to the Mexican spotted owl. Because of the agreement

among all models, we have high confidence that this

region is a core area that provides critical habitat and

connectivity for the owl. Two recent large fires,

Rodeo-Chediski Fire in 2002 and Wallow Fire in

2011, burned over 189,600 ha and 211,500 ha of land

respectively near this region. Some early assessments

suggest that numbers of Mexican spotted owls have

decreased in at least some areas burned at high severity

within these fires (M. Lommler, Personal Communi-

cation, 2018). The effects of fire on the Mexican

spotted owl are understudied and currently subject to

debate (Bond 2016; Ganey et al. 2017; Wan et al.

2018). The GIS layers used to develop the models pre-

dated the two fires, and therefore, the models did not

evaluate the effects of the fires on habitat and

connectivity. If these large fires have, indeed, had a

negative influence on the populations of the Mexican

spotted owl in this region, then the repercussions could

extend to other areas as well because of the important

role of the White Mountains as a core area.

Comparison to past work

Two decades ago, Keitt et al. (1997) conducted a

quantitative landscape-level assessment of habitat

connectivity of the Mexican spotted owl using a graph

theory approach. This groundbreaking study was

useful in identifying both critical thresholds for
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connectivity based on straight-line dispersal distance

between habitat patches, and the importance of

individual patches in maintaining connectivity. How-

ever, in the absence of habitat suitability models, the

study relied on an underlying map that identified

habitat patches based on forest cover type maps and

assumed equal resistance for all areas traversed. Thus,

the graph theory framework (Keitt et al. 1997; Urban

and Keitt 2001) simplified the landscape and reduced

habitat patches and connections between them to dots

and lines (called nodes and edges) respectively. Our

study complements and extends this work by analyz-

ing spatially explicit connectivity using a resistant

kernel approach based on predictive habitat models

grounded in empirical data. This approach provided

high-resolution (30-m pixel) information that better

pinpoints core areas and corridors most likely to be

used by the species although in a smaller study area.

Our model predictions thus have the potential to

provide practical guidance for identifying the most

critical habitats for maintaining connectivity among

Mexican spotted owl populations. The approach

underlying the model can be extended across the

range of the owl to better inform management

decisions in prioritizing areas for the protection of

the species.

Future research opportunities

Although the Mexican spotted owl typically nests in

forested habitats with high canopy cover, it also nests

and roosts in high cliffs, caves, and rock ledges in

rocky environments with relatively low tree cover

(Willey and van Riper 2007). The resource selection

functions tested in our study were developed exclu-

sively for predicting habitat suitability of the Mexican

spotted owl in forested environments (Timm et al.

2016; Wan et al. 2017). We see an opportunity to

employ the same methodology with owl location data

collected from rocky canyonland to develop habitat

and connectivity models for these unique environ-

ments. Combining models developed for specific

geographic areas or habitat types based on empirical

data on habitat use by Mexican spotted owls in those

areas or habitats will provide a better understanding of

connectivity across the range of the Mexican spotted

owl.

In addition, although using detection data to infer

resistance to movement is a common approach (Zeller

et al. 2012), several studies suggest that detection-

based habitat models may not accurately reflect

movement behavior or landscape resistance (Spear

et al. 2010; Mateo-Sánchez et al. 2015a; Keeley et al.

2017; Zeller et al. 2017). Resource selection functions

tested in this study were based on habitat suitability

models and were developed with nest and roost site

detection data, which were the best data available to

us. Improvement on predictions will be possible when

data sources that are more connected with species

dispersal and mating movement become available.

Currently, movement data (e.g., GPS telemetry) on the

Mexican spotted owl is too limited for conducting this

type of connectivity analysis. Therefore, although the

connectivity models provided here are currently the

most quantitatively rigorous, we advocate the collec-

tion of movement data in future Mexican spotted owl

studies to improve the accuracy of connectivity

assessment. The combination of movement data and

connectivity models illustrated here will also be useful

in discerning differences in habitats used by the

spotted owl between natal and breeding dispersal of

spotted owls (Forsman et al. 2002). Furthermore, we

envision that future assessments will be able to

incorporate genetic data to evaluate gene flow and

genetic connectivity of the threatened species. Addi-

tional movement and genetic data will also be useful

for validating the connectivity models in this study.

Uncharacteristically large and severe wildfires

(e.g., Rodeo-Chedeski Fire and Wallow Fire men-

tioned above) and climate change in the southwestern

U.S. are driving landscape changes and emerging as

threats to potentially aggravate the decline of the

Mexican spotted owl (Wan et al. 2018). Under these

emerging threats, and especially under climate

change, plant communities will likely be reassembled,

which will influence the configuration and connectiv-

ity of habitats in the future (Beier et al. 2011). Our

research serves as a baseline assessment of habitat

suitability and connectivity for the Mexican spotted

owl under current landscape conditions, providing

high-resolution and spatially explicit information for

developing hypotheses on evaluating the potential

influences of climate change, disturbance, and treat-

ment effects on the species in future landscapes. For

example, projected climate data from general circula-

tion models can be used with the multi-scale modeling

techniques shown in this study, and the resulting

model can be compared against predictions from this
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study to understand climate effects on the Mexican

spotted owl. In addition, as mentioned above, the GIS

layers used in this study predated some large fires

within the study area. Research repeating the same

methods in this study along with post-fire GIS and

remotely sensed data to analyze potential fire effects

on the habitat and connectivity of the Mexican spotted

owl is underway (Wan 2018). This research will

provide much needed information for the management

and conservation of the Mexican spotted owl (Ganey

et al. 2017; Wan et al. 2018).
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