Soil carbon and nitrogen eroded after severe wildfire and erosion mitigation treatments

Derek N. Pierson A,D, Peter R. Robichaud B, Charles C. Rhoades C and Robert E. Brown B

A Oregon State University, Department of Crop and Soil Science, 109 Crop Science Building, 3050 SW Campus Way, Corvallis, OR 97331, USA.
B Rocky Mountain Research Station, US Department of Agriculture, Forest Service Moscow, ID 83843, USA.
C Rocky Mountain Research Station, US Department of Agriculture, Forest Service, Fort Collins, CO 80526, USA.
D Corresponding author. Email: piersond@oregonstate.edu

Abstract. Erosion of soil carbon (C) and nitrogen (N) following severe wildfire may have deleterious effects on downstream resources and ecosystem recovery. Although C and N losses in combustion and runoff have been studied extensively, soil C and N transported by post-fire erosion has rarely been quantified in burned landscapes. To better understand the magnitude and temporal pattern of these losses, we analysed the C and N content of sediment collected in severely burned hillslopes and catchments across the western USA over the first 4 post-fire years. We also compared soil C and N losses from areas receiving common erosion-mitigation treatments and untreated, burned areas. The concentrations of C and N in the eroded material (0.23–0.98 g C kg−1 and 0.01–0.04 g N kg−1) were similar to those of mineral soils rather than organic soil horizons or combusted vegetation. Losses of eroded soil C and N were highly variable across sites, and were highest the first 2 years after fire. Cumulative erosional losses from untreated, burned areas ranged from 73 to 2253 kg C ha−1 and from 3.3 to 110 kg N ha−1 over 4 post-fire years. Post-fire erosion-mitigation treatments reduced C and N losses by up to 75% compared with untreated areas. Losses in post-fire erosion are estimated to be 10% of the total soil C and N combusted during severe wildfire and 10% of post-fire soil C and N stocks remaining in the upper 20 cm of mineral soil. Although loss of soil C and N in post-fire erosion is unlikely to impair the productivity of recovering vegetation, export of C and N may influence downstream water quality and aquatic ecosystems.

Additional keywords: post-wildfire recovery, sediment, watershed biogeochemistry.

Received 5 November 2018, accepted 14 February 2019, published online 19 March 2019

Introduction

Observed and projected increases in severe wildfire frequency and extent (Westerling et al. 2006; Dennison et al. 2014) have elevated concerns about post-fire ecosystem recovery, watershed condition and long-term source-water protection (Findlay and Sinsabaugh 2003; Binkley and Fisher 2012). Fires both remove material from ecosystems and transport it downslope and downstream. For example, the post-fire transfer of nitrogen (N) and phosphorus (P) may deplete limiting soil nutrients from upland ecosystems, while enriching and potentially degrading downstream aquatic ecosystems (Durán et al. 2010; Smith et al. 2011; Silins et al. 2014). Losses of soil carbon (C) and N during combustion and post-wildfire transport of dissolved C and N in surface runoff and leaching have been examined in many forested regions (Bormann et al. 2008; North and Hurteau 2011; Santín et al. 2015), but the erosion of soil C and N following wildfire has rarely been quantified (Baird et al. 1999; Johnson et al. 2007; Bormann et al. 2008). Post-fire erosion can remove up to 60 Mg ha−1 of soil material in the years following a severe wildfire due to fire effects on soil structure and loss of surface cover provided by organic-soil layers (Johnson et al. 2007; Riechers et al. 2008; Robichaud et al. 2013a). The concomitant losses of soil C and N from erosion may decrease post-fire nutrient availability and alter ecosystem productivity, while simultaneously affecting downslope and downstream resources (Gílman et al. 2008; Tranvik et al. 2009; Quinton et al. 2010).

High-severity wildfires combust nearly all vegetation and surface organic layers (Keeley 2009; Parsons et al. 2010), and have short-term effects on near surface C and N pools. Post-fire leaching and erosion of C and N, by contrast, may deplete soil pools and enrich streams over the course of many years (Rhoades et al. 2011; Robichaud et al. 2013a). Persistent soil C and N losses after severe wildfire may restrict microbially mediated nutrient-cycling processes, limit ecosystem
Table 1. Post-wildfire erosion monitoring site information and characteristics

Superscript letters in the ‘Monitoring scale’ column denote: C, control; L, contour-felled logs; H, hydromulch; S, straw mulch. The ‘Sediment-producing storms’ listed are the total over the 4-year study period. Storm events producing <20 kg ha\(^{-1}\) of sediment not included. \(I_{10}\), ten minute rainfall intensity

<table>
<thead>
<tr>
<th>Wildfire name; fire ignition date (US State)</th>
<th>Location (elevation, m)</th>
<th>Annual precipitation (mm)</th>
<th>Monitoring scale (contributing area)</th>
<th>Sediment-producing storms</th>
<th>Average event (I_{10}) ± s.d. (maximum (I_{10}), mm h(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valley Complex; 31 Jul 2000 (Montana)</td>
<td>45.91°N, 114.03°W (1725)</td>
<td>400</td>
<td>Catchment (3.6(^{c}), 2.8(^{l}) ha)</td>
<td>7</td>
<td>25.7 ± 18 (59)</td>
</tr>
<tr>
<td>Fridley; 19 Aug 2001 (Montana)</td>
<td>45.51°N, 110.78°W (1940)</td>
<td>700</td>
<td>Catchment (13.3(^{c}), 11.8(^{l}) ha)</td>
<td>8</td>
<td>31.1 ± 17 (55)</td>
</tr>
<tr>
<td>Hayman(^{b}); 8 Jun 2002 (Colorado)</td>
<td>39.18°N, 105.36°W (2387)</td>
<td>400</td>
<td>Catchment (3.0(^{c}), 3.1(^{l}), 4.6(^{c}), 5.2(^{h}), 3.3(^{s}) ha)</td>
<td>17</td>
<td>36.7 ± 16 (65)</td>
</tr>
<tr>
<td>Cannon; 15 Jun 2002 (California)</td>
<td>38.45°N, 119.47°W (2230)</td>
<td>300</td>
<td>Catchment (12.6(^{c}), 10.9(^{l}) ha)</td>
<td>3</td>
<td>28.5 ± 16 (72)</td>
</tr>
<tr>
<td>Kraft Springs 31 Aug 2002 (Montana)</td>
<td>45.41°N, 104.12°W (1190)</td>
<td>360</td>
<td>Catchment (2.8(^{c}), 3.0(^{l}) ha)</td>
<td>4</td>
<td>36.1 ± 18 (61)</td>
</tr>
<tr>
<td>Hot Creek; 23 Jul 2003 (Idaho)</td>
<td>43.76°N, 115.22°W (2310)</td>
<td>1100</td>
<td>Hillslope (72 m(^{2}))</td>
<td>8</td>
<td>24.4 ± 10 (38)</td>
</tr>
<tr>
<td>Myrtle Creek; 19 Jul 2003 (Idaho)</td>
<td>48.72°N, 116.46°W (1857)</td>
<td>790</td>
<td>Hillslope (285 m(^{2}))</td>
<td>6</td>
<td>39.7 ± 19 (59)</td>
</tr>
<tr>
<td>School; 5 Aug 2005 (Washington)</td>
<td>46.22°N, 117.66°W (1686)</td>
<td>1380</td>
<td>Hillslope (212 m(^{2}))</td>
<td>9</td>
<td>23.0 ± 19 (35)</td>
</tr>
</tbody>
</table>

\(^{b}\)Two separate scale areas within the Hayman Fire perimeter were used for monitoring.

productivity (Bauhus et al. 1993; Certini 2005) and delay post-fire vegetation recovery. Further, these losses may contribute to long-term increases in stream water C and N observed after severe wildfire (Rhoades et al. 2018) and at sites across the western USA (Rust et al. 2018).

Post-fire erosion rates vary widely, with extreme rates associated with high-intensity rainfall events (Debano et al. 1998; Groen and Woods 2008; Robichaud et al. 2013a). Similarly, rates of soil C and N removal by post-fire erosion (280–640 kg C ha\(^{-1}\) and 14–110 kg N ha\(^{-1}\)) respond to large rainfall events the initial years following wildfire (Baird et al. 1999; Johnson et al. 2007; Bormann et al. 2008). Erosion mitigation mulch and log barrier treatments applied shortly after severe wildfires cover bare soils and impede overland flow to reduce the erosive effects of high-intensity storm events (Robichaud and Ashmun 2012). These treatments are also likely to limit C and N losses from upland soils, although their effects have not been evaluated after severe wildfire.

The high variability in post-fire erosion rates generated by storm events, combined with additional spatial variability associated with wildfire severity and watershed characteristics (Shakesby 2011; Wagenbrenner and Robichaud 2014), require well-replicated studies conducted at multiple spatial scales in order to adequately quantify post-fire C and N losses. Such information will provide an estimate of the magnitude of soil C and N eroded from upland landscapes relative to other wildfire-related losses and will permit a comparison of the biogeochemical consequences of post-fire erosion control treatments. Here we measure C and N in sediment collected from hillslopes and catchments burned by severe wildfires at eight locations across the western USA. We investigate temporal patterns of soil C and N erosion over the first 4 post-fire years and compare losses among various erosion mitigation treatments. We expect soil C and N losses to be reduced by the mitigation treatments that reduce erosion to the greatest extent. This evaluation will help determine whether soil C and N losses represent a threat to the productivity of ecosystems recovering from wildfire, as well as if transport may impair downstream water quality.

Methods

We studied eight long-term wildfire monitoring sites (Robichaud et al. 2008, 2013a, 2013b) for a period of 4 years following each fire (Table 1). The contributing area of each site had >70% high soil-burn severity from wildfire. High soil burn severity is characterised by the near-complete loss of pre-fire ground cover and surface organic matter, with post-fire soil surfaces of barren mineral soil and ash cover (Parsons et al. 2010). Assessments of soil-burn severity were made by the US Forest Service Burned Area Emergency Response (BAER) team at each fire site. Pre-fire vegetation was a variety of conifer species with a diverse mix of grass, forb and shrub species (Robichaud et al. 2008, 2013a, 2013b). Soil texture varied between sites from sandy loam to silt loam. Average annual precipitation for individual sites ranged from 300 to 1380 mm year\(^{-1}\). During the study, the majority of sites experienced three to ten sediment producing storm events, with exception of the Hayman site which experienced more than 17 sediment producing events (Table 1).

Four sites had hillslope-scale sediment traps (20–250 m\(^{2}\) contributing area), five quantified sediment output at the catchment scale (3–13 ha contributing area) and one site measured sediment at both scales. Hillslope-scale sediment traps or catchment basins were constructed in paired locations with
similar terrain and contributing area to compare untreated, burned areas and those with erosion-mitigation treatments (Table 1; Robichaud et al. 2008, 2013a, 2013b). One untreated, control catchment was compared with all the treated catchments, except for the Hayman site, where two untreated catchments were monitored and sediment C and N yields were averaged. At hillslope sites, control and mitigation-treatments plots were replicated along the same hillslope contour; the number of replicates ranged from three to nine depending on the size and uniformity of the site.

Sediment traps and catchment basins were constructed as soon as logistically possible after each fire. Hillslope-sediment traps were constructed within a few weeks following the end of the fire, and the larger catchment traps were installed within 2–3 months. On-site inspection ensured that post-fire erosion had been minimal before site establishment. Eroded sediments were collected from traps for all sediment-producing storm events throughout the 4-year study period (Robichaud et al. 2008, 2013a, 2013b). Prior to sediment sampling, large pieces of organic material, such as straw mulch residue, newly fallen leaves and woody debris, were removed by hand. Storm events that produced less than 1000 kg of sediment were removed from sediment fences and traps with buckets and weighed on-site. For sediment deposits weighing >1000 kg, sediments were removed with mechanical equipment and an estimate of the sediment weight was based on sediment volume and bulk density. Sub-samples of sediment for C and N analysis were taken from each bucket or mechanical equipment load by collecting equivalent volumes of sediment from multiple locations throughout each load or bucket. All sub-samples were then combined for each sediment trap and storm event.

Sediment samples were dried for 24 h at 100°C to determine sediment dry weight. Samples were homogenised and passed through a 2-mm mesh sieve before sub-sampling for C and N analysis. Sediment C and N content was determined by dry combustion at 850°C (Leco TruSpec autoanalyser, St Joseph, MI, USA). Total dry-sediment mass was divided by contributing area to calculate hillslope and catchment sediment yields. For catchments, the C and N yield from each storm event cleanout was determined by the product of the sediment yield and the C and N concentration of the collected sediment. For hillslope sites, the average sediment yield from replicate sediment traps within same treatment type was multiplied by the average C and N content of the sediment samples taken during storm cleanouts. Annual yields were calculated as the dry weight sum of all sediment collected in a standard calendar year divided by the associated contributing area.

Fig. 1. Annual sediment, sediment carbon and sediment nitrogen yields from untreated areas. (a) Yields from all monitoring sites (includes yields from the Hayman sediment trap site and catchment site as separate points). (b) Excludes yields from three of the eight monitoring sites (Hayman, Fridley and Cannon) where extreme rainfall events led to cumulative sediment yields >5000 kg ha⁻¹.
Sediment C and N concentrations and sediment C and N yields were compared over time, across treatment types and between sampling scales (hillslope or catchment) in a generalised linear mixed-effects model (SAS Institute Inc., Cary, NC, USA). Treatment type, post-wildfire year, and either hillslope or catchment scale were used as fixed effects within the model. Site was used as the random effect. Sampling scale × treatment type within site was also used as a random effect to account for variation between plots with different scale and treatment combinations. The model incorporated a repeated-measures structure on the residuals to account for measurements taken from the same plots over time. In the model for sediment-yield comparisons, a lognormal distribution was used to transform the yield data to better approximate a normal distribution. For the same purpose, a β distribution was used to transform the confined values (e.g. 0–100%) for sediment C and N concentrations. Sediment yield and concentration differences were compared using the least-squares mean estimates with a Tukey–Kramer adjustment to account for uneven sample sizes (Kramer 1956).

Results
Across all sites, the median cumulative sediment C and N yield over the first 4 post-wildfire years was 160 kg C ha\(^{-1}\) and 8.1 kg N ha\(^{-1}\) with individual site yields ranging from 73 to 2253 kg C ha\(^{-1}\) and from 3.3 to 110 kg N ha\(^{-1}\) (Fig. 1a). No significant differences in C and N yield were found between sites, nor between hillslope and catchments scales. Annual sediment C and N yields were greater the first 2 years after fire than in years 3 and 4 (\(P < 0.018\)), with the greatest annual yields coming in the first year. First-year sediment C and N yields ranged from 4.4 to 1950 kg C ha\(^{-1}\) and from 0.25 to 95 kg N ha\(^{-1}\) (Fig. 1a). For the majority of the monitoring sites, C and N yields from the first 2 post-wildfire years accounted for >90% of the total sediment C and N yield over the 4-year study period. A small number of storm events were responsible for most of the sediment C and N measured during the study (Fig. 2). Single extreme-storm events at the Cannon, Fridley and Hayman (hillslope) monitoring sites generated the three largest sediment yields observed and caused >98, >95 and >76% of their respective total sediment, C and N yields. The total annual yield at sites that did not experience an extreme erosion event was <5000 kg sediment ha\(^{-1}\) (Fig. 1b).

Eroded sediment C and N concentrations from untreated areas were highly variable (4–195 g C kg\(^{-1}\), 0.2–8.6 g N kg\(^{-1}\)) between individual sediment producing events over the 4-year study period (Fig. 2). No significant difference in sediment C and N concentration was found between individual monitoring sites.
Sediment C and N concentrations rarely exceeded 1.5 g N kg\(^{-1}\) and 50 g C kg\(^{-1}\) following large sediment-producing storms (>5000 kg ha\(^{-1}\)) (Fig. 2). Sediments from hillslope sites contained significantly more C and N than sediments from catchment sites \((P < 0.04, \text{ Fig. } 2)\). The median C and N concentrations in hillslope and catchment sediments were respectively 81 and 50 g C kg\(^{-1}\) and 3.4 and 2.5 g N kg\(^{-1}\). We saw no significant differences in C and N concentrations with time since fire.

Wheat straw and wood-strand mulch both decreased the sediment yields \((P < 0.01)\), with respective >74 and >65% reductions in total C and N yield on average, relative to adjacent untreated areas (Fig. 3, Table 3). Additionally, sediment collected from mulched areas had higher C and N concentrations compared with sediment eroded from untreated areas \((P < 0.01, \text{ Fig. } 4)\). For the two sites that had functional contour-felled logs, sediment C and N yields were reduced by 70 and 32% on average. Hydromulch was the least effective treatment with reductions in total sediment yield of 40 and <20% reductions in the yields of C and N respectively (Fig. 3).

Discussion

Severe wildfires reduce soil C and N stocks due to combustion of organic matter during the fire, as well as through subsequent post-fire processes, such as erosion, runoff and leaching (Certini 2005; Caon et al. 2014). However, the magnitude and variability for erosive losses of soil C and N have rarely been quantified directly. Our study reports soil C and N erosion over the 4 years following eight severe wildfires in the western USA. The cumulative sediment C and N yields we observed in this large regional study spanned three orders of magnitude (73–2253 kg C ha\(^{-1}\) and 3.3–110 kg N ha\(^{-1}\)), a range that is much greater than reported previously (Grier 1975; Baird et al. 1999). The variability in post-fire sediment losses we observed among sites was associated with differences in climate, storm-event frequency and intensity.

Total post-fire soil C and N losses from combustion, runoff and erosion are substantially higher than the contribution of erosion alone. For example, the cumulative mineral soil losses of C and N were 14 000 kg C ha\(^{-1}\) and 390 kg N ha\(^{-1}\) in the first year after a severe wildfire in Oregon (Bormann et al. 2008; Homann et al. 2011) and soil N losses were observed from 25 to 110 kg N ha\(^{-1}\) in the initial 3 years after the Gondola Fire in the Lake Tahoe Basin (Murphy et al. 2006; Johnson et al. 2007). Elevated post-fire N losses in leaching and runoff are also common the initial years after wildfire, with first-year losses ranging from 1.1 to 27 kg N ha\(^{-1}\) (Smith et al. 2011). Based on these studies, we estimate that the C and N eroded from our western USA forest study sites comprise 1–10% of total C and N losses after severe wildfires.

The C and N concentrations measured in eroded sediment (4–195 g C kg\(^{-1}\) and 0.2–8.6 g N kg\(^{-1}\)) were similar to mineral-soil layers in nearby forests (Fig. 2, Table 2) rather than ash, partially charred or unburned organic-soil or vegetation. Elevated sediment C and N concentrations expected from the
incorporation of such organic residues (>10% C and >0.4% N, Fig. 2) were measured in few (<8%) samples. This is not surprising because severe wildfires consume nearly all vegetation and surface organic material (Keeley 2009).

Wind erosion of post-fire ash in the months before the onset of our sampling (Cerdà and Doerr 2008) may explain the low C and N concentrations we measured in sediments eroded shortly after each fire. The lower C and N content of sediment eroded from...
catchments compared with hillslope sites suggests a greater contribution of C- and N-poor material at the larger scale. Such material may originate from deeper soil horizons exposed by erosion processes or the mobilisation of coarser sediments previously deposited along drainage channels.

We estimate that the mass of soil C and N lost in post-fire erosion is equivalent to the amount contained in the top 1.1 cm of mineral soil in forests of this region. This is consistent with soil-depth losses (0.2 to 1.4 cm) measured after wildfires in conifer forests elsewhere (Baird et al. 1999; Johnson et al. 2007). Mineral soils in nearby unburned forests contain ∼15 000–90 000 kg C ha$^{-1}$ and 800–5000 kg N ha$^{-1}$ within the upper 20 cm (Rapid Carbon Assessment Project 2013; Soil Survey Staff 2016). Thus, the observed post-fire erosion losses are equivalent to <10% of those stocks.

Although wheat straw and wood-strand mulch were most effective, all erosion-mitigation treatments reduced soil C and N losses compared with untreated, burned areas (Fig. 3). The C and N concentration of sediments collected from areas treated with wheat straw and wood-strand mulch were slightly elevated compared with untreated areas (Fig. 4), potentially from reduced rill formation and channel erosion of deeper mineral soils with lower C and N contents. Post-fire mulch treatments also increase organic-substrate availability for soil microbial communities and promote short-term N immobilisation and nitrate retention (Berryman et al. 2014; Rhodes et al. 2015, 2017). In conjunction with improving physical soil stability, post-fire erosion mitigation treatments are likely to benefit the biogeochemical contribution of C- and N-poor material at the larger scale. Such catchments compared with hillslope sites suggests a greater contribution of C- and N-poor material at the larger scale. Such material may originate from deeper soil horizons exposed by erosion processes or the mobilisation of coarser sediments previously deposited along drainage channels.

We estimate that the mass of soil C and N lost in post-fire erosion is equivalent to the amount contained in the top 1.1 cm of mineral soil in forests of this region. This is consistent with soil-depth losses (0.2 to 1.4 cm) measured after wildfires in conifer forests elsewhere (Baird et al. 1999; Johnson et al. 2007). Mineral soils in nearby unburned forests contain ∼15 000–90 000 kg C ha$^{-1}$ and 800–5000 kg N ha$^{-1}$ within the upper 20 cm (Rapid Carbon Assessment Project 2013; Soil Survey Staff 2016). Thus, the observed post-fire erosion losses are equivalent to <10% of those stocks.

Although wheat straw and wood-strand mulch were most effective, all erosion-mitigation treatments reduced soil C and N losses compared with untreated, burned areas (Fig. 3). The C and N concentration of sediments collected from areas treated with wheat straw and wood-strand mulch were slightly elevated compared with untreated areas (Fig. 4), potentially from reduced rill formation and channel erosion of deeper mineral soils with lower C and N contents. Post-fire mulch treatments also increase organic-substrate availability for soil microbial communities and promote short-term N immobilisation and nitrate retention (Berryman et al. 2014; Rhodes et al. 2015, 2017). In conjunction with improving physical soil stability, post-fire erosion mitigation treatments are likely to benefit the biogeochemical status of recovering post-fire soils, enhancing soil productivity and overall watershed recovery.

The C and N eroded from burned landscapes may have important consequences for downstream ecosystems, and the mineralisation of organic C and N deposited in eroded sediments may stimulate both terrestrial and aquatic productivity (den Heyer and Kalff 1998; Gudasz et al. 2010). For example, eroded sediments deposited in a lake bottom released respectively 20 and 30% of their C and N content within 5 years (Gálman et al. 2008). A portion of C and N in eroded sediments also form stable organo-mineral complexes or are buried by subsequent sediment layers that resist mineralisation (Sollins et al. 2006; Sobek et al. 2009; Gálman et al. 2008). Owing to expected increases in severe wildfire occurrence, transfer of terrestrial C and N in post-fire erosion is likely to have increasing relevance both to aquatic C and N cycling and long-term storage.

Conclusions

Post-fire losses of soil C and N were related to total erosion rates, with the greatest losses the first 2 post-fire years. The concentrations of C and N in post-fire sediments were fairly uniform across western US wildfires and were consistent with the erosion of mineral-soil horizons. Cumulative losses of soil C and N were similar at hillslope and catchment scales, although their concentrations in eroded sediments were higher at the hillslope scale. Erosive losses of soil C and N are small by comparison to losses from combustion and are not expected to substantially deplete mineral-soil stocks. Contour-felled logs, wheat straw, wood strand and hydromulch erosion-mitigation treatments reduced total sediment yields and concomitant soil C and N losses. The effects of post-wildfire sediment C and N deposition on downstream riparian and aquatic environments are unknown, but their significance will increase with the frequency of high-severity wildfires.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Declaration of funding

Funding for this project was provided in part by USDA Forest Service Rocky Mountain Research Station, Pike and San Isabel National Forest, and the US Department of Interior USDA Forest Service Joint Fire Science Program.

Acknowledgements

We thank the hard-working field crews who assisted in the field and laboratory, including crews from the US Department of Agriculture Forest Service Rocky Mountain Research Station and Pacific Southwest Research Station, the Pike–San Isabel National Forest, and Colorado State University. We greatly appreciate the statistical review provided by Scott Baggett and the instructive and thoughtful comments of the two peer reviewers.

References

Soil carbon and nitrogen eroded after severe wildfire

