Effects of drought on wildfires in forest landscapes of the Western Ghats, India

Narendran KodandapaniA,C and Sean A. ParksB

ACenter for Advanced Spatial and Environmental Research (CASER), 53 2nd Main, Ramamurthy Nagar, Bangalore 560016, India.
BAldo Leopold Wilderness Research Institute, Rocky Mountain Research Station, USDA Forest Service, 790E Beckwith Avenue, Missoula, MT 59801, USA.
CCorresponding author. Email: svknaren@gmail.com

Abstract. Wildland fire is an understudied yet highly important disturbance agent on the Indian subcontinent. In particular, there is uncertainty regarding the degree to which annual climate variation influences inter-annual variability in fire activity. In this study, we evaluate wildland fire at two complementary spatial scales in the southern portion of the Western Ghats mountain range (hereafter ‘Western Ghats’) in India. At the larger regional scale, we evaluate temporal and spatial variability in fire activity from 2001 to 2015. At the smaller scale, we evaluate the relationship between annual area burned and climate variation within two landscapes nested within the Western Ghats (from c. 1996 to 2015). At the regional scale, we found that most fire activity was restricted to January–March, although substantial inter-annual variation was evident. For example, in 2004, 2009 and 2012, fire activity was approximately five times greater compared with the 3 years with the lowest fire activity. The landscape-scale analysis also revealed weak to strong correlations between annual area burned and climate variation in both landscapes. Although not the only factor influencing area burned, episodes of drought could be exerting an increasingly significant effect on wildfire activity in the Western Ghats.

Additional keywords: climate variation, fire activity, human factors, protected areas, reserve forests, socioeconomic, wildland fire.

Received 27 October 2018, accepted 6 March 2019, published online 18 April 2019

Introduction

Recent studies have established the impacts of anthropogenic climate change on an increasingly diverse array of meteorological and hydrological phenomena (Mann and Gleick 2015). Drought is one of the most commonly occurring climatic extremes and affects both natural and human systems, including the land carbon budget (Allen et al. 2010; Seidl et al. 2017). Recent analyses have predicted more frequent and severe droughts in the 21st century (Seneviratne et al. 2012; Williams et al. 2013; Cook et al. 2015). In fact, droughts in several tropical regions have been longer and more intense since the 1970s (Malah and Wright 2004). In natural systems, apart from the recurring drought conditions, the areal extent of vegetated biosphere affected by drought has increased 3-fold during the past 100 years (Schwalm et al. 2017). The observed and predicted occurrence and severity of drought will undoubtedly influence ecological disturbance agents such as wildfire (Williams et al. 2010).

Fire activity may be defined as the number of ignitions, the number of active fires, area burned, fire severity, duration of fire event or season, fire season severity, and fire episodes, among others (Keeley 2009). Fire activity at various spatial and temporal scales is influenced by several factors including fuel, climate, climate variation, ignitions, human activity and topography (Vadrevu et al. 2006; Prasad et al. 2008; Parisien et al. 2016). In the state of California (USA), for example, topographic controls of fire perimeters were most pronounced in mountainous regions and least influential in arid regions, and human influences added to the complexity (Povak et al. 2018). In the Cascade Range of the western United States, Cansler and McKenzie (2014) illustrated the relationships between climate and fire size, severity and spatial pattern metrics. In Canadian boreal forests, annual burned area data showed coherence between the spatial patterns of annually varying climatic extremes and long-term climate normals (Parisien et al. 2014). In the southern Indian state of Andhra Pradesh, models built with fire count data and explanatory variables such as population density, climate, topography and demand of metabolic energy explained more than 60% of the variability in fire activity (Vadrevu et al. 2006).

Recent studies in the Western Ghats have incorporated several explanatory variables to identify fire-prone areas through a two-step process, first at the scale of the Western Ghats and subsequently at the local scale (Renard et al. 2012). The study by Renard et al. (2012) highlighted the importance of inter- and intra-annual climate variables in driving fire patterns in the Western Ghats. However, annual variation in climate has often been shown to be one of the most highly influential factors
in driving inter-annual variability in fire activity (Littell et al. 2009; Bradstock 2010; Littell and Gwozdz 2011; Abatzoglou and Kolden 2013). In particular, decreased water availability (i.e. drought) often corresponded with heightened fire activity (Girardin and Wotton 2009; Dimitrakopoulos et al. 2011; Westerling 2016; Holden et al. 2018; Parks et al. 2018). For example, the 1997–98 Indonesian fires followed an El Niño-induced drought (Siebert et al. 2001) and, similarly, the 2015 drought in the Amazon triggered a dramatic region-wide increase in fire activity (Aragão et al. 2018). Droughts also played a major role in the occurrences of the Ash Wednesday fires in Victoria (1983), Canberra fires (2003) and the Black Saturday fires (2009) (Jolly et al. 2015). Very recently, several very large fires have occurred in California under drought conditions, including the largest and second largest fires ever recorded in the state – the 2018 Mendocino Complex fire and the 2017 Thomas fire each burned over 100,000 ha. Drought also plays a key role in driving fire activity in south-western India (Renard et al. 2012). Regional-scale models of fire in the Western Ghats largely reflected climate both at short- and long-term time scales and provided an estimate of the fire susceptibility (Renard et al. 2012). However, finer-scale, sub-regional models that included the type of vegetation provided more robust estimates of fire patterns because of their ability to capture forest fuel characteristics and degradation levels (Renard et al. 2012).

Here, we describe two complementary analyses of drought and fire occurrences conducted at different spatial scales in the Western Ghats mountain range in south-west India (hereafter ‘Western Ghats’). The first analysis was conducted at the regional spatial scale of the southern Western Ghats and the second analysis was conducted at landscapes nested within the Western Ghats, one composed of protected areas and the other being extensively human modified. Although there are several different forest types in the Western Ghats, they can be grouped into two general types (dry v. moist) that are outcomes of and characterised by different mean annual precipitation. The two landscapes are different in their fire regimes, likely because of differences in their vegetation, climate and topography. Accordingly, we divided our finer-scale analysis into two landscapes, one predominantly dry and the other moist, to control for differences in vegetation that might mask fire-activity responses to variations in drought. Nevertheless, the two scales of analyses (regional and landscape) complement each other and provide useful insights into ecosystem processes such as drought and fire occurrences. In this study, we assess the effect of drought at the regional scale using MODIS fire detection data, spanning 2001–2015, and at the nested-landscape scale using detailed fire-history spatial data spanning 1996–2015. Specifically, we aimed to (1) evaluate the spatial and temporal variability of drought and wildfire at the regional scale (southern Western Ghats) and (2) evaluate the relationships between annual climate variation and annual area burned at the landscape scale.

Methods

Study areas

Our regional- and landscape-scale analyses were conducted in the Western Ghats, a mountain range in south-west India that is one of the thirty-four global hotspots of biodiversity (Mittermeier et al. 2005). It is also the biodiversity hotspot with the highest human density (Cincotta et al. 2000). Our regional-scale analysis was focused on the southern and central portions of the Western Ghats (i.e. a study area of 8–16°N, 73–78°E; Fig. 1). Land-cover types include tropical wet evergreen and tropical dry deciduous forest habitats, both in various stages of degradation, and tropical mountain forests and grasslands alternating with zones converted into agroforests, monoculture plantations and agriculture (Renard et al. 2012). The two landscape-scale study sites are nested within the central Western Ghats, the Nilgiris landscape (1545 km²; 11.7°N, 76.5°E) and the Uttara Kannada landscape (2825 km²; 15.2°N, 74.7°E) (Fig. 1). The elevation of the Nilgiris (dry) and Uttara Kannada (moist) landscapes was respectively 0–1450 and 39–995 m and the estimated mean annual precipitation (MAP) was respectively 600–2000 and 800–2500 mm year⁻¹ (Hijmans et al. 2005). The Nilgiris landscape has a shorter dry season (rainfall <50 mm month⁻¹) of 4 months, whereas the Uttara Kannada landscape has a relative longer dry season of 6 months (Pai et al. 2014). Nearly all fires in these two landscapes are accidentally or intentionally ignited by humans (Kodandapani et al. 2004, 2008; Mehta et al. 2008; Mondal and Sukumar 2014).
Vegetation layer

Two different sources of vegetation data were used in the analysis. The first dataset was derived from three 1:250 000-scale forest maps of south India (Pascal et al. 1997a, 1997b, 1997c; Ramesh et al. 1997, 2002). There were originally over 150 vegetation classes, which were grouped into nine broad vegetation classes based on dryness of vegetation and dominant presence of deciduous species, grasses and weeds, which are important sources of fuel loads in the Western Ghats (Kodandapani et al. 2004, 2008; Renard et al. 2010, 2012). The second dataset was derived from land-use–land-cover maps of India (Roy et al. 2015). There were 100 vegetation types consisting of natural, semi-natural and managed formations grouped under 10 broad categories. Although the first dataset formed the bulk of analysis (95% of the area), only areas that were not recorded in the first dataset were derived from the second dataset.

Indian monsoon and climate

The south-west monsoon is the main source of rainfall for the Western Ghats region (Pai et al. 2014). The monsoon advances from the southern tip of peninsular India at the end of May and spreads across the entire country within 10 to 15 days (Pascal 1986). The monsoon gradually withdraws at the end of September commencing from northern India and reaching the tip of southern peninsular India by early December. Thus, the advancing phase and, more importantly the withdrawal phase, contributes to the rainfall pattern and the increasing dry season from the south to the north of the Western Ghats. A second important gradient in rainfall is the west–east gradual decline in summer precipitation. For example, differences in July precipitation in the transitional areas between the humid and dry areas in the Western Ghats are substantial. This variation in the south-west monsoon is observed in the two landscapes in the Western Ghats. For example in the Nilgiris landscape, two peaks in rainfall are observed; one in June–July and the other in October. In the Uttara Kannada landscape, however, there is only one peak in rainfall during July (Pascal 1986). Thus, the number of dry months could vary from 2–4 months in the southern parts of the Western Ghats (i.e. the Nilgiris landscape) to 6–7 months in the northern parts (i.e. the Uttara Kannada landscape).

Fire in context: land-use and burning in the Western Ghats

For millennia humans have modified vegetation in the Western Ghats through the use of fire; slash and burn agriculture in the Western Ghats could have been practised as early as 3000 years before present (Gadgil and Chandran 1988). Low human populations and long fallows between cultivation, which permitted the return of forests in certain parts of the Western Ghats, indicates longer fire rotations during the earlier period (1000 to 300 years before present) compared with the present (Morrison 1994; Chandran 1997; Kodandapani et al. 2008). Fire has been an important disturbance regime and has played an important role in the ecological history of the Western Ghats (Chandran 1997; Pascal 1986). Fire has effects on regeneration through its impacts on seeds, seedlings and saplings, with several species showing signs of recovery through sprouting (John et al. 2002).

Frequent burning has favoured the spread of fire-tolerant species with thick bark, especially into evergreen forests – with fire prevention, evergreen species have recolonised these forests (Chandran 1997).

The Nilgiris landscape (dry) comprises tropical dry deciduous forests (65%), tropical moist deciduous forests (10%), tropical dry thorn forests (20%) and settlements (5%) (Kodandapani et al. 2004, 2008) (Fig. 2a). The dry season extends between January and March (Kodandapani et al. 2004). The Nilgiris landscape comprises three protected areas, the Bandipur tiger reserve, Mudumalai tiger reserve and Wyanad wildlife sanctuary. Protected areas in general have various management objectives ranging from strict biodiversity conservation to permitting human activities in certain zones (Jones et al. 2018). In the Mudumalai tiger reserve, extraction of non-timber forest products (NTFPs) is banned and so are fodder extractions and grazing, with the exception of the eastern part of the reserve. Similarly, in the Bandipur tiger reserve, the extraction of NTFPs is banned. However, in the Wyanad wildlife sanctuary, extraction of NTFPs is allowed through the issue of permits (Narendran et al. 2001). The Nilgiris landscape is especially critical from a conservation standpoint, as it has the highest density and largest population of two endangered species in the world, the Asian elephant (Elephas maximus) and Bengal tiger (Panthera tigris) (Mehta et al. 2008; Jhala et al. 2015).
The Uttara Kannada landscape (moist) comprises tropical moist deciduous forests (51%), tropical dry deciduous forests (20%), tropical dry thorn forests (9%), non forest (12%), forest plantations (6%) and water bodies (2%) (Fig. 2b) (Pascal et al. 1997a, 1997b, 1997c; Ramesh et al. 1997, 2002). The dry season extends from October to May (Puyravaud et al. 1994). The Uttara Kannada landscape is an intricate socio-ecological landscape, wherein local communities have usufruct rights to collect certain forest products. Forests in this landscape are earmarked by the State Government for the collection of NTFPs by local communities (Puyravaud et al. 1994). Farmers living in this landscape graze livestock and collect leaf litter, native grass species and fuelwood (Hegde et al. 1998; Bhat et al. 2000).

Regional-scale analysis

For the regional-scale analysis, we evaluated annual variability in fire activity (defined here as the number of fire detections) and drought. Fire activity was measured using MODIS fire detection data spanning 2001–2015 (Collection 6: MOD14A1, and MYD14A1; see https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms, verified 14 January 2019) (Giglio et al. 2016). MODIS sensors recorded the location of thermal anomalies (i.e. fire detections) four times per day (1-km resolution). Thermal sensors are designed to detect flaming and smouldering fire hotspots from ~1000 m² in size. Elaborate algorithms have been developed to improve detection accuracy, especially smaller and cooler fires based on the use of potential fire thresholds (Giglio et al. 2016). Monthly MODIS fire detections were then counted within each 5 × 5’ pixel (~10 000 ha) and were summarised seasonally, annually and over the entire 2001–2015 time period. Summarising the MODIS fire detections within 5 × 5’ pixels allows for the evaluation of anomalous fire patterns over time and hence is useful for the regional analysis (Aragão et al. 2007). Variability in fire detections for each pixel for each year were computed in units of standard deviations from the mean (i.e. z-score). Seasonal summaries comprised the periods January–March (Jan–Mar), April–June (Apr–May), July–September (Jul–Sep) and October–December (Oct–Dec).

Drought and precipitation variability was characterised at the regional scale using variables representing annual climatic variation obtained from the TerraClimate dataset (Abatzoglou et al. 2018a), which produces and distributes gridded monthly climate and water balance data at a 1/24° (~5-km) spatial resolution. We used several climate metrics with demonstrated links to fire activity (Littell et al. 2009; Abatzoglou and Kolden 2013; Williams et al. 2015): (i) Climatic Water Deficit (CWD); (ii) Palmer Drought Severity Index (PDSI); (iii) soil moisture (SOIL); (iv) maximum average temperature (TMAX); (v) Vapour Pressure Deficit (VPD); and (vi) precipitation (PPT). Abatzoglou et al. (2018a) calculated CWD as reference evapotranspiration (ET₀) minus actual evapotranspiration (AET):

\[\text{CWD} = \text{ET₀} - \text{AET} \]

where ET₀ was calculated using the Penman Montieth approach (Allen et al. 1998). Note that PDSI and VPD were not originally included with the TerraClimate dataset but were subsequently added (see http://www.climatologylab.org/terraclimate.html; verified 14 January 2019). TerraClimate PDSI applies Palmer’s standard methodology (Palmer 1965) and uses ET₀ and monthly precipitation in its calculation; it does not incorporate any dynamic or local factors that may influence calculations of drought (cf. Wells et al. 2004). All climate metrics were annually summarised over three time periods, January–March (time period 3), October–March (time period 6), and April–March (time period 12). Specifically, CWD, PPT and SOIL were summed over each time period and PDSI, VPD and TMAX were averaged. With the exception of PDSI, these climate metrics were then standardised to per-pixel z-scores based on climate normals for 1981–2010. The conversion of raw climate values into z-scores to represent and quantify climate variation is becoming a common practice in studies evaluating the relationship between fire and climate (e.g. Parks et al. 2018; Stevens-Rumann et al. 2018). Note that PDSI was not converted because, by definition, it already represents the per-pixel z-score.

For the regional-scale correlation analysis (described below), the spatial resolution of the 5 × 5’ pixels representing variability in fire detections (i.e. fire anomaly pixels) was matched with the spatial resolution of the TerraClimate dataset. Subsequently, fire anomalies and the climate metrics were aggregated using a simple arithmetic mean (Abatzoglou et al. 2018b) within the boundaries of the nine burnable classes (excluding water, forest plantations, commercial plantations and non forest) at the regional scale. There was one value for each climate metric and vegetation class for each year and each time period. For each vegetation class, we then quantified univariate relationships (e.g. climate metric v. fire anomalies) using non-parametric Kendall rank correlation coefficients to account for non-Gaussian distributions that are common in fire data (Abatzoglou et al. 2017). We used a two-tailed test, therefore assuming no a priori hypothesis as to whether correlations were negative or positive. Statistical significance was assessed at α = 0.05. Given the short time series of our datasets, this α level is considered conservative.

Landscape-scale analysis

Annual maps classified as burnt and unburnt forest for the Nilgiris and Uttara Kannada landscapes were produced using Indian Remote Sensing (IRS) satellite imagery (Table 1). Fire years were respectively 1996–2015 and 1999–2015 for the Nilgiris and Uttara Kannada landscapes; however, it should be noted that data were not available because of clouds in the imagery for a limited number of years (Table 1). The spatial resolution for all imagery was 23 m except for the image acquired in 1996, which was 72 m. The 2015 image for each landscape was georectified using one 1 : 250 000 scanned Survey of India (SOI) topographic map. The root mean square error (RMSE) was respectively ±0.07 to 0.1 pixels. All imagery had ≤10% cloud cover.

The images were geometrically corrected and they were also atmospherically corrected by applying the dark-object subtraction (DOS) method (Chavez 1996). A methodology specific to the study area was developed by performing supervised
classification using training sites from burned areas that we identified (Kodandapani et al. 2008). We identified spectral signatures of burnt area in each of the three broad forest types: tropical moist deciduous (TMD), tropical dry deciduous (TDD) and tropical dry thorn (TDT). The advantage of this method over using only a single forest type has been the ability to capture the variability in the spectral signature of burned areas because of differences in the structure, phenology and exposure to soil fractions in these ecosystems. We delineated fire maps by combining burned areas from each of the three forest types. Because shadows of clouds were sometimes misclassified as burned areas (Pereira 2003), we compared the classified image to the false-colour composite of bands 4, 3, 2 and deleted the misclassified areas. Complete details can be found in Kodandapani et al. (2008). The fire maps were assessed for their accuracy from field survey fire maps of the Mudumalai tiger reserve. The Mudumalai tiger reserve is a long-term ecological research (LTER) site and field-surveyed annual fire maps have been maintained since 1989; our burned area maps were validated with this dataset (Sukumar et al. 1992; Kodandapani et al. 2004). The overall accuracy of our burned area maps ranged from 85% to 95% of the burned areas for the 16-year time period.

Decadal averages of burned areas were calculated in both landscapes and Mann–Whitney tests were conducted to assess differences in decadal means. Burned areas and the climate metrics were aggregated using a simple arithmetic mean (Abatzoglou et al. 2018b) within the boundaries of the three vegetation classes in the Nilgiris and the Uttara Kannada landscapes. There was one value for each climate metric and vegetation class for each year for each time period. We tested the relationship between each climate metric and annual area burned using Kendall rank correlation coefficients, as described in the previous section. The statistical analyses were conducted in the R software program (ver. 3.4.2, R Foundation for Statistical Computing, Vienna, Austria, see http://www.R-project.org). We also calculated the fire rotation in each landscape, which quantifies the average number of years required to burn an area the size of each landscape; implicit in the fire rotation is the understanding that some areas may not burn while other areas may burn more than once during a cycle (Van Wagner 1978; Cochrane et al. 1999).

Results

Regional-scale analyses

Most (85%) of MODIS fire detections from 2001 to 2015 in the Western Ghats occurred in Jan–Mar (Table 2), with much lower fire activity in the remainder of the year. That said, the Western Ghats exhibited substantial inter-annual variability in fire activity (Table 2). For example, looking at Jan–Mar fire detections, the 3 years with the highest fire activity exhibited approximately five times more fire compared with the 3 years with the lowest fire activity. Inter-annual spatial variability was also evident with a majority of fire activity occurring to the east of the crest of the Western Ghats in the deciduous forests (Fig. 3a).

During the 2004 drought, the total number of 5′ pixels summarising the Jan–Mar fire detections with a z-score >0.5 was 325 (33% of study area) (Fig. 3b). Throughout Jan–Mar, notable fire anomalies (z-score >0.5) covered areas from the south to the far north of the Western Ghats. In 2009, the total number of 5′ pixels summarising the Jan–Mar fire detections with a z-score >0.5 was 303 (31%) (Fig. 3c). In 2012, the total number of 5′ pixels summarising the Jan–Mar fire detections with a z-score >0.5 was 309 (32%) (Fig. 3d).

Although climate variation and fire activity did not exhibit any statistically significant correlations across the Western Ghats as a whole, weak to moderate correlations (|r| = ∼0.3–0.5) were

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Number of fire detections</th>
<th>Jan–Mar Number of fire detections</th>
<th>Apr–Jun Number of fire detections</th>
<th>Jul–Sep Number of fire detections</th>
<th>Oct–Dec Number of fire detections</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>301</td>
<td>217</td>
<td>30</td>
<td>38</td>
<td>16</td>
</tr>
<tr>
<td>2002</td>
<td>448</td>
<td>335</td>
<td>40</td>
<td>38</td>
<td>35</td>
</tr>
<tr>
<td>2003</td>
<td>841</td>
<td>658</td>
<td>66</td>
<td>46</td>
<td>71</td>
</tr>
<tr>
<td>2004</td>
<td>2732</td>
<td>2511</td>
<td>52</td>
<td>19</td>
<td>150</td>
</tr>
<tr>
<td>2005</td>
<td>1564</td>
<td>1435</td>
<td>57</td>
<td>19</td>
<td>53</td>
</tr>
<tr>
<td>2006</td>
<td>1220</td>
<td>955</td>
<td>147</td>
<td>43</td>
<td>75</td>
</tr>
<tr>
<td>2007</td>
<td>1561</td>
<td>1304</td>
<td>208</td>
<td>11</td>
<td>38</td>
</tr>
<tr>
<td>2008</td>
<td>1060</td>
<td>885</td>
<td>73</td>
<td>23</td>
<td>79</td>
</tr>
<tr>
<td>2009</td>
<td>2130</td>
<td>1927</td>
<td>164</td>
<td>14</td>
<td>25</td>
</tr>
<tr>
<td>2010</td>
<td>864</td>
<td>756</td>
<td>95</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>2011</td>
<td>1315</td>
<td>1079</td>
<td>174</td>
<td>14</td>
<td>48</td>
</tr>
<tr>
<td>2012</td>
<td>1224</td>
<td>1982</td>
<td>129</td>
<td>43</td>
<td>87</td>
</tr>
<tr>
<td>2013</td>
<td>1069</td>
<td>836</td>
<td>126</td>
<td>15</td>
<td>92</td>
</tr>
<tr>
<td>2014</td>
<td>1181</td>
<td>977</td>
<td>149</td>
<td>11</td>
<td>44</td>
</tr>
<tr>
<td>2015</td>
<td>881</td>
<td>718</td>
<td>61</td>
<td>16</td>
<td>86</td>
</tr>
<tr>
<td>Average</td>
<td>1294</td>
<td>1105</td>
<td>105</td>
<td>24</td>
<td>62</td>
</tr>
</tbody>
</table>
null
correlation, and whether or not it was statistically significant depended on the forest type and landscape of interest (Fig. 7). Temporal pattern of annual area burned and climate metrics (3-month time scale) in both landscapes are shown in Fig. 8. In the Nilgiris landscape, weak to moderate ($|\tau| = 0.3–0.5$) correlations were observed between annual burned area and climate variation (CWD, SOIL) in the TDD forests; burned area and climate variation (PDSI, SOIL) exhibited statistically

<table>
<thead>
<tr>
<th>Study landscape</th>
<th>Nilgiris landscape</th>
<th>Uttara Kannada landscape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual percentage of burning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>23.7%</td>
<td>NA</td>
</tr>
<tr>
<td>1997</td>
<td>13.6%</td>
<td>NA</td>
</tr>
<tr>
<td>1999</td>
<td>15.1%</td>
<td>15.5%</td>
</tr>
<tr>
<td>2000</td>
<td>NA</td>
<td>8.4%</td>
</tr>
<tr>
<td>2001</td>
<td>4.1%</td>
<td>8.6%</td>
</tr>
<tr>
<td>2002</td>
<td>8.6%</td>
<td>16.6%</td>
</tr>
<tr>
<td>2004</td>
<td>17.7%</td>
<td>22.5%</td>
</tr>
<tr>
<td>2005</td>
<td>14.7%</td>
<td>21.7%</td>
</tr>
<tr>
<td>2006</td>
<td>5.4%</td>
<td>5.9%</td>
</tr>
<tr>
<td>2007</td>
<td>3.7%</td>
<td>14.5%</td>
</tr>
<tr>
<td>2008</td>
<td>NA</td>
<td>0.0%</td>
</tr>
<tr>
<td>2009</td>
<td>16.5%</td>
<td>9.3%</td>
</tr>
<tr>
<td>2010</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>2011</td>
<td>0.0%</td>
<td>6.3%</td>
</tr>
<tr>
<td>2012</td>
<td>4.6%</td>
<td>3.2%</td>
</tr>
<tr>
<td>2013</td>
<td>0.4%</td>
<td>10.5%</td>
</tr>
<tr>
<td>2014</td>
<td>1.4%</td>
<td>8.1%</td>
</tr>
<tr>
<td>2015</td>
<td>0.5%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Total fire rotation (years)</td>
<td>12.3</td>
<td>10.6</td>
</tr>
<tr>
<td>Mean burned area (km2) (1996–05)</td>
<td>216</td>
<td>440</td>
</tr>
<tr>
<td>Mean burned area (km2) (2006–15)</td>
<td>56</td>
<td>163</td>
</tr>
</tbody>
</table>

Fig. 5. Temporal pattern of burned areas in the two landscapes showing (a) fire detections for the regional analysis, (b) inter-annual variations in the total burned area in the Uttara Kannada landscape and (c) inter-annual variations in the total burned area in the Nilgiris landscape. Horizontal blue lines indicate decadal averages.
The remainder are positive. The ‘–’ sign indicates negative correlation; the ‘+’ sign indicates positive correlation. Climate variables listed horizontally from left to right are the Climatic Water Deficit (CWD), Palmer Drought Severity Index (PDSI), precipitation (PPT), Soil moisture (SOIL), Temperature maximum (TMAX), vapour pressure deficit (VPD), PDSI of monsoon before fire season (PPTA). Forest types listed vertically from bottom to top are the landscape (ALL), tropical deciduous forest (TDD), tropical dry deciduous forest (TDD), and tropical dry thorn forest (TDT). The ‘−’ sign indicates negative correlation; the remainder are positive.

Significant correlations in the TMD forests at 3- and 6-month time scales (Fig. 7a). By contrast, in the Uttara Kannada landscape, weak to strong (|\(\rho| = \sim 0.3–0.7\)) correlations were observed between annual burned area and climate variation (CWD, TMAX, VPD, PDSI, and SOIL) in the TMD forests at 3- and 6-month time scales (Fig. 7b). Also, burned area was positively correlated (|\(\rho| = \sim 0.4–0.5\)) with CWD and VPD, and negatively correlated (|\(\rho| = \sim 0.4–0.6\)) with PDSI and PPT at 12-month time scales. Additionally, antecedent PPT of the previous monsoon showed a significant negative correlation (|\(\rho| > 0.4\)) with annual burned area, implying that decreases in antecedent precipitation increased area burned. Weaker but significant correlations between annual burned area and climate variation (CWD, PDSI, PPT, and SOIL) were observed in the TDT forests at 3- and 6-month time scales.

However, only weak to moderate (|\(\rho| = \sim 0.3–0.5\)) correlations...
were observed between annual burned area and climate variation (CWD) in the TDD forests at 3-month time scales. Overall, the correlations between annual area burned and climate variation were weaker in the Nilgiris landscape compared with the Uttara Kannada landscape (Fig. 7). Another pattern is that the shorter-term (3- and 6-month) time scales, on average, performed better than the 12-month time scale. Though the actual correlation and statistical significance varies, annual area burned was generally positively correlated with CWD, TMAX and VPD, and negatively correlated with PDSI, SOIL, and PPT. The sign of correlations may deviate from this pattern in certain vegetation types such as the TDT forests.

Discussion

Our results generally support the view that fire activity increases during dry years (e.g. Liu et al. 2010; Abatzoglou and Kolden 2013; Riley et al. 2013; Aragão et al. 2018). However, the strength and ubiquity of the response between climate variation and fire activity in our study is somewhat nuanced and depends on the scale of analysis. For example, although there was no statistically significant relationship between climate variation and fire activity when evaluating all vegetation types in the regional scale analysis, statistically significant relationships were observed for some vegetation types. By contrast, statistically significant correlations were evident across both landscapes and within individual vegetation types in the landscape scale analysis, although Uttara Kannada generally exhibited a stronger relationship between climate variation and annual area burned than Nilgiris. We believe our nuanced results are potentially due to the high population density in our study area (Fig. 3a), as studies have shown that the relationship between climate and fire weaknesses in regions that are heavily influenced by humans (Archibald et al. 2010; Parks et al. 2014; Syphard et al. 2017). Thus, geographic variations in the relationship between fire and climate could be a by-product of differences in environment, human-use, ecological interactions and biogeographic history (Abatzoglou et al. 2018b). Nevertheless, our results still show that climate variability is a substantial factor driving inter-annual fire activity in the Western Ghats.

At the regional scale of the Western Ghats, drought severity throughout the fire season, as reflected by increasing water deficit (CWD) and decreasing soil moisture (SOIL), exhibited significant relationships with fire activity in TMD forests (Fig. 4). Similarly, decreasing soil moisture and increased water deficits also exhibited significant relationships with fire activity in DFWZ and TSMD forests (Fig. 4). Intact TEG forests are resistant to fire spread because of the high levels of moisture, but they may be the most threatened by fire because of the lack of fire-resistant traits (Uhl and Kauffman 1990; Hegde et al. 1998; Cochrane and Schulze 1999; Ferry Slik et al. 2002; Kodandapani et al. 2004). Our research provides some empirical evidence to support the possibility of enhanced fire activity even in TEG forests because of environmental changes brought about by fragmentation, altered fire regimes and possible synergisms, among other factors (Cochrane and Laurance 2002).

Interestingly, average TMAX values and VPD during the fire season (Jan–Mar) were moderately correlated with fire activity in TMD forests, providing some empirical support that increased warming will result in higher fire activity under a warmer climate (IPCC 2014; Seidl et al. 2017). Likewise, in TDEG forests, average TMAX values during the fire season (Jan–Mar) were moderately correlated with fire activity (Fig. 4), again suggesting higher fire activity under a warming climate. These forests are found as remnants amidst a matrix of human transformed landscape elements, but simultaneously, are important for their ecological and cultural values (Parthasarathy et al. 2008).

Generally found above 2000 m in the Western Ghats, TMFGs are maintained by a combination of frost and fire (Meher Homji 1967; Sukumar et al. 1995). Drought severity throughout the fire season, as reflected by decreasing SOIL and increasing CWD, exhibited significant relationships with fire activity. Multiyear drought stress inferred from the previous-year monsoon precipitation (PPTA) showed some empirical evidence of enhanced fire activity in the montane ecosystems (Fig. 4). Irrespective of the outcome of climate change, the montane forests could be vulnerable to increased fire activity, as most species are sensitive to fire (Meher Homji 1967; Davidar et al. 2007).

At the landscape scale, we found that burned area during 2006–2015 decreased in comparison to 1996–2005; mean burned area was ~4-fold higher in the Nilgiris landscape and ~3-fold higher in the Uttara Kannada landscape in the earlier decade (Fig. 5). Inter-annual variability in burned area was correlated with climate variability in both landscapes; changes in human factors such as population (Fig. 3a), cropland area and livestock density could also be contributing to these relationships (Andela et al. 2017; Chen et al. 2019). Although several studies across the globe have highlighted the importance of climate-driven fire risk in response to climate change (Pyne 2009), ongoing socioeconomic development in regions such as the Western Ghats, could be influencing fire use in predictable ways (Andela et al. 2017). Our findings corroborate recent findings regarding a nonlinear decrease in fire activity, especially in tropical forest and savanna regions across the globe (Andela et al. 2017). Similarly, our study also emphasises the importance of humans in modulating fires despite the role of climate in driving fire potential in landscapes. India has witnessed an expanding human presence in rural (Fig. 3a) and urban areas (Tian et al. 2014); increasing agricultural investments and migrations to cities could also be driving the declining fire activity in the Western Ghats. During the past two decades (1995–2015), human population in India has increased by 36%, or ~0.4 billion, and per capita gross domestic product increased by 186% (World Bank 2018).

Simultaneously, fire plays an important role in the land use and forest-resource dependence in the Western Ghats (Kodandapani et al. 2004). The stubble remaining in agricultural fields is regularly burned off and the likelihood of fires escaping into adjoining forests is high (Morrison 1994; Kodandapani et al. 2004, 2008). Fire is also used in the extraction of NTFPs in the Western Ghats, e.g. surface fires are set in several seasonally dry forests to stimulate the growth of the mountain date palm (Phoenix loureiri) (Mandle and Ticktin 2012; Kodandapani 2013). Pastoral communities living on the fringes of forests, regularly set fire to stimulate the growth of grasses under an open canopy (Schmerbeck and Fienner 2015). For example, the Todas, an indigenous pastoral community living especially in...
TMFG of the Nilgiris in the Western Ghats, use fire to stimulate the growth of grasses (see references in Hockings 1989, 1997). Over short time scales (e.g. 3 to 6 months), increasing water deficits and drought stress could be enhancing fire activity in the Nilgiris landscape, suggesting that the spatial pattern of fires could be influenced by moisture gradients and variability in bio-climate (Parks et al. 2014). Short-term (3-month) drought exemplified by soil moisture (Jan–Mar) and longer-term (6-month) water deficits and drought stress could be important drivers of fire (Fig. 7a). In general, the fire season (Jan–Mar) is dry enough to carry fires in the TDD forests, which experiences seasonal droughts (Murphy and Lugo 1986). Recent studies (Mondal and Sukumar 2016) suggest that fire potential in the Nilgiris landscape is a result of the previous years’ fires, monsoon rainfall and current-year rainfall. Thus, 3- and 6-month time scale analysis of water deficits and soil moisture could be important for fires in seasonally dry forests.

During droughts, reduced precipitation leads to declines in soil moisture, which is also associated with higher temperatures, and enhanced evaporative demand from the atmosphere (Chloat et al. 2018). Correspondingly, longer-term drought severity throughout the fire season, as reflected by PDSI and soil moisture, exhibited significant relationships with burned area throughout the fire season, as reflected by PDSI and soil moisture, which is also associated with higher temperatures, and enhanced evaporative demand from the atmosphere (Chloat et al. 2018). Multiyear drought stress inferred from precipitation occurring from the previous-year monsoon showed significant correlation with burned area for the TMD forests, providing some empirical support for the importance of persistent and prolonged drought and fire in the Western Ghats (Schwalm et al. 2017).

Although increasing moisture deficits and drought stress had a bearing on fire activity in the Nilgiris landscape at short time scales, all climate variables had a significant effect on fire activity, except precipitation at short time scales and TMAX at longer time scales in the Uttara Kannada landscape (Fig. 7). Rainfall during the dry season could be suppressing fires, and fuel buildup during wet years before the fire season could be contributing to the fire pattern in the Nilgiris landscape (Archibald et al. 2010). Further, at longer time scales, the climate metrics do not reflect recent precipitation and thus could have weaker relationships with fuel moisture (Riley et al. 2013). By contrast, the longer dry season in the Uttara Kannada landscape could be amplifying the fire signal in response to climate. The rainfall deficits and drought conditions before and during the fire season increases forest desiccation and fuel loading in the Uttara Kannada landscape (Uhl and Kauffman 1990). Dead surface fuels (grass, litter) are primary carriers of the surface fires, ∼10–20% of the total fuel load (46.5 Mg ha⁻¹) constitute these fine fuels (Kodandapani et al. 2008). The composition of these fine fuels varies with levels of disturbances in the TMD forests, with higher leaf litter in less disturbed forests. It is likely that this difference in fine fuel moisture could be either limiting or promoting the spread of fire, with grass fuels (Nilgiris) curing more rapidly than the leaf litter (Uttara Kannada) in response to water deficits and droughts (Riley et al. 2013).

Generality and limitations of findings
Our landscape results suggest that forests in the Western Ghats are experiencing a decline in anthropogenic fires, and that such patterns might be operating at both regional and landscape scales. Are our findings typical? Both our landscapes are witnessing substantial changes in land use, with transitions from natural landscapes with common land ownership to agriculture on private lands (Andela et al. 2017; Chen et al. 2019); the Uttara Kannada forests, in particular, have witnessed substantial changes from grazing, collection of NTFPs, fodder, manure and firewood collection during the past several decades. Nevertheless, the temporal patterns of fires observed in the two landscapes are representative of the overall land-use changes in the Western Ghats today.

Given that our study involved fire data spanning only approximately two decades in duration, differences between the Nilgiris (dry) and Uttara Kanada (moist) landscapes in terms of timing v. magnitude of drought, and their effect on fire activity, may be difficult to identify. Also, the short fire record analysed in this study may have not adequately captured variability in climate or fire activity, but we will note that there were years with above average rainfall (1996–99, 2005–10, 2014–15) and years with below average rainfall (1993–95, 2000–03) in the two landscapes, and most forest burning occurred during drier years in the Western Ghats (Kodandapani et al. 2008). Lastly, the short fire duration we analysed may provide uncertain estimates of the fire rotations in our study, but given that our study region has not been well studied to date, our estimates provide a valuable contribution to the literature. Nevertheless, we suggest that future research involving fire activity and climate variation in the Western Ghats would benefit by using a longer fire record.

Our modelling results suggest that water deficits and drought increases the vulnerability of forests in the Western Ghats to anthropogenic fires, and that such fires might be operating at both regional and landscape scales. Relationships were weaker in the Nilgiris landscape compared with the Uttara Kannada landscape, with observed correlations uniformly stronger across all climate variables and time scales. Although this pattern could have resulted from the relatively pronounced dry season of the Uttara Kannada climate, we believe plausible explanations could vary from differences in human transformations (Andela et al. 2017), presence of large mammals in high densities (Bond 2005; Madhusudan et al. 2015), proliferation of invasive species (Hiremath and Sundaram 2005) and increased availability of funds for the management of forests, especially in protected areas such as the Nilgiris landscape (Reddy et al. 2018). These differences highlight the importance of human activity in influencing burning despite growing climate-driven fire risk (Andela et al. 2017). We believe correlations at the regional scale are not statistically significant when all vegetation types are combined because the highly diverse study area, in terms of climate, vegetation and human disturbance, likely masks relationships between climate variation and fire.

Implications for forest management
Given projected risks of forests to fire under a changing climate, fire management will be increasingly important for maintaining ecosystem function and services, thereby affecting human livelihoods (Andela et al. 2017). Although, humans have transformed forests for several millennia in the Western Ghats and forest species have developed fire-adaptation characteristics (Chandran 1997), moist forests with limited fire-adapted species
may be vulnerable to fire under a future climate. Specifically, TMD forests, DFWZ, TMFG and TSMD forests could be vulnerable to fire under climate-induced increases in fire activity. Fire managers should explicitly include adaptation methods for the management of these forest types in the Western Ghats.

Local communities use fire both legally and illegally to meet various natural resource needs. In protected areas (managed by the State), local residents can extract products for personal use, but in reserve forests (managed by the State forest departments), local residents have no extraction rights unless explicitly permitted (Kodandapani 2013; Moritz et al. 2014). Rather than enforcing blanket fire exclusion policies, forest ecosystems in the Western Ghats would benefit from forest management policies that consider the natural resource needs of nearby communities (Kodandapani 2013; Moritz et al. 2014; Thekaekara et al. 2017). Our results demonstrate that climate exerts at least some control on fire even though fires are generally ignited by people. More importantly, landscape-scale fire monitoring of long and short-term fuel aridity (CWD) and drought stress (PDSI, SOIL) conditions within dominant forests could enhance preparedness of impending fire activity.

Conclusions
We found increased fire activity both at regional and landscape scales in response to drought and dry conditions in the Western Ghats. However, climate variation has a stronger influence on fire activity at the 3- and 6-month time scales compared with the 12-month and antecedent monsoon scales. Both within (Nilgiris landscape) and outside (Uttara Kannada landscape) protected areas, the response of fire to climate variability is similar. Whereas protected areas harbor high biodiversity, especially of charismatic and emblematic species such as the Bengal tiger (Panthera tigris), reserve forests are critical from a livelihood perspective for communities living near forests (Kodandapani 2013; Pringle 2017), thereby highlighting a conundrum faced by managers of protected areas. Tropical dry forests are perhaps the most threatened ecosystem in the tropics (Janzen 1988; Miles et al. 2006). The primary threats to biodiversity in tropical dry forests arises from the frequent fires, land use change and slash-and-burn agriculture (Murphy and Lugo 1986; Chazdon 2003; Kauffman et al. 2003). Using climate information as part of early-warning systems in the Western Ghats would help prepare agencies to mitigate the effects of fires on forest biodiversity and ecosystems services in the short term, and in the long term adapt to the threat of frequent fires due to climate change.

Conflicts of interest
The authors declare that they have no conflicts of interest.

Declaration of funding
Financial support was received for purchase of satellite data through a small grant from CSIR, Government of India.

Acknowledgements
We gratefully acknowledge support for this research by the Council of Scientific and Industrial Research, Government of India. We thank forest departments of Karnataka, Kerala, and Tamil Nadu for permission to conduct research in the study areas. We thank Indian Meteorological Department (IMD) for providing high resolution gridded rainfall data. We thank Indian Space Research Organisation (ISRO) for providing the remote sensing datasets for the burned area analysis. We thank the University of Maryland for kindly providing the fire detection dataset. Our thanks to two anonymous reviewers for constructive critiques of earlier versions of this manuscript.

References
Bond WJ (2005) Large parts of the world are brown or black: a different view on the ‘Green World’ hypothesis. Journal of Vegetation Science 16, 261–266.
Cansler CA, McKenzie D (2014) Climate, fire size, and biophysical setting control fire severity and spatial pattern in the Northern Cascade Range, USA. Ecological Applications 24, 1037–1056. doi:10.1890/13-1077.1

Cochrane MA, Schulze MD (1999) Fire as a recurrent event in tropical forests of the eastern Amazon: effects on forest structure, biomass, and species composition. Biotropica 31, 2–16.

