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Abstract

Context Carnivores in the central Iranian plateau

have experienced considerable declines in their pop-

ulations during the last century. Ecological niche

models can inform conservation efforts aimed at

increasing the suitability of carnivore habitat by

providing valuable information on the scale-depen-

dent relationships between species and their

environment.

Objectives We used a multiscale modeling frame-

work to predict habitat suitability and investigate the

influence of spatial scale on species-environment

relationships for three sympatric felids, chosen as

surrogate species, including Asiatic cheetah (Acynonix

jubatus), Persian leopard (Panthera pardus), and sand

cat (Felis margarita) with the aim of informing

conservation efforts for these species and other Iranian

carnivores more widely.

Methods We used opportunistically collected occur-

rence data and a presence-only, multiscale MaxEnt

approach whilst exploring the impact of spatial

filtering and data partitioning on model predictions

and performance.

Results Scaling optimization showed that the per-

formance of models was associated with variables at

multiple spatial scales, with relationships tending to be

strongest at the largest scales (4–8 km). Our findings

showed that landscape composition generally have

stronger influences on occurrence of the studied

species than configuration. The comparison among

models showed distinct patterns of habitat selection,

implying niche partitioning between species.

Conclusions Our knowledge of scale-dependent

relationships between three sympatric felids and their

spatial niches facilitates effective conservation of

habitat connectivity for multiple carnivore species by

prioritizing predicted key suitable patches inside and

outside of protected areas which have significant

contribution in maintaining landscape connectivity in

Iran.
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Introduction

The central Iranian plateau supports a high diversity

(18) of carnivore species. Despite their ecological

importance, carnivores in this region have experienced

considerable declines in their populations during the

last century due to prey depletion and habitat destruc-

tion (Hemami and Groves 2001). Simultaneously,

limitations such as budget and labour force availability

have hampered management efforts to implement

conservation actions for each species individually.

Khosravi and Hemami (2019) identified a suite of

surrogate species, which are species that are used to

represent other species or aspects of the environment

to obtain a conservation objective (Caro 2010),

including Astiatic cheetah (Acinonyx jubatus venati-

cus), Persian leopard (Panthera pardus saxicolor), and

sand cat (Felis margarita) for providing a compre-

hensive conservation umbrella for many other species

in central Iran. They used ecological niche modeling,

experts’ information, and attitudes of local communi-

ties to score ten carnivore species based on the thirteen

criteria in order to select a suite of ecologically and

culturally suitable surrogate species.

Evidence-based, data-driven conservation of carni-

vores is a relatively new field in Iran and the limited

research that has been conducted on the spatial

distribution of carnivores has shown that prey avail-

ability, topographic roughness, vegetation cover, and

distance to human-dominated areas are the main

predictors affecting distribution of a range of carni-

vore species (Ahmadi et al. 2017; Hemami et al. 2018;

Khosravi et al. 2018; Shahnaseri et al. 2019). Spatial

niche partitioning in coexisting carnivores is an

important mechanism structuring the spatial distribu-

tion of carnivore guilds (Hearn et al. 2018). Therefore

precise data on the spatial distribution and ecological

niche partitioning in a guild of carnivores is essential

to improve the effectiveness of management actions

aimed at protecting and enhancing the suitability of

carnivores’ habitat.

Habitat preservation in many parts of the world is

one of the most effective approaches to biological

conservation (Coetzee 2017). Therefore, the effec-

tiveness of protected areas (PAs) to protect the most

important populations and suitable habitats is essen-

tial. With increasing human populations and economic

development leading to broad-scale transformation of

natural landscapes, coupled with ongoing range shifts

for many species in response to recent climate

warming, safeguarding the present network of PAs

does not guarantee the long-term survival of these

species. Therefore, managing suitable habitats and

biological corridors based on surrogate species

requirements beyond the existing PA network can

provide a cost-effective conversation strategy (Di

Minin et al. 2013).

Predicting habitat patches, biological corridors and

spatial niche partitioning is highly dependent on

accurate distribution data (Rabinowitz and Zeller

2010). Ecological niche models (ENMs) are funda-

mental tools for describing the multivariate structure

of a species niche and producing spatially explicit

maps of probability of occurrence at the landscape

scale. Developing reliable ENMs is challenging and

the correlative methods used in some studies may

suffer from overfitting and biased prediction due to

issues relating to spatial autocorrelation and sampling

bias in presence localities (Redding et al. 2017),

inappropriate background data selection (Barbet-

Massin et al. 2012), insufficient independent testing

data (Radosavljevic and Anderson 2014), incorrect

spatial scale of environmental covariates (McGarigal

et al. 2016a), and improper model parameterisation

(Huang et al. 2018; Gábor et al. 2019).

The effects of landscape composition and config-

uration on a species’ distribution and abundance tend

to vary with spatial scale of environmental variables

(Holland et al. 2004). Although the interaction

between a species and its environment usually occurs

on many scales, it is only observable when the spatial

extent and grain of covariates matches the spatial scale

of the species’ response (McGarigal et al. 2016b).

Multiscale ENMs have been proposed in recent years

to optimize the grain and extent of species response to

landscape factors (e.g. Shirk et al. 2012; Wan et al.

2017). These approaches offer valuable insights into

species’ habitat requirements and produce more

reliable inferences than single-scaled habitat modeling

applications (Wasserman et al. 2012; Mateo Sanchez

et al. 2013; Vergara et al. 2016). Despite the impor-

tance of selecting appropriate spatial scale in ENM
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(e.g. McGarigal et al. 2016a; Vergara et al. 2016), little

attention has been given to identify suitable scales for

predicting the distribution of carnivores in Iran. The

previous studies in the region (e.g. Farhadinia et al.

2015; Ahmadi et al. 2017; Hemami et al. 2018;

Shahnaseri et al. 2019) have tended to focus on single

spatial scales to predict the distribution of the studied

species, which may limit usefulness of their results.

Calibrating ENMs with biased occurrence data is

another issue that may cause overfitting and biased

inference regarding the species-environment relation-

ships (Kramer-Schadt et al. 2013). Several correction

methods have been proposed to correct spatial auto-

correlation and biased presence records (Syfert et al.

2013; Brown 2014). In addition to the occurrence

localities, the behavior of the different ENMs vary

widely depending on how, where and how many

background localities are used in presence-only ENMs

(Phillips et al. 2006). Dividing occurrence data into

spatially independent calibration and evaluation

datasets for model evaluation is another issue in

ENMs, which may have large influences on overfitting

or underfitting of the models (Radosavljevic and

Anderson 2014).

We use opportunistically collected occurrence data

and a multiscale spatial modeling framework to

predict the spatial niche divergence of three sympatric

felid species as biodiversity surrogates in Iran and to

investigate the impacts of sampling bias in presence

and absence localities, data partitioning methods, and

spatial scale of environmental covariates on the

predicted ecological niche of these three species.

Materials and methods

Case study landscape

The study focuses on the landscape comprising the

desert ecosystems of central Iran (29–34�N, 49–56�E).
The study landscape is 167,914 km2 in extent, of

which 54% is covered by rangelands, 42% by rocks

and barelands, 1.9% by croplands, 1.5% by wetlands

and water surfaces, 0.35% by woodlands and forests,

and 0.25% by human settlements and infrastructure.

Despite their arid environmental conditions, central

Iranian ecosystems are home to a diverse guild of

carnivores (see text S1 in Online Resource 1 for

details). A network of conservation areas has been

established by the Department of Environment (DoE)

to protect large-scale ecological processes of ecosys-

tems (Fig. 1).

The methodological framework

We carried out a spatial modeling analysis that

consists of six steps to produce, evaluate and map

multiscale ENMs for the target species (i.e. Asiatic

cheetah, Persian leopard, and sand cat) and to assess

spatial niche differentiation among them (Fig. 2). The

steps undertaken in the study are explained in detail in

the following sections.

Step 1: creating multiscale predictors

A total of 37 predictors (Table S1; Online Resource 1)

belonging to five categories including land cover,

topography, climate, vegetation, and human-influence

were selected based on existing literature on distribu-

tion modeling of carnivores in Iran (e.g. Farhadinia

et al. 2015; Ahmadi et al. 2017; Khosravi et al. 2018).

Eight land use and land cover (LULC) types, including

urban area, agriculture, surface water, sparse range-

land with a canopy density of B 20%, mixture of

grassland–scrubland with a canopy density of C 25%,

shrubland, scrubland, and bareland, were derived from

a LULC map obtained from the Iranian Forests,

Rangeland and Watershed Management Organization

at a scale of 1:250,000 (FRWMO 2005). We used

FRAGSTATS (McGarigal et al. 2012) to calculate the

spatial pattern of LULCs using five landscape-level

(Aggregation index, AI; Edge density, ED; Patch

density, PD; Shannon Diversity Index, SHDI; Conta-

gion index, CONTAG) and three class-level metrics

(Patch density, PD; Gyrate_am index, GYR; and

Percentage of landscape, PLAND; Table S1 in Online

Resource 1).

Three topographic indices including focal mean

elevation (ELEV), compound topographic index

(CTI) and roughness (ROUGH) were calculated from

a 90-m resolution digital elevation model (http://srtm.

csi.cgiar.org) using the Gradient and Geomorphome-

tric Modeling Toolbox for ArcGIS (Evans et al. 2014).

Because of the inherent high correlation among bio-

climatic variables, they were limited to mean annual

temperature (Bio1) and precipitation (Bio12; Hijmans

et al. 2005). We used the method developed by Flint

and Flint (2012) to downscale the 1-km WorldClim
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data to the target resolution of 250 m (Khosravi et al.

2016).

We used 23 layers of Normalized Difference

Vegetation Index (NDVI) derived from MODIS

imagery (250 m resolution) at an interval of 16 days

in 2013. Principal component analysis (PCA) was

used to reduce the 23 NDVI values per pixel to a

smaller number of components (PCs). The first

component with the highest explained variance (82%

of total variance) was used in the distribution models.

Village and road density were extracted using a LULC

map (Table S1 in Online Resource 1). All predictors

were resampled to a 250 m cell size.

Due to the scarcity of data on the local movement

for the studied species in Iran, we evaluated a range of

spatial scales reflecting the likely uncertainty in scales

of dispersal ability and habitat selection of each

species. We used focal statistic in the ‘Multiscale

Maxent Toolbox’ (Bellamy et al. 2013) to calculate a

mean statistic on all raster layers, excepting landscape

metrics, within six spatial scales (250, 500, 1000,

2000, 4000, 8000 m) around each original cell. We

used the moving window option in FRAGSTATS to

calculate each landscape metric at the six extent sizes

(Fig. 3a).

Step 2: species occurrence data, spatial

autocorrelation and sampling bias correction

in presence localities

Our sampling did not follow a systematic approach;

instead we collated data opportunistically collected in

different strata (PAs) with different densities of

carnivores. The carnivores’ occurrence points were

obtained from a variety of sources including oppor-

tunistic direct observation, camera-trapping and sign

identification during field surveys from 2015 to 2017

(Table S2; Online Resource 1).

We implemented spatial filtering using the SDM

toolbox (Brown 2014) in ArcGIS 9.3 (ESRI, Inc.,

Redlands, CA, USA) to reduce spatial autocorrelation

in presence records. As the studied species, especially

sand cat and Asiatic cheetah, inhabit areas with

relatively low topographical heterogeneity in central

Iran, we used climate heterogeneity instead of topo-

graphic heterogeneity for spatial filtering of the

presence points. Presence localities were spatially

filtered at 1, 3 and 5-km of each other in areas of high,

medium, and low climate heterogeneity respectively

Fig. 1 Location of the study landscape in the central Iran. Dashed polygons and colored filled circles display the border of protected

areas (PAs) and presence localities respectively

cFig. 2 Multiscale spatial methodological framework including

input files, clustering of presence localities, and the consecutive

steps undertaken to build the optimized ENMs for the target

species
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(see Fig. S1 and text S2 in Online Resource 1 for

details).

To prevent environmental bias and selecting back-

ground data from environmental conditions outside

the range of presence data, we selected 500 random

background points within a maximum buffer size of

20-km from presence localities (Fig. 3b). We used

these buffers as a mask in MaxEnt software (Vergara

et al. 2016). Equal weights was assigned to presence

and absence points.

Step 3: initial variable pre-selection and univariate

scaling

To identify the extent at which each predictor shows

the highest performance (i.e. AUC-test, the MaxEnt

model performance based on the receiver operating

characteristic (ROC) for the presence localities used

for model evaluation), an initial MaxEnt model was

run independently using each variable at each scale

using the R package ‘dismo’ (Hijmans et al. 2016).We

used a masked geographically structured approach for

data partitioning and cross-validation. In masked

geographically structured cross-validation (Fig. 3b),

presence localities are segregated spatially into geo-

graphical bins with approximately the same number of

points in each cluster. In each iteration, the models

were trained using two bins and tested on the withheld

bin (Radosavljevic and Anderson 2014). We masked

out environmental data for background sampling from

the area corresponding to the localities used for model

evaluation (Fig. 3b). MaxEnt was run using the

parameters described by Mateo Sanchez et al. (2013)

and Vergara et al. (2016). A total of 222 single variable

models per species were constructed. Following initial

variable pre-selection, the best-performing scale of

each covariate (37 covariates in total) was used

subsequently to map the species’ distribution.

Step 4: MaxEnt model optimization

We used the R package ‘MaxentVariableSelection’

(Jueterbock 2015) to remove highly inter-correlated

variables and to avoid multicollinearity and under or

overfitting in multivariate modeling. We tested com-

binations of features and varied the regularization

multiplier between 2 and 4 by a step of 0.5. The

candidate set of variables was pruned to discard

variables with an importance value of less than 1. A

threshold of 0.7 was used for removing inter-corre-

lated variables (Bellamy et al. 2017). Finally, the best

combination of variables, optimal regularization

value, and feature types for the MaxEnt model were

identified as the model of highest AUC or lowest

sample-size-adjusted Akaike information criterion

(AICc) values. While the ‘MaxentVariableSelection’

package estimates AICc values from single models

that include all presence localities, AUC values,

Fig. 3 The concepts of extent size (unfilled squares) and grain

size (black-filled square) in this study. Grain size fixed at 250-m

and extent size expanded (a). Example of spatially data-

partitioning based on masked geographically structured k-fold

cross-validation approach (A, B, and C) and corresponding

regions for background selection used in MaxEnt models. Black

circles represent localities used for model calibration and grey

ones denote localities employed in model evaluation. Shaded

areas correspond to regions used for background sampling
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instead, are averaged over tenfold cross validation.

Both methods selected the same variables as the best

set of predictors (Table S3 in Online Resource 1).

Step 5: final MaxEnt model with best predictors

and optimized models

Following univariate scaling, selection of important

variables, and model optimization, we used the

package ‘dismo’ to predict the final distribution map

of each candidate species. We calculated three

threshold-independent measures to evaluate the over-

all model performance including AUCtest, AUCtest--

train and kappa statistic (Cohen 1960, 1968). AUCtrain

and AUCtest calculate the model performance based on

the ROC for the presence localities used for model

calibration and evaluation respectively. AUCtest-train

is calculated by subtraction of the AUCtest from

AUCtrain. We calculated all measures across the three

geographic folds and then averaged the values across

the three geographic clusters. We applied the Maxi-

mum Training Sensitivity plus Specificity (MTSS)

occupancy rule to convert the distribution map to a

binary map (Liu et al. 2013).

Step 6: niche divergence between focal species

We used three methods to calculate niche overlap

between species. First, we used the niche identity test

in ENMtools (Warren et al. 2010) to investigate

whether habitat suitability scores generated from the

best distribution model for the three focal species are

different from those expected by chance. We used 100

replicates to calculate a null distribution. The null

hypothesis of niche identity is rejected when the

observed measure of niche overlap (Schoener’s D and

Hellinger’s I metrics) is significantly different from

the null distribution (Warren et al. 2010). Second, we

calculated the spatial niche difference between each

pair of species in a gradient of the probability of

occurrence obtained from the MaxEnt model. Finally,

we assessed the results of single variable niche overlap

among the species according to the density profile of

occurrence points for the most important predictor

variables using the R package ‘‘SM’’ (Bowman and

Azzalini 2015).

Other modeling procedures for comparison

In addition to running the model using spatially

filtered localities and masked geographically struc-

tured k-fold cross-validation, we used three other

different datasets for comparison: (1) spatially filtered

localities and randomly clustered k-fold cross-valida-

tion, (2) unfiltered localities and masked geographi-

cally structured k-fold cross-validation, and (3)

unfiltered localities and randomly clustered k-fold

cross-validation. We used unfiltered presence locali-

ties to test for the expected effect of reducing spatial

autocorrelation in presence localities. In the randomly

partitioned approach we used three-fold cross-valida-

tion in which the presence data for each bin were

selected at random. For all models, MaxEnt was run

using the parameters described by Mateo Sanchez

et al. (2013) and Vergara et al. (2016).

Results

Species occurrence data

Out of 560 occurrence localities, we used 381

localities for Asiatic cheetah, 77 for Persian leopard

and 102 for sand cat as unfiltered localities. After

spatial filtering we retained 173 locations for Asiatic

cheetah, 67 for Persian leopard, and 57 for sand cat.

Variable pre-selection and univariate scaling

The species habitat suitability modeling for each

covariate at each spatial scale showed that the

performance of the models is highly sensitive to the

scale at which variables were measured. Initial

variable pre-selection based on different extent sizes

revealed that around half of the variables performed

best at the largest scales (4–8 km) for all three species

(Fig. S2 in Online Resources 1 and 2). In contrast,

climate variables (Bio1 and Bio12) had highest AUC

at fine scales (250–500 m). While topographic vari-

ables (ROUGH and CTI) measured at broad spatial

scale (4000 m) performed best for the Persian leopard,

these measures at fine to medium scales did better for

the Asiatic cheetah (500 m) and sand cat (1000 and

2000 m respectively).
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MaxEnt model optimization

The optimization of model parameters and selection of

the most important variables in the final MaxEnt

models using ‘‘MaxentVariableSelection’’ showed

that the optimal models for all species incorporated a

different set of variables. For all target species, the

best-performing model consisted of 5 to 9 variables.

The optimal parameter settings, especially ‘‘regular-

ization multiplier’’ were different between species

(Table S3; Online Resource 1).

Final MaxEnt Model distribution with the best

predictors and optimized models

The final MaxEnt models had high predictive power

for all species regarding the threshold-independent

measures (AUC C 0.74). The ENM for each species

showed high discrimination performance for sand cat

and Persian leopard (AUC_Persian leopard = 0.88

and AUC_sand cat = 0.85), and moderately high for

Asiatic cheetah (AUC_Asiatic cheetah = 0. 74). The

values of Cohen’s kappa, as a more conservative

performance measure, for Asiatic cheetah (0.25) and

Persian leopard (0.28) was higher than sand cat

(\ 0.2) indicating fair and poor performance respec-

tively. Nevertheless all models performed substan-

tially better than random. Topographic roughness at a

fine extent (ROUGH_500), compound topographic

index at a broad scale (CTI_4000), and percentage of

landscape covered by sparse rangeland with a density

of B 20% at a fine scale (PLAND_Lcr_250) had the

highest percentage contribution (65%, 14% and 3%

respectively) of total variable contribution for Asiatic

cheetah (Fig. S3, Online Resource 1). With increasing

topographic roughness, Asiatic cheetah habitat suit-

ability increased to its maximum and then leveled off.

For Persian leopard, broad scale topographic rough-

ness (ROUGH_4000), percentage of landscape cov-

ered by sparse rangeland with a density of B 20% at a

broad scale (PLAND_Lcr_4000), village density at a

fine scale (VID_250) and a measure of habitat

availability and landscape connectivity of barelands

at a broad scale (GYR_Bar_8000) showed the highest

percentage contributions (71.5%, 5.3%, 4.3% and

4.2% respectively). The model predicts that habitat

suitability for Persian leopard increases with increas-

ing topographic roughness (Fig. S4, Online Resource

1). Finally, the density of shrubland and agriculture

patches at a broad scale (PD_Shr_8000;

PD_Agr_8000), medium scale topographic roughness

(ROUGH_2000) and fine scale village density

(VID_250) had the largest contribution in the final

sand cat distribution map (23%, 15.8% and 9.2%

respectively). The density of villages and increasing

topographic roughness had negative impacts on the

presence of sand cat, with village density having the

largest effect (Fig. S5, Online Resource 1).

Niche identity and divergence between species

Predicted suitable habitats in the final MaxEnt models

were different among the species. The area of

suitable habitats of Asiatic cheetah and sand cat

showed the widest (11.6% of study area) and most

limited (9.4%) distributions, respectively (Table 1).

The suitable habitats for Asiatic cheetah and Persian

leopard were predicted to be more widely distributed

across the landscape than those of sand cat (Fig. 4).

The areas of suitable habitats covered by protected

areas were different among species (32% for Asiatic

cheetah, 37% for Persian leopard, and 24% for sand

cat; Table 1; Fig. 4).

Persian leopard occurrence is predicted to be

concentrated in the mountainous portions of the

western and central parts of the region (Fig. 5). On

the other hand, Asiatic cheetah tends to select

relatively high roughness in areas that at broad scales

have low roughness (e.g. the plains in the east and

center of the landscape). The sand cat is a relatively

abundant species in the northern and central parts of

the study area, and dwells in and around shrub-covered

sand dunes. The identity test in ENMtools highlighted

that the Asiatic cheetah, Persian leopard and sand cat

niches were significantly different than those expected

by chance (p\ 0.01). The observed values of niche

overlap for all pairwise comparisons revealed niche

differentiation among species (Table 2). Asiatic chee-

tah and Persian leopard showed the most (D = 0.62)

and Persian leopard and sand cat showed the least

spatial overlap (D = 0.27). The results of single

variable niche overlap according to the density profile

of occurrence points for each species showed that the

Persian leopard had different tolerance ranges com-

pared to sand cat and Asiatic cheetah for the most

important predictors (Fig. 6).
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Comparison between modeling procedures

The MaxEnt models for all target species made with

the spatially filtered presence points and a masked

geographically structured approach were slightly

superior to those from the unfiltered localities and

randomly clustered three-fold cross-validation

(Table 1).

Discussion

We used a multiscale structured framework to quan-

tify the niche differentiation among three sympatric

felids in central Iran considering spatial autocorrela-

tion in presence localities, sampling bias in presence

and background localities and spatial scale of predic-

tors. We showed three main results, which we

summarize here and elaborate on in the sections

below. Firstly, the predictive ability of the predictors

in ENMs changed notably depending on the spatial

scale of predictors and performance of ecological

niche models was associated with variables at multi-

ple, and often broad spatial scales. Secondly, land-

scape composition generally have stronger influences

on occurrence of the studied species than configura-

tion. Thirdly, the comparison among ENMs showed

distinct patterns of habitat selection, implying spatial

niche partitioning between species.

Effect of spatial scale of predictors on carnivore

habitat selection

A number of studies have suggested that a multiscale

approach typically outperforms single scale multivari-

ate ENMs (Shirk et al. 2012; Mateo Sanchez et al.

2013; Wan et al. 2017). Our multiscale findings

confirmed that the predictive ability of the predictors

Table 1 Optimal MaxEnt model settings to predict distribution map for carnivore species

Species Bin Masked geographically structured

cross-validation

Suitable habitat area

(km2) (% in PAs)

Randomly partitioned approach

Train

(n)

Test

(n)

AUC Mean

AUC

Kappa Train

(n)

Test

(n)

AUC Mean

AUC

Kappa

Asiatic

Cheetah

(filtered)

Bin_1 128 45 0.76 0.74 0.25 19,261 (32%) 115 58 0.69 0.69 0.25

Bin_2 99 74 0.76 115 58 0.68

Bin_3 119 54 0.69 116 57 0.71

Asiatic

Cheetah

(unfiltered)

Bin_1 171 172 0.73 0.73 0.31 204 102 0.73 0.71 0.35

Bin_2 241 96 0.70 204 102 0.72

Bin_3 200 113 0.75 204 102 0.69

Persian

Leopard

(filtered)

Bin_1 46 21 0.89 0.88 0.28 17,138 (37) 44 23 0.77 0.84 0.31

Bin_2 36 31 0.86 45 22 0.86

Bin_3 52 15 0.88 45 22 0.90

Persian

Leopard

(unfiltered)

Bin_1 60 17 0.88 0.87 0.23 50 26 0.81 0.85 0.25

Bin_2 37 39 0.86 51 25 0.87

Bin_3 55 21 0.88 51 25 0.85

Sand Cat

(filtered)

Bin_1 44 13 0.84 0.85 0.10 15,560 (24) 38 19 0.76 0.77 0.10

Bin_2 26 31 0.86 38 19 0.80

Bin_3 44 13 0.86 38 19 0.75

Sand Cat

(unfiltered)

Bin_1 82 14 0.86 0.85 0.30 64 32 0.84 0.80 0.33

Bin_2 29 68 0.82 64 32 0.74

Bin_3 81 20 0.86 64 32 0.80

n the number of points used for calibration and evaluation of model in each bin. AUC the model performance based on the ROC for

the presence localities used for model evaluation (i.e. AUC_test). Kappa Cohen’s kappa (Cohen 1968). Suitable habitat the area of

highly suitable habitats. Numbers in parenthesis show the percent of highly suitable habitats covered by PAs
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changed notably depending on the spatial scale of

variables. The studied species responded to most

landscape features at relatively broad scales. This

strong association of carnivores with broader scales of

environmental variation has also been seen in other

studies (e.g. Hearn et al. 2018).

The medium to broad scale relationships between

topographic variables and occurrence of Persian

leopard and sand cat may be due to their broad

avoidance of human activities. The fine-scale sensi-

tivity of sand cat and Asiatic cheetah to edge density

probably reflects a tendency of these species to

associate with edges and ecotones for supplementary

and complementary resource use (Mateo Sanchez

et al. 2013). In contrast, the importance of edge density

for Persian leopard may be due to the species selection

of high elevations, where the variation in land cover

types is low, and broad scale avoidance of human

activities. The importance of rough topography for

carnivores has also been seen in tigers (Reddy et al.

2017) and clouded leopards (Hearn et al. 2018), and

may generally be expected when carnivores live in

remnant habitats in human dominated landscapes,

where topographically rough ridge systems have the

lowest human footprint and highest remaining prey

populations.

McGarigal et al. (2016a) referred to the multiscale

approach we used in this study as ‘‘pseudo-opti-

mized’’ because the best scale is determined univari-

ately across a continuous range of scales and not

multivariately in the context of the full multivariable

model. As noted byMcGarigal et al. (2016a), very few

studies have compared this ‘‘pseudo-optimization’’

approach to a true multivariate, multi-scale optimiza-

tion. Therefore, while future research should explore

the development of better and more efficient technical

solutions to scale optimization, the approach used here

is the most commonly used and well evaluated method

of evaluating scale dependency in habitat

relationships.

The effect of environmental predictors

on distribution of carnivores

The geographical patterns of predicted suitable habi-

tats for all studied species was quite similar to

previously published predictions in the region (Khos-

ravi et al. 2018). We found high correlation between

Fig. 4 The output of the optimized MaxEnt model for the three

target species using spatially filtered presence points and

masked geographically structured approach for model evalua-

tion (red rectangles). The areas in white indicate pixels with

values below the suitability threshold. The dashed polygons and

black filled circles show the border of protected areas (PAs) and

presence localities respectively. (Color figure online)
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the predicted suitable values in the study conducted by

Khosravi et al. (2018) and present study for Persian

leopard (r = 0.70), Asiatic cheetah (r = 0.65), and

sand cat (r = 0.70). However, the refinement of

predictions through scale optimization identified

suitable habitat patches that were smaller in area and

less spatial connectivity than the previous study. This

difference might be due to the use of variables related

to landscape composition and configuration in this

study. Given that species habitat quality is related to

Fig. 5 The spatial niche comparisons between each pair of

species in a gradient of the probability of occurrence obtaining

from MaxEnt model. The maps are produced by subtraction of

the occurrence probability maps of species. Each map represents

the maximum probability of occurrence for sand cat (in purple)

to the maximum probability of occurrence for the Asiatic

cheetah and Persian leopard (in green). The areas in white

indicate pixels with values below the suitability threshold.

(Color figure online)

Table 2 The niche identity result for pairwise comparisons according to the MaxEnt model

Pairwise comparison D metric I metric

Observed Pseudoreplicates Observed Pseudoreplicates

Asiatic Cheetah—Persian leopard 0.62 0.71 0.67 0.74

Asiatic Cheetah—Sand cat 0.42 0.71 0.70 0.74

Persian leopard—Sand cat 0.27 0.66 0.55 0.71

D and I are Schoener’s and Hellinger metrics respectively. Observed observed measure of niche overlap based on the habitat

suitability scores generated from the best distribution models for the three focal species. Pseudoreplicates expected measure of niche

overlap scores generated from 100 replicates
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both amount and pattern of environmental factors,

inclusion of these predictors may provide more

reliable ENMs. Another potential explanation for such

contradictory results is that, as seen previously by

Shirk et al. (2014) andWasserman et al. (2012), multi-

scale optimization produces predictions that have

more spatial discrimination between predicted high

and low quality habitat, which typically results in

higher heterogeneity and patchiness of predictions.

This seems to be a general pattern in which scale

optimization focuses and clarifies habitat relationships

leading to models with higher spatial discrimination

and higher accuracy. To quote McGarigal et al.

(2016a), ‘‘scale is the lens that focuses ecological

relationships; Page 1161’’.

Asiatic cheetah live in certain ecological regions

characterized by arid and relatively flat and open

conditions. The model showed a positive relationship

between the probability of occurrence of Asiatic

cheetah and topographic roughness at small scale,

suggesting that within the relatively flat desert areas

preferred by Asiatic cheetah at broad scales, the

species selects areas with higher topographic rough-

ness. The explanation of this is likely that areas with

moderate vegetation cover at intermediate amounts of

topographic roughness offer the best food resources

and lowest impacts of human activities. The species is

strictly dependent on a few ungulate species in central

Iran, including gazelles (Gazella spp.), wild sheep

(Ovis orientalis), and wild goat (Capra aegagrus;

Farhadinia and Hemami 2010). Prey availability is one

of the most important factors affecting habitat suit-

ability of carnivores (Hayward et al. 2006). Previous

studies in Iran have confirmed that Asiatic cheetahs

are scattered predominantly in rangelands with rela-

tively rough terrain (Ahmadi et al. 2017). The current

widespread use of rough areas by Asiatic cheetah may

be also attributed to a shift in prey selection as Asiatic

cheetah’s primary prey has been dramatically declined

in more open, flat and low elevation areas (Durant

et al. 2010).

Roughness had by far the largest influence on

Persian leopard occurrence of all variables in the

model, and suggests that Persian leopard is strongly

associated with rough topography, which is likely

related to both increased prey availability and lower

human impacts in these parts of the landscape. Our

results also predict that an increase in the amount of

rangeland with a density of B 20% reduces the

relative probability of Persian leopard occurrence.

These results suggest that the area of rangelands with

sparse vegetation might be a useful metric for

evaluating habitat suitability of Persian leopard across

large landscapes.

In our study, the presence of shrub and wood

patches was among the best predictors of the sand cat

Fig. 6 The density of occurrence localities of each target species in response to gradient of most importance environmental variables

recognized from the optimized MaxEnt model
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habitat suitability. This species is closely associated

with shrublands due to higher density of rodents and

higher visual cover in shrublands, and presence of

stabilized soil, which improves den digging efficiency

(Khosravi et al. 2018). Agriculture patches are another

important food source for sand cat and hence influence

the species habitat suitability as we found in our study,

which increases with the density of agricultural

patches. This suggests that the small size and cryptic

nature of the sand cat make it more tolerant of human

dominated landscapes and less vulnerable to human

persecution than larger carnivores such as cheetah.

The effect of landscape composition

and configuration on distribution of carnivores

There has been a long debate in the landscape ecology

literature about the relative importance and influence

of landscape composition versus landscape configu-

ration (e.g., Flather and Bevers 2002; Fahrig 2003).

The majority of evidence suggests that in most cases

the composition of the landscape is more important to

species distributions than is its spatial configuration

(Mateo Sanchez et al. 2013). In this study, predicted

suitable habitat for all three species covered about

12% of the study area. Our findings clearly showed

that landscape configuration variables, had relatively

weaker relationships with Persian leopard and Asiatic

cheetah habitat suitability than landscape composi-

tion. The comparatively weak role of landscape

configuration in habitat suitability for these species

may be due to the high mobility of the species which

allows them to integrate across landscapes of differing

configurations resulting lower sensitivity to habitat

fragmentation. The amount of available sparse vege-

tation and grassland–scrubland habitats had a strong

relationship with Asiatic cheetah occurrence when

measured as percentage of landscape area. These

findings confirm that importance of habitat amount at

the landscape scale should be the conservation priority

for large carnivores.

Patch density of shrubland and agriculture had

strong relationships with sand cat habitat suitability.

Species with large body size, intermediate mobility,

high trophic level, and high habitat specialization are

thought to be most likely to be strongly influenced by

changes in habitat configuration (Sauder and Rachlow

2014). Sand cat, a wide-ranging mesocarnivore meets

most of these criteria. Similar results have been found

for American marten and pine marten (Shirk et al.

2014; Vergara et al. 2016). Also, a number of studies

have shown that the importance of habitat configura-

tion for a species is higher when there are relatively

low amounts of habitat area in a landscape (Villard and

Metzger 2014). Sand cat was the species with the

lowest extent of quality habitat, which, coupled with

its relatively higher specialization on particular veg-

etation types, likely makes it highly sensitive to both

landscape composition and configuration. Our results

for sand cat indicate that composition and configura-

tion of the landscape are important, but as configura-

tion is highly confounded with composition

(correlation above 0.7) it is impossible to resolve the

relative importance of the two. This species benefits

from a mix of agricultural land and shrubland in the

landscape. Therefore the amount of shrublands and

agriculture fields, and habitat diversity of the land-

scape (i.e. a mix of agricultural land and shrubland) are

important considerations for sand cat to mitigate the

effects of habitat loss.

Niche divergence in carnivore species

Topographic conditions and well-connected sparse

vegetation can be considered as limiting factors

determining the distribution of the study species

across the area and shaping the differences in spatial

niche of the three species. Persian leopards select

higher elevation and rougher terrain than Asiatic

cheetah suggesting spatial niche separation between

these two species. However, we observed a relatively

higher spatial niche overlap between Asiatic cheetah-

Persian leopard than Persian leopard-sand cat

(Table 2, Fig. 5). The avoidance of Asiatic cheetah

as a sub-ordinate predator from Persian leopard in

their area of sympatry may have rather facilitated

temporal niche partitioning than spatial niche parti-

tioning, reducing food competition and the risk of

dangerous interactions (Hemami et al. 2018). Dröge

et al. (2017) found that Asiatic cheetahs made about

70% of their kills during full daylight, whereas

leopards are strongly nocturnal. Persian leopards and

Asiatic cheetah seem to be able to coexist in areas of

open habitats in central Iran where spatial avoidance is

difficult, suggesting the potential importance of tem-

poral displacement. High spatial niche overlap

between Asiatic cheetah and Persian leopard may also

be due to the vegetation structure in deserts of central
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Iran which is highly uniform and dominated by sparse

vegetation with a density of\ 20%with high visibility

over long distances. These conditions enable large

carnivores to detect one another relatively easily

which facilitates avoidance (Dröge et al. 2017). While

sand cat and Asiatic cheetah can coexist locally in

some regions in Iran, the identity test showed

substantial spatial niche divergence among the two

species, which was further supported by the habitat

suitability maps. The sand cat is strongly influenced by

topography and is absent in regions with high topo-

graphic roughness. Dröge et al. (2017) suggested that

open environments with a simple prey set (like desert

ecosystems of Iran) constrain the options for subordi-

nate species like sand cat, promoting competitive

exclusion. However, spatial partitioning as well as

dietary differences may allow for coexistence of sand

cat and Asiatic cheetah. Hemami et al. (2018)

suggested that exclusive selection of sand dunes by

sand cat facilitate spatial niche partitioning between

sand cat and other felid species.

Spatial filtering

Spatial filtering has been identified as a straightfor-

ward and effective method to limit residual spatial

autocorrelation in ENMs (Fourcade et al. 2014; Kittle

et al. 2018). Fourcade et al. (2014) suggested that

systematic sampling of presence localities is one of the

best methods to account for sampling bias. Kramer-

Schadt et al. (2013) and Boria et al. (2014) named

systematic sampling as ‘spatial filtering’. Our findings

were consistent with the previously studies and

showed that spatially filtering the dataset tended to

slightly improve the model performance. The masked

geographically structured approach showed slightly

higher AUC values than randomly partitioned cross-

validation. This difference emphasizes the importance

of selecting calibration regions that match modeling

assumptions and also the importance of parameteri-

zation of MaxEnt models to identify optimal model

complexity for a given species and dataset.

Conclusion and management implications

This was one of the first multiscale niche modeling

studies to investigate niche divergence among three

sympatric carnivore species. In a somewhat similar

study, Hearn et al. (2018) used multi-scale optimiza-

tion with generalized linear modeling to compare

niche structure for clouded leopard, leopard cat, bay

cat and marbled cat in Borneo and found, similarly to

this study, high scale-dependence of habitat relation-

ships. Our results also support the findings of Hemami

et al. (2018) and reinforce the role of montane areas

and desert shrublands/woodlands in low relief plains

of central Iran as important habitats providing food

and cover for threatened carnivores. Our multiscale

framework emphasized the importance of optimizing

the spatial scale of environment predictors, and the

evaluation data and background localities for predict-

ing species niches and investigating spatial niche

divergence. The scaled models revealed that predicted

habitat suitability for the Asiatic cheetah and Persian

leopard is more strongly associated with landscape

composition than landscape configuration, but most

strongly to topography. Hence, to maximize the

viability of these carnivore populations, conservation

efforts should focus on maintaining large extents and

well-connected areas of natural vegetation in areas of

relatively rough topography with a low density of

human settlements. The predicted suitable habitats

should be evaluated and verified in future monitoring

programs to obtain more accurate estimates of popu-

lation size and distributions of these species across the

study region. This is particularly important for species

with dispersed distributions and very few records such

as Asiatic cheetah, which is at the edge of extinction

(less than 50 individuals remain in Iran; Khalatbari

et al. 2018).

Using the results of multi-scale models for the

surrogate species, conservation managers can develop

a multi-species conservation program for overall

biodiversity conservation in central Iran by prioritiz-

ing key suitable patches predicted for the selected

surrogate species. For example, the patches in Abbas-

Abad and Dare-Anjir wildlife refuges, Kalate and

Kharoo no-hunting areas can be considered as key

habitat patches that managers can give high priority to

them in the future conservation programs (Figs. 4 and

S6; Online Resource 1). Also, the results suggest that

there are some key habitat patches outside of protected

areas which have significant contribution, especially

as stepping stones, in maintaining landscape connec-

tivity in central Iran (e.g. the key patches between

Dare-Anjir, Siyah-Kooh and Kalmand protected

areas).
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The obtaining information is clearly useful for

conservation and can make a case for increasing the

size of existing PAs or areas adjacent to PAs. Our

outputs also could be used to guide location of new

large-scale ecological corridors that are big enough to

provide habitat for species and as such act as large

scale corridors for these focal species. Furthermore,

given the high fragmentation of predicted habitats, we

recommend implementing habitat restoration to create

stepping stones and movement corridors (e.g. Cush-

man et al. 2018; Khosravi et al. 2018) among the

suitable habitat patches. More attention should be paid

in the designation process of PAs to improve connec-

tivity among them.

We would like to note that, given relatively rapid

land-use change in the study area, species occurrence

patterns may be in disequilibrium with the environ-

ment. If this is the case then the species-environment

associations developed will reflect the diseqililbrial

relationship rather than any equilibrium outcome, and

thus not ideally represent the ‘‘suitability’’. However

they will represent the current ‘‘probability of detec-

tion or occurrence’’, which does reflect the disequi-

librial state. To clarify the current relationship

between species and the environment to account for

time lags in occurrence, future research should focus

on studies that assess performance measures, such as

fecundity, survivorship and fitness, rather than mere

occurrence or presence and absence.
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