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A B S T R A C T

Forest spatial patterns influence many ecological processes in dry conifer forests. Thus, understanding and replicating spatial patterns is critically important in order
to make these forests sustainable and more resilient to fire and other disturbances. The labor and time required to stem-map trees and the large plot size (> 0.5 ha)
needed to study tree spatial patterns have limited our examination of how these patterns change as a function of site conditions and tree densities. We stem-mapped
all trees> 40 cm DBH within two large relict (minimally logged) pure ponderosa pine study sites on experimental forests at Long Valley (73 ha) on sedimentary soils
and Fort Valley (32 ha) on basalt soils in northern Arizona, USA. We also simulated 1,000 4-ha plots from models of each study site incorporating field data
parameters. Using cluster analysis and field data, we found that an inter-tree distance (ITD) of 9–11m best separated single trees and groups within our study sites.
Using a fixed 10-m ITD, the more productive Long Valley (LV) site had 62 trees ha−1 and groups of up to 113 trees, compared to the Fort Valley (FV) site, which
averaged 41 trees ha−1 and had 22 trees in the largest group. However, the sites differed only slightly in terms of single trees ha−1 (LV 7.3; FV 5.6) and group of
tree ha−1 (LV 7.2; FV 8.1). Simulation results indicated that when tree densities are equal, the spatial patterns were very similar between the two sites, suggesting
that tree spatial pattern variability is a function of tree densities and only indirectly related to site productivity. As the number of trees increased, the additional trees
integrated into existing groups rather than creating new groups. In addition to tree spatial patterns, we quantified gaps (defined as> 30m wide stem-to-stem) and
openings (defined as ≥30m wide stem-to-stem) within the two study sites. Although both sites were dominated by small openings most of the open area was found
within a few large openings. Our large plots allowed us to incorporate variability and capture a larger range of tree and openings spatial patterns than have been
captured in previous studies to provide insights on spatial heterogeneity that can inform management of this important forest type in North America.

1. Introduction

Across the western United States, dry forests historically evolved
with frequent low severity fires every 5–25 years (Swetnam and Baisan,
1996; Covington et al., 1997). Since the exclusion of these fires and
subsequent logging, these forests have become increasingly dense with
young trees, reducing open space and herbaceous production (Weaver,
1951; Cooper, 1960; Covington and Moore, 1994). Unlike historical
forests, these novel dense conditions are characterized by abundant
fuels, including fuel ladders that can, under dry and windy conditions,
support both passive and active crown fires. The extent of area char-
acterized by these conditions has in some places resulted in large un-
characteristic stand-replacing fires (Graham, 2003; Finney, et al., 2005;
Mallek et al., 2013). The increase of fuels at the stand level and the
increased homogeneity of forest conditions at landscape levels are
among the most pressing management issues across frequent-fire-
adapted forests in the western United States (Agee and Skinner, 2005;
Stephens et al., 2016). Moreover, if seasonal average temperatures in-
crease as projected, these forests are likely to be subjected to fires of
greater severity and other disturbances exacerbated by climate impacts

(Seager et al., 2007; Jolly et al., 2015; McDowell et al., 2016; Singleton
et al., 2019). To minimize such disturbances and their effects on eco-
systems, managers are emphasizing fuels reduction as well as restora-
tion of the historical spatial structure of ponderosa pine (Pinus pon-
derosa Douglas ex Lawson & C. Lawson var. scopulorum Engelmann)
forests across the western United States (Moore et al., 1999; Allen et al.,
2002; Graham et al., 2004; Agee and Skinner, 2005).

Trees within ponderosa pine forests have long been noted to have a
unique spatial pattern that has only recently been quantified. For ex-
ample, scientists working in the western United States in the first half of
the 20th century often commented on the open nature of these forests
(Pearson, 1933; Cooper, 1960). The open conditions were due to low
tree densities and an aggregated spatial pattern. Historical tree densities
in ponderosa pine forest ranged from 10 to 200 trees ha−1 (TPH), as
documented by numerous studies (Fulé et al., 1997; Covington et al.,
1997; Mast et al., 1999). Tree spatial patterns in ponderosa pine forests
have also been described using traditional spatial pattern analysis and
were summarized by Larson and Churchill (2012). These studies found
that ponderosa pine forests were most often dominated by trees ag-
gregated at scales between 2 and 40m. However, some studies have
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also found global random spatial patterns in forests, particularly among
larger and older groups (Youngblood et al., 2004; Schneider et al.,
2016).

Gaps and openings are also recognized as important components
within frequent fire forests because of the understory plant diversity
they support (Matonis and Binkley, 2018) and wildlife habitat they
provide (Reynolds et al., 2013). Quantifying the shape and size of these
components, however, has been notoriously difficult (Larson and
Churchill, 2012). This non-forested space has been broadly described
by other studies using simple metrics such as percent open, while more
recent studies have used the “empty space” concept (Clyatt et al., 2016;
Matonis and Binkley, 2018; Pawlikowski et al., 2019). The empty space
method is easy to understand and a good broad or global method to
describe the amount of open space, but fails to quantify the distribution
of these open spaces. Therefore, in addition to the open space method,
some studies differentiate the open space into gaps and large openings
(Churchill et al., 2017). Identifying large openings as a distinct com-
ponent facilitates assessing the size distribution to determine if the open
space is concentrated in one large opening or in several smaller ones.

Understanding and replicating tree and openings spatial patterns is
critically important, but research on the subject has yet to capture the
variability and factors responsible for pattern variability. These patterns
directly influence ecological processes such as fire behavior (Graham
et al., 2004), tree competition and growth (Biondi et al., 1994; Boyden
and Binkley, 2015), regeneration (Sánchez Meador et al., 2009, Malone
et al., 2018; Pawlikowski et al., 2019), understory development
(Matonis and Binkley, 2018), wind flow, and creation of wildlife habitat
(Reynolds et al., 2013). Only relatively recently, however, have at-
tempts been made to quantify and replicate this pattern in treatment

prescriptions (Churchill et al., 2013). One unique aspect of quantifying
spatial pattern within frequent-fire forests has been the need to capture
and implement these patterns at larger scales compared to traditional
silvicultural or other forestry activities (Sánchez Meador et al., 2009).
For instance, typical forestry studies use 0.01- to 0.1-ha plots to sample
tree densities and basal area, based on the assumption that trees are
arranged in a random spatial pattern (Smith et al., 1997). Yet, small
plot analyses may underestimate the size of the largest groups of trees
as well as the size of openings. The aggregated spatial pattern of most
dry forests (Larson and Churchill, 2012) requires sampling using larger
plots (> 0.5 ha) (Knapp et al., 2013, White, 1985). Larger plots, and the
time-consuming process of stem-mapping trees, has limited replication
across sites and conditions. As a result, sampling across a wide range of
conditions and tree densities is needed to understand their impact on
tree and opening spatial patterns (Sánchez Meador et al., 2009;
Reynolds et al., 2013).

Tree and open space metrics often differ between sites; however, it
is not clear whether these differences are directly due to site conditions
(e.g., soils, precipitation, topography, region, or past disturbances) or
indirectly related to changes in tree densities. For example, Abella and
Denton (2009) compared spatial pattern between “ecosystem types,”
defined as areas with similar parent material and precipitation patterns.
They found strong relationships between tree density and certain tree
spatial metrics, but also found substantial variation within ecosystem
types. Following the recommendations by Larson and Churchill (2012),
recent papers have introduced new metrics to describe tree spatial
patterns (Lydersen et al., 2013; Clyatt et al., 2016; Tinkham et al.,
2017). These new metrics have been largely focused on the density,
frequency, and distribution of single trees and groups. While studying

Fig. 1. Map of tree locations within the Long Valley and Fort Valley study sites in Northern Arizona. Along with stem map locations (black dots in inset maps of each
site) and tree density (trees ha−1; TPH), microsite variability is represented by different shades of gray.
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multiple plots in Montana, USA, Clyatt et al. (2016) found a positive
relationship between tree density and group size as well as percentage
of trees within groups. Clyatt et al. (2016) also noted differences in the
group size frequency distribution between regions and attributed those
differences to changes in tree density related to historical fire regimes.
In general, there is still a need to determine how forest spatial metrics
differ within and between sites, and better understand the main drivers
responsible for these differences (Sánchez Meador et al., 2010). Man-
agers and researchers need this information to make adjustments when
implementing or evaluating treatments across varying site conditions
and tree densities. Understanding the spatial pattern and variability of
ponderosa pine forests is critical for providing guidance to land man-
agement plans designed to create the desired forest structural and
spatial patterns that are less prone to stand-replacing crown fires
(Churchill et al., 2013).

By sampling two large relict (minimally logged) pure ponderosa
pine study sites the goal of this study was to assess tree and opening
spatial patterns both between and within sites. Our intent was to cap-
ture the heterogeneity within each site including sub-areas with similar
densities (Fig. 1). The objectives of the study were to: (1) establish
definitive characteristics for the grouped arrangement of ponderosa
pine trees greater than 40 cm DBH in old-growth (yellow-barked)
stands in the Southwest, (2) compare overall tree spatial pattern be-
tween the two sites, (3) determine how spatial patterns change as a
function of tree densities within and between sites, and (4) quantify the
area of openings, gaps and “empty space” in each study site.

2. Methods

2.1. Study area

To study the historical spatial structure of ponderosa pine forests,
we selected a study site within each of two experimental forests with
similar species composition and disturbance history. The Fort Valley
site was within the Fort Valley Experimental Forest and the Long Valley
site was within Long Valley Experimental Forest, both in the Coconino
National Forest in northern Arizona, USA (Fig. 1). Fort Valley is 11 km
northwest of Flagstaff, Arizona at an elevation of 2 250m on soils de-
rived from basalt and cinders (Avery et al., 1976) with an average
annual precipitation of 51 cm (Western Regional Climate Center, 2019).
The Long Valley site is 90 km southwest of Flagstaff at an elevation of 2
100m on soils developed from weathered sandstone with limestone
inclusions (Wheeler and Williams, 1974); annual precipitation averages
67 cm (Western Regional Climate Center, 2019). In general, the pre-
cipitation pattern in this region is bimodal, received primarily as late
summer rain and winter snow.

Within Fort Valley we sampled a 32-ha area that was set aside as the
“control” for other studies shortly after the experimental forest was
established in 1906. Within Long Valley we sampled a 73-ha site that
was first inventoried in 1937. At Fort Valley, livestock grazing was
eliminated in 1926 and there has been no logging except for localized
firewood cutting (Covington and Sackett 1984; Sutherland et al. 1991).
At Long Valley, a light “sanitation cut” removed diseased or insect-in-
fested trees in 1967 (Sackett 1980). Both sites still contain most trees
that established during a period of natural frequent fires (prior to 1880)
and are part of the few remaining “intact” old-growth forests in the
Southwest. Between 1700 and 1900 the mean fire-return interval for
widespread fires (fires that scarred 25% of the fire scar samples) was 7
and 5 years at Long Valley and Fort Valley, respectively (Swetnam and
Baisan, 1996). Both study sites are dominated by ponderosa pine with
scattered alligator juniper (Juniperus deppeana Steud.) and Gambel oak
(Quercus gambelii Nutt.) shrubs.

2.2. Field methods

The tree populations of interest within each relict site were old-

growth ponderosa pine trees that established under a frequent fire re-
gime. We defined “old growth” as trees > 40 cm diameter at breast
height (DBH: at 1.45m height) with “old morphology characteristics”
such as yellow bark, flattened top, and tall crown base height (sensu
Brown et al., 2019). The DBH cutoff was based on guidelines adopted in
restoration projects in the Southwestern United States (e.g., Coughlan,
2003; Abrams and Burns, 2007). When we started fieldwork, the two
most commonly mentioned cutoff definitions for old-growth were 37 or
40 cm DBH (White, 1985; Abella et al., 2006; Schneider et al., 2016).
We chose 40 cm DBH for stem-mapping data collection even though
some old-growth, yellow-barked trees are less than 40 cm DBH, and
some relatively young trees are less than 40 cm DBH but not yellow-
barked.

Within each study site we recorded DBH and the geographic posi-
tion, in meters, as Universal Transverse Mercator (UTM zone 12N)
coordinates using North American Datum (NAD 83) projection, of all
ponderosa pine trees with a DBH less than 40 cm. The stem-mapping
process began by first establishing a reference point within a relatively
open area for improved satellite reception using high precision (sub-
meter) global positioning system (GPS) units (Trimble® Geo XH,
Trimble, USA). Once the reference point was established, this location
was “off-set” using a laser rangefinder (TruePulse™ 360° B, Laser
Technology Inc., USA) to determine the distance and direction to the
outermost edge of individual trees. Each GPS point was differentially
corrected to an estimated average accuracy of less than 0.2 m. In ad-
dition, canopy measurements were conducted for 156 randomly se-
lected trees (> 40 cm DBH) at each site. Canopy radius was measured
from the stem to the edge of the canopy, and canopy intersection with
another canopy was documented. These were measured and recorded
along the four cardinal directions as well as the maximum and
minimum canopy distances.

2.3. Simulation model

We were also interested in evaluating changes in spatial pattern
metrics as a function of tree density within each study site. We therefore
simulated 1,000 4-ha plots from fitted models of each study site in-
corporating field data parameters. For the fitted models, we assumed
that points were distributed as a Neyman-Scott process such that tree
groupings are formed as clusters of points arising from spatially
Poisson-distributed cluster center points (Diggle 2014). The cluster
member points in turn have a specified spatial distribution about the
cluster center points. The distribution of cluster center points within
both Long Valley and Fort Valley were spatially inhomogeneous with
no simple eastward or northward trend. This precluded the use of stem
density models containing linear directional trends. We therefore
adopted a flexible nonparametric third-order spline function that al-
lowed for greater complexity in the trend surface (Hastie 1992).

To simulate the spatial distribution of cluster members about each
cluster center, we adopted a variance-gamma relationship with a cross-
sectional density that is greater near the cluster center and attenuates as
a function of distance from the cluster center (Baddeley et al. 2015).
From available cluster models, the variance gamma model showed the
best fit between the fitted model and the actual Long Valley and Fort
Valley observed stem locations. We confirmed the goodness of fit of the
final model using the following three metrics, which compared ob-
served and model-predicted spatial point distributions: (1) G(r), the
nearest neighbor distance function; 2) L(r), Besag’s transformation of
Ripley’s K(r); and 3) g(r), the pair correlation function (Schabenberger
and Gotway, 2005). For each metric, we performed Diggle-Cressie-
Loosmore-Ford (DCLF) tests to assess goodness of fit (Baddeley et al.,
2014). The DCLF test evaluates the probability that the observed and
modeled point patterns are from the same distribution. Therefore, a
small p-value is indicative of a poor fit (Table 1). Modeled and observed
point intensities are shown in Appendix A. All models were estimated
using the R statistical computing platform (R Core Team, 2018) and R
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library spatstat (Baddeley et al., 2015).

2.4. Defining trees and groups

Tree spatial pattern descriptions must differentiate between single
trees and tree groups. Defining groups is rooted in the idea that trees
within a group are “connected,” thereby facilitating migration or spread
between trees within the group. For example, in the context of fire
spread, a group could be defined where crown fire could spread be-
tween crowns under certain conditions. A group could also be defined
by the distance needed for dwarf mistletoe (Arceuthobium spp.) seeds to
spread between trees (Robinson and Geils, 2006). One often cited group
definition is in regards to wildlife habitat, where a group is defined as
two or more trees with interlocking or nearly interlocking crowns
within which tree squirrels could travel while avoiding the forest floor
(Reynolds et al., 2013). A number of recent studies that have described
reference tree spatial patterns use this definition, although it is still
unclear how and when tree canopies are measured. Tree canopy radius
varies as a function of tree diameter and competition (Sánchez Meador
et al., 2011). Most of the recent literature has defined groups based on a
fixed inter-tree distance (ITD), meaning that two trees are within a
group when the distance between them is less than or equal to the ITD
(Lydersen et al. 2013; Brown et al. 2015; Clyatt et al. 2016).

To narrow in on possible threshold inter-tree distance levels for use
in defining the final group, we considered statistical and ecological
factors. Statistically we first created groups using hierarchical cluster
analysis based on the geographic locations (UTM easting and northing)
for each tree. The distance matrix of (Euclidian) inter-tree distances
between all trees was created using PROC Cluster in SAS/STAT 90.4
based on the single linkage method. In this analysis, initially each tree is
an individual, then the two trees separated by the shortest distance are
joined to form a group. This process is repeated until all trees are part of
a single group, similar to a method used by Larson and Churchill (2008)
to create tree groups. Proc TREE in SAS/STAT 9.4 was then used to
produce a dendrogram which included all trees to visually identify the
most distinct tree groups and to determine possible threshold distance
levels. The groups identified using cluster analysis were ecologically
evaluated in the field and compared to canopy measurements before we
decided on the final ITD group criteria.

2.5. Comparison between sites

Global tree spatial patterns within each site were analyzed using
Ripley’s K point pattern analysis in the spatstat package (Baddeley
et al., 2015) in R v.3.4.1. The null hypothesis of this test is that points
are randomly distributed. To determine whether trees were distributed
in a random, clustered or dispersed fashion, we used the in-
homogeneous Ripley’s K(r). Due to the spatial trend within both sites
we used univariate Linhom (r) function specifically designed for in-
homogenous point processes. The K-function was normalized to L(r)-r
in order to simplify interpretation (Besag, 1977). The neirnorbohood
radius r about each point was limited to distances of 0–100m in Fort
Valley and 0–200m in Long Valley (half the shortest plot dimension;
sensu Dixon, 2002) to minimize the influence of unobserved points near
observed points close to the plot edge (Boots and Getis, 1988).

Significant clustering or dispersion was determined by comparing ob-
served Linhom (r) - r transformation values to a 95% confidence envelope
based on 999 permutations of simulated complete spatial randomness
(Upton and Fingleton, 1985).

To compare tree spatial patterns between the two study sites we
conducted two distinct but complementary analyses. The first analysis
compared the two sampled study sites using the collected field data.
The second analysis focused on simulations generated from the fitted
model for each study area. For each of the two study sites, we randomly
located 1,000 4-ha plot (200m×200m). Each randomly located plot
was therefore characteristic of the modeled density of cluster centers at
that location. The simulations were then used to calculate various
spatial metrics. Four hectares has previously been identified as the
optimal plot size for measuring tree spatial pattern in dry forests (North
et al. 2007; Larson and Churchill 2012). For both the field data and the
modelled iterations we defined a tree group as two or more trees within
a specified ITD (stem-to-stem). Trees that did not have neighboring
trees within the specified distance were identified as singles. Single
trees were described according to the following spatial metrics: singles
ha−1, and % singles. Tree group spatial metrics included: groups ha−1,
% of trees within groups, mean group size, maximum group size, and
mean nearest neighbor distance (NND) within groups. The spatial re-
lationship between trees was compared using the mean NND between
all trees within each site, mean NND among trees within groups, and
mean NND among singles.

In addition to tree spatial patterns we also quantified gaps and
openings within the two sites. We defined openings as non-canopy areas
that include a core without tree competition. According to Boyden and
Binkley (2015) , competition is strongest within 14m from ponderosa
pine trees; therefore we first created a polygon of all areas greater than
15m from any tree stem. We then delineated openings by buffering the
polygon by 10m which expanded the area of the opening to the edge of
the tree canopy (5m away from the tree stem). Intersecting and ad-
joining polygons were then merged to form continuous polygons. This
method, described by Churchill et al. (2017), ended up identifying
openings that were at least 30m wide on all sides (tree-stem to tree-
stem). The number and size of openings was then calculated for each
site, and described in terms of opening size distribution, total area
within openings and percent of total site area within openings. In ad-
dition to openings we also measured gaps, defined as areas beyond the
tree canopy (> 5m from a tree stem) and not part of an opening.
Therefore by definition gaps are less than 10m from a tree canopy
(or< 15m from a tree stem).

In addition to gaps and openings, we also quantified the distance to
the nearest tree for each site by creating buffers at different distances
(Matonis and Binkley, 2018; Churchill et al., 2017). We then calculated
the “empty areas” within each of the following distance from tree
classes: 0–3m, 3–5m 5–10m, 10–15m, and 20+m. The percentage of
area within each of these classes was then calculated for each site and
compared graphically.

3. Results

In general, both Long Valley and Fort Valley exhibited similar global
tree spatial patterns, but at different scales (Fig. 2). That is, both sites
showed a clustered spatial pattern at short distances, a random pattern
at medium distances, and a dispersed pattern at long distances. In Long
Valley, the clustered pattern was exhibited up to 70m, with a random
pattern from 70 to 90m, and a dispersed spatial pattern at distances
greater than 90m. In Fort Valley, the clustered pattern was between 1
and 50m, while the dispersed pattern extended beyond 60m.

The cluster analysis showed that a 9–11m (threshold) ITD was
optimal for separating tree groups across both sites. This 2-meter range
was judged to best meet descriptive statistical separation on the den-
drogram and visual separation between tree groups in the field. With
these large data sets, a 2-meter variation was necessary to prevent

Table 1
p-values for G(r), L(r), and g(r) for Diggle-Cressie-Loosmore-Ford test con-
firming model used for simulations. Smaller p-values represent poor fit between
the predicted and observed spatial distributions.

Summary Function Long Valley Fort Valley

G(r) 0.236 0.071
L(r) 0.970 0.660
g(r) 0.510 0.770
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splitting a group, or combining two groups that were distinct graphi-
cally on the dendrogram as well as visually in the field. The cumulative
number of trees placed in groups also tended to flatten out at the
9–11m ITD threshold (Fig. 3). For the following analyses, we defined
groups using an ITD of 10m based on two considerations (Fig. 4). First,
field data collected within both sites show that the maximum canopy

radius was 4.3 m among non-interlocking crowns. Moreover, 60% of
these trees had a maximum canopy radius of at least 5 m (Appendix B).
Hence, we consider this to be the potential achievable canopy radius for
mature ponderosa pines in the absence of crown competition. Second,
we observed during field visits that a 10-m ITD best represented tree
groups with overlapping canopies. Thus, we define a group as all trees
less than 10m from other trees. Trees less than 10m from its nearest
neighbor are classified as single trees (Fig. 4). To facilitate comparisons
with other studies we also used a 6-m ITD and calculated the same tree
spatial metrics.

3.1. Tree spatial patterns compared between sites

Tree spatial metrics are sensitive to the methods used to identify
groups. In some respects the ITD is directly related to the NND. For
example, 82% of trees in Fort Valley are less than 10m from another
tree (Fig. 3), meaning that at an ITD of 10m, 82% of trees are in groups
while 18% of trees are singles. Moreover, in Fort Valley the average
TPH was 41, so on average there were 7.3 singles ha−1 (Table 2). Using
the same 10-m ITD to define groups in Long Valley, 91% of trees are
within groups and 9% are singles, or an average of 5.6 singles ha−1

(Table 2). At an ITD of 6m, in Fort Valley 63% of trees would be in

Fig. 2. Global tree spatial pattern within
Long Valley and Fort Valley study sites.
Ripley’s K transformed values (Linhom (r) – r)
across lag distances in meters. Observed
(solid line) above the shaded area indicated
distances at which trees are clustered, while
observed values within the shaded area are
considered random and observed values
below the shaded are considered dispersed.
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Fig. 4. (color). Tree groups in Long Valley (left) and Fort Valley (right) sites based on 10m inter-tree distance (5-m buffer around each point) with overlapping
buffers creating tree groups. Each dot represents an individual tree location (all Pinus ponderosa) and adjacent dots with similar colors are members of the same
group. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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groups, meaning that 37% of trees would be classified as singles, while
in Long Valley the split would be 70%/30% between trees in groups
versus singles (Fig. 3). These dramatic differences between spatial
metrics based on the same spatial data highlight the sensitivity of these
metrics to definitions of groups and singles. However, Fig. 3 also il-
lustrates a potentially simple but powerful method for comparing spa-
tial patterns between studies and inter-tree distance definitions
(Sánchez Meador et al., 2011).

Overall the number of groups per area was similar, but the group
size distribution differed between sites. The average number of groups
ha−1 was similar between Long Valley and Fort Valley (Table 2);
however, Long Valley generally had more trees per group. In Long
Valley groups averaged 6.9 trees per group, or> 2 additional trees per
group compared to Fort Valley (Table 2). The group size distributions
were skewed toward smaller groups (2–4 trees group−1) at both sites
(Fig. 5). Long Valley had a greater proportion of larger groups (≥10
trees group−1) compared to Fort Valley. Long Valley contained 24
groups with ≥24 trees, and the largest group had 113 trees, while the
largest group we found in Fort Valley contained 23 trees. Based on the
field data, the mean NND for all trees differed by 1m between the two
sites (Table 2). When considering only the trees within groups, the
maximum NND is of course< 10m, thereby reducing the mean NND to
4.1 m within Fort Valley and 4.2m within Long Valley. Therefore the
total NND difference between sites was mainly due to singles, which
were on average 1m farther apart in Fort Valley (Table 2).

The diameter distribution pattern was relatively similar between the
two sites, but differed for single trees and trees within groups (Fig. 6).
In Fort Valley, single trees averaged 61 cm DBH compared to trees
within groups which averaged 59 cm DBH. Similarly, in Long Valley
single trees had an average diameter of 59 cm while trees within groups
averaged 56 cm DBH. In regards to the diameter distributions, in Fort
Valley 18% of single trees were larger than 80 cm DBH, whereas such

large trees made up only 7% of the total trees within groups. Similarly,
in Long Valley, trees larger than 80 cm DBH accounted for 12% of all
singles, but only 5% of all trees within groups (Fig. 6). At Fort Valley
the total basal area was 11.8m2 ha−1, 80.5% of which was in trees
within groups and 19.5% in singles. In Long Valley basal area was
16.2 m2 ha−1, and 90% was in trees that were part of a group.

3.2. Changes across tree densities within and between sites

By generating 1,000 model simulations of each study site based on
the same spatial attributes as the original field data and sampling each
iteration using 4-ha plots, we examined how ponderosa pine spatial
metrics change as a function of tree density at each site. We found that
in Long Valley tree densities ranged from 35 to 100 TPH, while in Fort
Valley densities ranged from 10 to 70 TPH (Fig. 7). Despite differences
in the range of tree densities, spatial pattern metrics changed con-
sistently across tree densities at both sites. In terms of singles ha−1,
Long Valley and Fort Valley differed only slightly (< 1 single ha−1) at
any given tree density (Table 3). In Fort Valley, at tree densities be-
tween 10 and 30 TPH, singles ha−1 increased as total tree densities
increased (Fig. 7a). Where the TPH ranges overlap (40–60 TPH) be-
tween sites, singles ha−1 decreased at a general rate of one fewer single
for every increase of 15–20 TPH. In Long Valley at densities greater
than 70 TPH, singles ha−1 continued to decrease with increasing tree
densities, but at a slower rate (Fig. 7a). Differences in singles ha−1 were
more pronounced when we consider singles as a percentage of all trees.
For example, in Fort Valley, singles on average constituted 37.5% of all
trees at 20 TPH, but only10% at 60 TPH (Table 3).

The number of groups ha−1 tended to increase from low to mid tree
densities and decline from mid to high densities (Fig. 7b) within both
sites. Between 20 and 40 TPH, the number of groups ha−1 increased
with increasing overall tree densities from 4.2 to 8 groups ha−1

(Table 3). Where their ranges overlapped group ha−1 differed between
the two sites by less than 1 group ha−1 for any given TPH. The number
of groups ha−1 peaked at tree densities around 60 TPH, but started to
decrease at higher densities. The average number of groups ha−1

peaked at slightly different tree densities within each site. Moreover,
Long Valley, which had sub-sites with higher TPH, showed a slight
decrease in groups ha−1 at higher tree densities (Fig. 7b).

Our simulation results suggest that increasing tree densities did not
result in more groups or singles but instead resulted in larger groups.
That is, in both sites, the number of trees within groups increased
proportionally with increasing tree densities (Table 3). The relationship
between the number of trees within a group and TPH is essentially the
same between the two sites (Fig. 7c). Increasing tree densities also re-
sulted in significant changes to the group size distribution. The general
pattern of these changes was again consistent between the two sites. In
general, areas with the lowest tree density were dominated by small
groups consisting of 2–3 trees group−1 (Fig. 8). In addition, larger
groups (10 trees group−1) were generally underrepresented in areas
with low tree densities (< 40 TPH). As tree densities increased, the
proportion of small groups generally declined and the frequency of
larger groups increased. Plots with the highest tree densities (80 TPH)
had an almost flat group size distribution; no size group was dominant
(Fig. 8). In such cases, however, most trees not only were part of a
group but were more likely to be part of a large group
(> 15 trees group−1).

3.3. Gaps and openings

The area not occupied by tree canopies (> 5 m from a tree stem)
accounted for 68% and 77% of the total area within Long Valley and
Fort Valley, respectively. In Long Valley 42% of the total area was in
openings and 26% in gaps, whereas in Fort Valley 58% of the area was
openings and 19% percent gaps. At both sites, the size distribution of
openings was dominated by small openings with more than half of all

Table 2
Comparison of tree spatial pattern metrics between Fort Valley and Long Valley
based on stem-mapped tree data.

Fort Valley Long Valley

Total trees ha−1 40.9 61.7
Singles ha−1 7.3 5.6
% Singles 17.9% 9.1%
Groups ha−1 7.2 8.1
Trees within Groups ha−1 33.6 56.1
% trees within groups 82.1% 90.9%
Maximum Group Size 22 113
Mean Group Size 4.7 6.9
Mean NND (all trees) 6 5
Mean NND (trees within groups) 4.1 4.2
Mean NND (just singles) 14.3 13
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Fig. 5. Singles and group size distribution on a ha−1 basis for Long Valley and
Fort Valley sites in northern Arizona.
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openings being<0.1 ha (Fig. 9a). Although large openings were less
common, they occupied more than one third of the total area in Fort
Valley (Fig. 9b). Small openings tended to be round, whereas medium
openings tended to be elongated and large openings tended to be in-
terconnected and sinuous (Appendix C).

Due to the greater tree density at Long Valley, this site tended to
have more of the total area within 5m of a tree compared to Fort Valley
(Fig. 10). Conversely, Fort Valley had a greater percentage of areas that
were> 15m away from trees (Appendix D). However, at both sites the
majority of the site was 5–15m from a tree stem.

4. Discussion

4.1. Tree spatial pattern differences between sites

Our results based on field data showed differences between the two
sampled sites. As expected, the difference between sites was most ob-
vious in terms of total tree densities; Long Valley had on average 20
more trees ha−1 than Fort Valley. Although the two sites differed
slightly in singles and groups ha−1, the difference in tree density was
manifested most sharply in the shift from the dominance of singles and
small groups in the low tree-density Fort Valley site to the dominance of
large and extra-large groups in the Long Valley site. If we consider
solely the field data collected over large areas, the two sites appear to

Fig. 6. Diameter distribution of single trees and trees within groups in (a) Fort Valley and (b) Long Valley.

Fig. 7. (color). Relationship between tree densities (trees ha−1) and (a) singles ha−1, (b) groups ha−1, (c) trees within groups ha−1 and (d) mean group size within
Long Valley and Fort Valley based on 1,000 simulations modelled using field data. Each point represents a value sampled using 4-ha plots within each simulated
landscape.
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have very different tree spatial patterns. Moreover, these differences
could have been attributed to productivity differences related to parent
material and precipitation. Such differences have also been found on

other studies in the southwestern United States (Abella and Denton,
2009; Rodman et al., 2017). For example, Schneider et al. (2016)
sampled limestone soils in northern Arizona and found higher tree
densities compared to sites adjacent to Fort Valley sampled previously
by Sánchez Meador et al. (2011). Results of both studies also show some
spatial pattern differences, with more groups ha−1 found in the lime-
stone site compared to the basalt site. However, the analysis of our field
data and simulations provides other insights into the drivers of tree
spatial patterns.

4.2. Comparison across similar tree densities within each site

As previously noted, sedimentary soils tend to hold more moisture,
supporting greater tree densities. Within each site, however, we found
that tree densities are highly inhomogeneous due to a combination of
factors including topography and past disturbances such as fire, insects,
or mistletoe (Abella and Denton, 2009). Stem-mapping of relatively
large sites allowed us to capture this microsite variability and better
understand how spatial patterns vary within each site as a function of
tree density. The sub-sampling results suggest that the range of tree
densities overlap between the two sites, meaning that some sub-areas
within the two sites share similar tree densities. The overlap between
sites occurred at tree densities between 35 and 65 TPH. Therefore,
within this overlapping range we can compare spatial tree patterns

Table 3
Comparison of average forest spatial pattern based on different tree densities
within Fort Valley and Long Valley. These average estimates are based on
conditions sampled within 1,000 simulations of each site sampled using 4-ha
plots within each simulated site.

Fort Valley
Total trees ha−1 20 40 60

Singles ha−1 7.5 7.3 6.0
% Singles 37.5% 18.3% 10.0%
Groups ha−1 4.2 8.0 9.3
Trees w-in Groups ha−1 12.5 32.7 54
% trees w/in groups 62.5% 81.8% 90.0%
Mean Group Size 3.0 4.1 5.8

Long Valley
Total trees ha−1 40 60 80
Singles ha−1 7.6 6.6 5.3
% Singles 19.0% 11.0% 6.6%
Groups ha−1 7.8 9.1 9.0
Trees w-in Groups ha−1 32.4 53.4 74.7
% trees w/in groups 81.0% 89.0% 93.4%
Mean Group Size 4.2 5.9 8.3

Fig. 8. Group size (number of trees group−1) distribution as a function of different tree density (trees ha−1) classes for (a) Fort Valley and (b) Long Valley based on
1,000 simulations models of the field data. Each graph is based on a 4-ha sample area within each simulation.
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between sites while controlling for tree density. Averaged results from
the simulations indicate that when tree densities are equal, the spatial
patterns are actually very similar between the two sites. For example, at
a density of 35 and 65 TPH, the difference between the two sites is less
than one single and one group ha−1 (Table 3). The percentage of trees
within groups is similar when TPH are equal and decrease at a similar
rate as tree densities increase at both sites. For example, at a TPH of 40
both Long Valley and Fort Valley average about 81% of trees within
groups, while at 60 TPH that increases to around 90%. The same syn-
chronous relationship applies to mean group size, which increases with
increasing tree densities (Table 3).

The within-site subsampling suggests that the differences in spatial
pattern observed between sites is actually a function of tree density
rather than site properties such as parent material or precipitation. That
is, each site showed high within-site variability in tree density, yet at
similar densities, spatial patterns were similar on the two sites. Likely
due to sedimentary soils and greater precipitation, a larger portion of
Long Valley had high tree densities compared to Fort Valley (Fig. 1).
However, when we examined spatial patterns at similar tree densities
on the two sites, the spatial attributes were very similar. These results
suggest that it is important to consider microsite variability within sites
and adjust spatial patterns according to the desired tree densities to
produce more heterogeneous and resilient landscapes (Churchill et al.,
2013).

4.3. Where do the “additional trees” go?

As tree density increases, we need to understand how “additional
trees” are distributed among singles and tree groups. In theory, the
additional trees could result in more singles, more groups, or larger
groups. Our field data indicated that despite large differences in total
tree densities, the two sites differed only marginally in singles and
groups ha−1. These results suggest that as the number of trees in-
creased, these additional trees integrated into existing groups (Fig. 7c)
rather than creating new groups. This pattern led to a general increase
in group size (Fig. 7d), hence fewer small groups and more large groups

at Long Valley (Fig. 8). Further, as groups become larger, they are more
likely to “merge” with other groups, creating the extra-large groups of
≥20 trees. This pattern is also apparent in the simulated data, where
tree density increases tend to result in an increase in the number of
large groups at both sites (Fig. 8). That is, areas with greater tree
densities tend to have group size distributions with “longer tails”. In
general, singles ha−1 marginally increase with increasing tree density,
whereas singles as a percentage of all trees drastically decrease with
increasing tree density (Table 3). For example, at low tree densities, up
to 50% of all trees are singles, but at high densities singles can account
for less than 10% of all trees (Table 3). This sizable difference in the
percentage of singles with increasing tree density has also been found in
other studies (Table 4) of tree spatial patterns (Brown et al., 2015).

4.4. Tree spatial patterns comparisons to other studies

Compared to other recent studies that have described tree spatial
patterns using trees and groups, our results have both commonalities
and new insights. In this study we have defined tree groups using an
ITD of 10m, however we have also included the same spatial metrics
based on a 6-m ITD (Table 4; Fig. 11). This information is useful for
comparing with other published studies as well as for considering
management implications. A number of studies have previously pro-
vided attributes on singles and tree groups in dry forests across the
western United States. All of these studies consistently report trees and
groups ha−1, yet there is no consistent use of other spatial metrics. For
example, Brown et al. (2015) also reported % trees within groups, while
Clyatt et al. (2016) reported % singles. To better understand general
trends in tree spatial patterns across these studies, we used the values
provided by these authors to calculate a standard set of spatial metrics
and facilitate comparisons among studies from different sites (Table 4).
Compared to these other studies, the tree densities we found at our two
sites are on the lower end of a continuum ranging from 25 to 170 TPH.
Contrary to our simulation results, the pattern among the literature
appears to show a general increase in both singles and groups ha−1

with increasing tree density, although these values are highly variable.
In relative terms, the proportion of trees within groups appears to in-
crease (and % singles decreases) as total tree densities increase
(Table 4). This pattern is identical to our findings based on the model
simulations (Table 3) and support the idea that spatial patterns are a
function of tree densities and are only indirectly related to site condi-
tions.

4.5. Open spaces

Similar to tree spatial metrics, our results show that empty space is
influenced by tree density. That is, Fort Valley had a greater percentage
of areas greater than 5m from a tree compared to Long Valley, where
higher tree densities made it difficult to find areas greater than 15m
away from a tree. In some ways the distribution of openings was the
inverse of the tree group size distribution. That is, the dominance of
singles and small tree groups allowed for a greater proportion of the

Fig. 9. Opening size distribution and proportion of the total area occupied by different sized openings within Long Valley and Fort Valley.

Fig. 10. Empty space distribution described as the distance from the nearest
tree (m) within Long Valley and Fort Valley.
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total area in large openings within Fort valley, where as the dominance
of large groups in Long Valley prohibited large openings. These and
other similar methods (Lydersen et al., 2013) are still subjective, in that
the user has to define what constitutes a large opening. These more
detailed methods, however are likely to be useful in development and
evaluation of treatment prescriptions.

The normal distribution of empty space across distances to nearest
tree we found at both sites is consistent with other studies that have
reported such values (Clyatt et al., 2016; Churchill et al., 2017; Matonis
and Binkley, 2018; Pawlikowski et al., 2019). This suggests that most of
the empty space within these frequent-fire forests was at distances be-
tween 5 and 15m from a tree. Functionally, gaps or areas 5–15m from
a tree are where most regeneration is likely to occur given that re-
generation is closely associated with distance to seed source (Owen
et al., 2017; Malone et al., 2018). These areas are also more likely to be
influenced by root competition and associated tree microclimates such
as shadows and snow retention (Boyden and Binkley, 2015). Con-
versely, openings or areas beyond 15m from a tree are likely to have
the greatest plant species diversity and more likely to restrict crown fire
spread (Matonis and Binkley, 2018). It is clear, however, that the
amount and distribution of empty space, gaps and openings is influ-
enced by tree density. That is, low density sites will have less area at
short distances from trees and more area at long distances from trees,
such as Fort Valley. In turn, this pattern also results in a greater pro-
portion of the area in large openings.

4.6. Limitations

One limitation of this study is that we sampled only trees that
were>40 cm DBH. Using this size cut-off likely underestimates tree
densities and may explain why the tree densities we report are gen-
erally lower than those reported for other ponderosa pine forests
(Table 4). White (1985) actually sampled age structure within a small
section of the Fort Valley site and cored yellow bark trees less than
37 cm DBH finding that half of the trees established under a frequent
fire regime (prior to 1880). This suggests that by excluding trees less
than 40 cm, we underestimated tree densities, while including yellow
bark<40 cm would overestimate tree densities. Another limitation of
this study is that we described tree spatial patterns, groups and gaps but
did not explore how these features developed or changed over time. We
could potentially explore such topics in the future by separating trees
into different size/age classes similar to other studies (Youngblood
et al., 2004; Boyden et al., 2005; Knapp et al., 2013). Such analysis
however, were beyond the scope of the current study. Finally, there is
also a need to further explore the minimum plot size required to capture
spatial patterns in this forest type. Our use of a 4-ha plot for the ana-
lyses allowed us to capture large tree groups and openings, but it is
possible that the spatial patterns could be captured with less effort in
smaller plots.

4.7. Management Implications

The 10-m ITD is best at defining trees and groups within mature
forests such as the sites sampled here. However, expecting the same tree

Table 4
Tree spatial patterns found in Long Valley (LV) and Fort Valley (FV) compared to other studies across the western United States that have reported spatial pattern
using metrics related to single trees and groups. The sites selected for this comparison were based on species composition similar to the sites sampled in this study and
are presented from increasing tree densities from left to right. Each column represents the results for a specific plot provided within a study as follows: FV and LV are
the same as provided in Table 2 except in this table those metrics are based on 6-m ITD. S1B and S1A were reported in Sánchez Meador et al. (2011), SCH was
reported in Schneider et al. (2016), PRE was reported in Tuten et al. (2015), HE19, HE20, and HA01 were reported in Brown et al. (2015), L1 (LOLO1), B2 (Bitterroot
2), B3 (Bitterroot 3) were reported in Clyatt et al. (2016); and LYS is based on 3 plots reported in Lydersen et al. (2013).

Site HE19 FV S1B LV S1A SCH L1 HE20 B2 B3 LYS PRE HA01

Trees ha−1 25 41 44 62 67 77 102 110 125 129 133 142 170
Singles ha−1 10 15 11 18 16 24 23 18 29 28 17 37 22
% singles 41% 37% 25% 30% 24% 31% 23% 16% 23% 22% 13% 26% 13%
Groups ha−1 14 26 10 31 11 18 46 20 49 54 23 27 22
Trees w/in groups ha−1 15 26 33 43 51 54 79 92 96 101 117 105 148
% trees w/in groups 59% 63% 75% 70% 76% 69% 77% 84% 77% 78% 88% 74% 87%
Mean trees per group 1.1 1.0 3.6 1.4 5.4 2.9 2.2 4.6 2.6 2.4 5.2 3.8 6.7
Max trees per group 5 11 12 27 19 7 15 27 16.3 11
Reference Year 1860 2009 1874 2009 1874 1883 1900 1860 1900 1900 1929 2015 1860
Min DBH (cm) 25 40 9.4 40 9.4 12.5 1.4 25 1.4 1.4 25 44 25
Inter-tree distance (m) 6 6 5.2 6 5.2 5.2 6 6 6 6 6? 5.2 6
Plot size (ha) 0.5 30 1 71 1 4 1 0.5 1 1 4 2.02 0.5

Bold numbers were reported within each paper. Italic numbers were not provided in the paper but were calculated based on the reported figures. Blank fields indicate
where data was not provided and could not be calculated.

Fig. 11. The distribution of trees among singles and groups of different sizes changes drastically depending on whether they are based on ITD of (a) 6-m or (b) 10-m
when comparing spatial patterns between Fort Valley and Long Valley. (Based on field data).
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spatial pattern after restoration treatments within a typical second-
growth fire-excluded forest would not be realistic because those trees
lack the large canopies found within our sites. Instead we would suggest
replicating the tree spatial pattern provided in Table 4 and Fig. 11a,
where we calculated the same tree spatial matrices, but using an ITD of
6 (Fig. 11), which better matches the actual maximum canopy radius of
immature forests.

Although no study has been conducted expressly to determine the
optimal plot size for sampling dry forests, the recent literature and our
own analysis (not presented here) suggest that 4-ha is the minimum
plot size to observe unique spatial patterns (North et al., 2007; Larson
and Churchill, 2012). One of the main advantages of larger plots is that
they allow us to capture a greater proportion of large tree groups (5+
trees) and openings. That is, these components are likely to be “cut off”
if smaller plots are used, unless they happen to be in the middle of the
plot. Similarly, we believe that attempting to replicate these spatial
patterns on the ground will be best served by creating heterogeneous
conditions at spatial scales of at least 4 ha because many of these spatial
metrics are difficult to interpret at the per hectare scale. For example, it
would be difficult to replicate 0.38 groups ha−1. Implementing these
spatial patterns at larger scales will also result in more heterogeneous
landscapes that incorporate both macro and micro-scale variability.

In regards to replicating these natural tree spatial patterns it is
important to emphasize single trees and the overall group size dis-
tribution of both tree groups and openings. The lack of a normal group
size distribution translates to a greater number of small tree groups and
openings. Conversely, although large tree groups and openings are not
frequent they actually account for a large portion of area and should
therefore by emphasized according to the desired density. Overall our
results suggest a range of conditions from a savanna matrix with small
group-tree islands and large openings in low density conditions to areas
dominated by large tree-patches and smaller openings in more dense
forests.

5. Conclusions

Based on stem maps from two large sites, each with different soil
parent material and precipitation, we conclude that these two sites
differed in terms of tree groups, gaps and openings. Overall, the more
productive Long Valley site had higher tree densities and slightly fewer

singles ha−1, but similar numbers of groups ha−1 compared to the Fort
Valley site. The most important difference between the two sites was in
regards to the tree group size distribution, where large (10–19 trees)
and extra-large (20+ trees) tree groups were more frequent in Long
Valley compared to Fort Valley. Another major difference was that the
largest group in Fort Valley included 22 trees, whereas a group of 113
trees was found in Long Valley.

Despite these overall differences between sites, sub-sampling of si-
mulated sites based on the field data showed high inter-site variability
with some overlap in the range of tree densities between the two sites.
Our simulated sub-sampling also showed that the spatial pattern
(groups and singles) varied according to tree density, with similar rates
of change between sites. Furthermore, sub-sites with similar tree den-
sities tended to have similar spatial patterns across both Long Valley
and Fort Valley. These results suggest that the overall differences we
observed between sites were due to differences in tree densities and
were only indirectly related to productivity. Tree densities vary at
macro and microscales due to both biotic and abiotic factors; therefore
spatial patterns should also be adjusted accordingly.

In general, areas with lower tree densities to have a greater pro-
portion of trees as singles, smaller tree groups and more open space
including gaps and larger openings. On the contrary, more productive
areas with higher tree densities will support a greater proportion of
trees in large and very large groups, with open spaces closer to trees and
smaller openings. Furthermore, these results suggest that it is important
to consider microsite variability within sites and adjust spatial patterns
according to the desired tree densities to produce the variation in
spatial patterns that characterized these old-growth forest remnants.
Managers can use this variation to create heterogeneous, and hence,
potentially more resilient, landscapes to better cope with an uncertain
climatic future.
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Appendix A. Evaluation of goodness of fit for the final model based on three metrics comparing observed and model-predicted spatial
point distributions: (a) G(r), the nearest neighbor distance function; (b) L(r), Besag’s transformation of Ripley’s K(r); and (c) g(r), the pair
correlation function, for Fort Valley and Long Valley spatial data sets.

Appendix B. Maximum canopy radius percent frequency distribution for tree canopies not intersecting another tree canopy in ponderosa
pine forest in Long Valley and Fort Valley sites in northern Arizona.
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Appendix C. Visual of areas dominated by tree canopies (5m from tree stem), gaps (less than 30m wide stem-to-stem) and openings
(opening at least 30m wide stem-to-stem) within Long Valley and Fort Valley.

Appendix D. Empty space defined as the distance to the nearest tree in both Long Valley and Fort Valley.
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Appendix E. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.foreco.2019.117502.
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