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Climate and land-use change are predicted to lead to widespread changes in population

dynamics, but quantitative predictions on the relative effects of these stressors have not

yet been examined empirically. We analyzed historical abundance data of 110 terrestrial

bird species sampled from 1983 to 2010 along 406 Breeding Bird Survey (BBS) across

the western USA. Using boosted-regression trees, we modeled bird abundance at

the beginning of this interval as a function of (1) climate variables, (2) Landsat-derived

landcover data, (3) the additive and interactive effects of climate and land-cover variables.

We evaluated the capacity of each model set to predict observed 27-year bird population

trends. On average, 45 species significantly declined over the period observed and only

8 increased (mean trend = −0.84%/year). Climate change alone significantly predicted

observed abundance trends for 44/108 species (mean 0.37 ± 0.09 [SD]), land-cover

changes alone predicted trends for 47/108 species (mean r = 0.36 ± 0.09), and the

synergistic effects predicted 59/108 species (mean r = 0.37 ± 0.11). However, for 37 of

these species, including information on land-cover change increased prediction success

over climate data alone. Across stressors, species with trends that were predicted

accurately were more likely to be in decline across the western USA. For instance,

species with high correlations between predicted and observed abundances (>r = 0.6)

were declining at rates that were on average >2%/year. We provide the first empirical

evidence that abundance models based on land cover and climate have the capacity to

predict the species most likely to be at risk from climate and land-use change. However,

for many species there were substantial discrepancies between modeled and observed

trends. Nevertheless, our results highlight that climate change is already influencing bird

populations of the western U.S. and that such effects often operate synergistically with

land-cover change to affect population declines.
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INTRODUCTION

Destruction of habitats through direct human exploitation is the
greatest contemporary cause of terrestrial biodiversity declines
(Newbold et al., 2015). Land-use is considered to be one of
the most important drivers of biodiversity, affecting patterns of
species diversity (Jetz et al., 2007), distributions (Wilcove et al.,
1998; Opdam and Wascher, 2004; Tingley and Beissinger, 2013;
Regos et al., 2018), and ecological processes (Dickinson et al.,
1991; Dale, 1997; Allan, 2004). However, the influence of recent
climate change is also exerting a clear influence on species’
populations and biodiversity (Parmesan, 2006; Both et al., 2009;
Gutiérrez Illán et al., 2014) and these effects are expected to
intensify over the coming decades (Thomas et al., 2004).

Until recently, the effects of these two anthropogenic stressors
have been considered in isolation, but there are strong theoretical
reasons to expect that they can interact synergistically to drive
biodiversity declines (Travis, 2003; Opdam and Wascher, 2004).
First, populations that are already in decline due to habitat
loss may be less likely to behaviorally adapt to climate change;
lower recruitment reduces the number of natal dispersers, and
therefore the potential for prospecting and colonization of newly
available habitat at the range edge (Holt and Keitt, 2000).
Second, fragmentation of native habitats can directly reduce
functional connectivity of landscapes (Taylor et al., 1993), thereby
preventing the potential for metapopulation persistence (Hanski
and Parmesan, 1999) and range shifting (Mair et al., 2014). Third,
loss or degradation of certain habitat types (e.g., forest) can cause
regional rainfall reductions, thereby intensifying negative climate
effects (Lawrence and Vandecar, 2015).

Unfortunately, the relative roles of climate and land-use
in affecting species distributions and population trends over
relatively short time periods (<50 years) is not well-known
(Mantyka-Pringle et al., 2012). It has been hypothesized that
climate influences distributions at broad scales and over the
long-term, whereas the influence of land-use is shorter term
and at finer spatial scales (Lemoine et al., 2007; Soberón, 2007).
However, this hypothesis has been difficult to test. Previous
efforts to understand the cumulative effects of climate and land-
cover changes on biodiversity have typically relied on a niche
modeling approach whereby current or past species distributions
are statistically linked to climate (Peterson et al., 2002a), land-
cover (Lawler et al., 2014), or both (Jetz et al., 2007; Ponce-Reyes
et al., 2013; Sohl, 2014). These associations are then projected
forward under various climate change and land-use scenarios
to provide estimates of species vulnerability. Changes in climate
and land-cover are implicitly assumed to cause change in species
ranges (Jantz et al., 2015), with potential impacts on natural
system functioning and ecosystem services (Botkin et al., 2007).

Several hurdles have limited empirical testing of these
projections. First, available past, current and projected land-
cover data are typically available only in coarse-resolution
human-defined categories (e.g., forest, agriculture, urban). These
categorical data may have little bearing on how individual species
are distributed across landscapes and often predict occurrence
poorly (Shirley et al., 2013; Betts et al., 2014). Further, vegetation
data must be at sufficiently fine resolutions to match the spatial

scales experienced by species (Wiens, 1989), but such data are
rarely available at broad spatial scales associated with species’
ranges and climate data.

Second, and most importantly, climate and land-cover tend
to be highly correlated over short time periods and broad
spatial scales; precipitation and temperature are well-known to
influence vegetation type and cover, which makes it challenging
to attribute the cause of species distributions to either climate
or land-cover change (Pearson and Dawson, 2003). Darwin
(1859) foreshadowed this problem over 150 years ago: “. . . When
we travel from south to north, or from a damp region
to a dry, we invariably see some species gradually getting
rarer and rarer, and finally disappearing; and the change of
climate being conspicuous, we are tempted to attribute the
whole effect to its direct action. But this is a very false
view . . . ”.

Accelerated rates of both climate (Karl et al., 2015) and land-
use change (Hansen et al., 2013) offer the potential to test the
independent roles of each of these factors in affecting population
trends. Though climate and land-cover are usually highly
correlated, this is not necessarily the case for changes in these
potential stressors; areas with the most habitat loss (e.g., tropical
forest; Hansen et al., 2013) have not necessarily experienced
the greatest accelerations in climate change (Chen et al., 2011;
Mantyka-Pringle et al., 2012). Temporal autocorrelation in
both climate and land cover are likely to result in overly
optimistic estimates of the role of these variables in driving
species abundance and distributions. Locations in the landscape
that have relatively high abundance in time t are likely to
still have high abundance in time t2. For example, predicting
long-lived tree species abundance distributions as a function
of climate variables and then testing these predictions on data
75 years later should result in a high degree of concordance
between predicted and observed distributions (Dobrowski
et al., 2011). Predicting population trajectories as a function
environmental change is substantially more challenging (Ehrlen
and Morris, 2015) because current population sizes provide
no information about the direction of future change (i.e.,
both large and small populations may increase or decrease).
Thus, if a model is successful at predicting population
change, it is more likely to reflect the drivers of species’
abundance distributions.

Here, we capitalize on this decoupling between climate and
land-cover changes to build models that predict the abundance
of 101 bird species over 27 years (1983–2010) in the western
United States as a function of climate, land-cover and their
combined effects. We then provide, to our knowledge, the first
empirical test of the degree to which predicted changes in
species abundances, as a function of land cover and climate,
reflect observed trends. Predicting animal numbers, rather than
distributions, is of critical importance because it is abundance,
rather than occupancy, that is the greater determinant of
extinction risk (Ehrlen and Morris, 2015). Specifically, we asked:
(1) Do land-cover, climate or their combined effects best predict
bird population trends over time? (2) Are there spatial “hotspots”
where declines or increases are more common across species? (3)
Are life history and/or ecological traits associated with sensitivity
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to climate vs. land-cover change? (4)Which species attributes are
associated with high vs. low-performing models?

MATERIALS AND METHODS

Study System
Our study system comprises the entire western Pacific portion of
the United States including California, Oregon and Washington.
Our study area covers latitudes from 32◦41’N to 60◦00’N
(∼3,000 km south to north) that is sufficiently large to include
the entire latitudinal (breeding) distribution of the majority of
the species considered (Figure 1). The region is characterized by
complex topography ranging from below sea level to 4394m.a.s.l.
and a gradient from oceanic to continental climates. Climate is
sufficiently diverse as to include broad land cover types ranging
from evergreen rainforest to desert. Temperature in the warmest
month (July) range from 17.9 to 44.3◦C and wettest month
(December) precipitation ranges from 11 to 490 mm.

Bird Data
Terrestrial bird species’ population data were derived from count
data collected as part of the USGS Breeding Bird Survey (BBS,
www.pwrc.usgs.gov/bbs, Sauer et al., 2011, 2017). These data have
been used widely in studies of bird distributions (Robbins et al.,
1986, 1989; Peterson, 2003; Gutiérrez Illán et al., 2014). The BBS
survey system consists of 39.4 km linear routes that are located
on secondary roads throughout the continental United States
and Canada. BBS data has been collected every May or June
(breeding season) since 1966 by trained surveyors that recorded
every species observed during 3min counts at 50 point locations
spaced at 0.8 km intervals along the route. The survey begins
soon after sunrise and surveyors record birds that are seen or
heard within 400m from each point, summing counts over all 50
points in a given year (Bystrak, 1981). BBS data provide an index
of population abundance at the scale of an individual route that
can be used to estimate trends in relative abundance at various
geographic scales. We selected bird species that were present in
more than 10% of sampling sites in the study system during the
selected time periods (to avoid extremely rare species), excluding
species whose distributionsmainly occur outside the study region
and those for which the region may not contain environmental
limits, respectively. Aquatic and coastal bird species were also
excluded because we did not expect the terrestrial-based BBS
routes to sample breeding populations of these species effectively.
In total, 108 species satisfied the criteria for analyses.

We used BBS data from 1983 (the origin of satellite-derived
land cover data for the region) to 2010. To reduce sampling
variation in abundance caused by observer and weather effects,
we considered two 5-year windows representing an early (1983–
86) and a later period (2006–10). To avoid possible “false
zeroes” in species counts, we only included routes that were
sampled in all years during each period (1980–84 and 2006–
2010). Abundance was the average number counted on a route
over the 5-year period. A similar approach has been adopted
in previous studies on species distributions that use BBS data
(Hitch and Leberg, 2007; Phillips et al., 2010; Gutiérrez Illán et al.,
2014). Finally, we also excluded from analyses those routes that

were so close to the ocean that their centroids were located in
the water, which would bias estimates of terrestrial climate. This
initial screening resulted in a dataset of 338 routes (Figure 1).

Climate and Land Cover Data
We obtained historical climate data generated by the Parameter
Regression of Independent Slope Model (PRISM) (Oregon
Climate Service, Corvallis, Oregon, USA) for the continental
United States (Daly et al., 2000, 2002). This dataset was
created using point meteorological station data, digital elevation
models, and other spatial data sets to generate interpolated
gridded estimates of monthly, yearly, and event-based climatic
parameters, such as precipitation, temperature, and dew point.
We used maps at a spatial resolution of 2.5-arcmin (∼3 km cell
size at this latitude) (Daly et al., 2002).

We selected a set of seven climatic variables previously
reported to be associated with bird species distributions,
reflecting conditions in the breeding season and during summer
and winter months when the most extreme conditions are likely
to be experienced (Green et al., 2008; Jiménez-Valverde et al.,
2011). The seven climatic predictors included in the models
were: average daily maximum temperature of the hottest month
in the study system (July), average daily minimum temperature
of coldest month (January) and total precipitation of wettest
(December), and driest month (July). The peak breeding period
for most birds in the study region is in June, so we also considered
maximum temperature, minimum temperature and precipitation
for this month.

We acquired continuous land cover data for the time
periods 1983–1987 and 2006–2010 at 30m pixel resolution using
Landsat7 (https://www.usgs.gov/land-resources/nli/landsat). We
used six visible spectral reflectance bands andNDVI (Normalized
Difference Vegetation Index) as independent variables in analysis
because our previous work has shown these to be effective
in predicting distributions of bird populations in this region
(Shirley et al., 2013) and change in reflectance is well-known
to be a measure of fine-scale vegetation change (Kennedy
et al., 2010) (Figure S1). NDVI and Landsat bands are known
to be influenced directly by climate (particularly moisture
availability). We therefore tested whether changes in reflectance
we observed in our study was indicative of true land-use change
(gleaned from disturbance maps available for the western US;
Kennedy et al., 2010). To test whether Landsat bands reflected
stand-replacing disturbance (i.e., major land-cover change) we
quantified whether reflectance changed for all bands in locations
that were known to have stand-replacing fire (N = 126) or
timber harvest (N = 462). We also included non-stand-replacing
disturbance insect damage (N = 58) and forest regrowth
following disturbance (N = 1460), and undisturbed ‘control’
sites (N = 880) for comparison. ‘Known’ sites were collected
manually by expert observers using high-resolution Google Earth
imagery and time series of Landsat images (Cohen et al., 2016).
Landsat signatures were taken in the year of disturbance in all
cases and all years following disturbance until 2010 for forest
regrowth. Landsat bands showed strong influences of stand
replacing disturbance and recovery in comparison to sites that
were not disturbed during the course of our study (Figure S1);
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FIGURE 1 | Study area map showing Breeding Bird Survey (BBS) routes across Washington, Oregon and California (A), along with finer-scale maps showing one

climate variable (June maximum temperature) (B) and one land-cover variable (normalized difference vegetation index [NDVI]) (C).

matched controls sites showed relatively little change between
randomly selected “pre” and “post” disturbance years.

Although all the images were chosen to represent the
growing season (July and August in the year of data origin),
factors such as seasonal phenology and atmospheric conditions
etc. can cause variability in spectral values across images
and years. We therefore conducted radiometric correction to
minimize the noise not related to ground conditions (Song
and Woodcock, 2003; Schroeder et al., 2006). The cosine–Theta
(COST) correction of Chavez (1996) was used to remove most
atmospheric effects for a single reference image in a given Landsat
time series (LTS) (after Kennedy et al., 2007; Shirley et al., 2013).

We summarized all climate and land cover variables within
1 km of BBS routes, the maximum distance within which birds
are likely to be detected in a survey (Betts et al., 2007). We took
the average value of climate variables across the 5 years in each
period. Similarly, themean and standard deviation (i.e., measures
of spatial heterogeneity) for the 6 spectral bands and NDVI were
summarized to produce the spectral variables. The full set of
predictor variables included in the analyses is listed in Table S1.

Statistical Analyses
Model Development
We built models using the “gbm” package in R (R Development
Core Team, 2010) for Boosted Regression Trees (BRT) analyses,
which have been widely used for climatic envelope models
(Randin et al., 2009; Veloz et al., 2012). BRTs are a type
of machine-learning method that combines the strength of
regression trees and boosting; that aims to fit a single
parsimonious model. Generalized Boosted Models (GBMs)
combine many simple models to give improved predictive
performance and provide the capacity to include different types
of predictor variables and to accommodate missing data. BRTs

exhibit high prediction performance while minimizing the risks
of overfitting (Elith et al., 2006). In addition, they are sufficiently
flexible to include non-linear relationships and interactions
between predictors (Elith et al., 2008), which makes them
particularly appropriate for examining combined and synergistic
effects of climate and land cover change. We generated three
sets of BRTs to predict bird abundance: (1) Climate-only models,
(2) Land-cover only models, and (3) Combined climate-land-use
models. The latter of these model sets allowed for interaction
between climate and land-use variables. We used the following
default settings for each of our BRT models: tree complexity =

5, learning rate = 0.01, bag fraction = 0.9. When these settings
did not result in 1,000 or more trees, we decreased the learning
rate incrementally until 1,000 or more trees were obtained
(Elith et al., 2008).

Species abundance models are well-known to suffer from
potential biases caused by imperfect detection (MacKenzie et al.,
2003; Kery, 2011). However, we did not account for detection
in our modeling strategy for four reasons. First, BBS data are
not collected using the repeated temporal sample structure
required for occupancy modeling (MacKenzie et al., 2003).
Second, to date, no machine learning methods (e.g., BRT)
exist that account for imperfect detection. Machine learning
methods such as BRT enable the fitting of complex structures
(non-linearities, interactions) that are too computationally
challenging for an occupancy framework. Thirdly, “occupancy,”
after accounting for imperfect detection, is a latent variable
and, therefore, impossible to validate on independent data
because the “true” state of independent data are unknown
(Welsh et al., 2013). Finally, as our primary objective was
SDM validation, and the same search effort was applied
to every transect in both time periods, this approach was
therefore unnecessary.
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Model Evaluation
To evaluate models, we first quantified original model fit. Here,
we tested the correlation between model fitted predictions for the
first time period

(
n̂t1

)
(1983; hereafter “historical abundance”)

and the observed data (nt1). We then tested the degree to
which our models could predict changes in abundance across
the two time periods; Projected abundance change (1̂n) was
calculated as:

1̂n = n̂t1 − n̂t2 (1)

where n̂t2 is the projected abundance in the second time period,
given changes in climate or land-cover. Finally, we tested the
correlation (ρ1) between (1̂n) and 1ni, the observed change
in abundance

ρ1 = n̂i∼1ni (2)

Transect routes where a species was absent in both time
periods were excluded to avoid the possibility that statistical
fits might be exaggerated (large numbers of points with near-
zero predicted change and zero change observed). We used
Spearman rank correlations coefficients (ρ) between predicted
and observed population change values because observed count
numbers were low for almost all species on some routes
(leading to deviations from normality), and because some species
showed non-linear relationships between predicted and observed
abundance changes (after Gutiérrez Illán et al., 2014). We
also tested for correlations between observed and predicted
abundance using Pearson’s r, but results were not substantively
different, so here we report only Spearman ρ, which is a more
conservative test.

FIGURE 2 | Boxplot showing Spearman correlations for all species between

model fit and independent test data (10-fold validation) for the same time

period in which models were built (1983–1987). Models predicting bird

abundance generally performed well when not projecting across time periods.

Spatial Autocorrelation
One of the most common criticisms of the species distribution
models is spatial autocorrelation of results, which could lead
to spurious relationships and thus, to infer wrong conclusions
(Beale et al., 2008). Spatial autocorrelation can influence the
reliability of biogeographic analyses, particularly based on sample
sites separated by short geographic distances (Algar et al.,
2009). We tested for spatial autocorrelation in residuals of both
presence-absence and abundance models using correlograms
(Moran’s I; Fortin et al., 1990; Betts et al., 2006).

Life History and Ecological Trait Analysis
We tested whether life history and ecological traits influenced
overall model performance across predictor variable sets. Model
performance for each species was quantified as above (the
correlation between observed and predicted abundance [ρ])
Because migratory bird species are more likely to be influenced
by phenological mismatches with arthropod prey than resident
birds (Both et al., 2009), we included ‘migratory strategy’ and
diet preferences as life history predictors of whether species
abundances were best predicted by climate change. Given that
many factors occurring during migration and wintering could
influence migratory bird populations, we also expected migrants
to be more poorly predicted overall than residents. We tested the
effect of several variables representing a “slow-fast” continuum
(i.e., reproductive output, longevity; Owens and Bennett, 2000)
onmodel performance. Species with “fast” life histories should be
expected to track changes in climate or land-cover more rapidly
than those with “slow” strategies. Finally, we were interested
in the degree to which our models were associated with long-
term population trends of western birds. Larger numbers of
propagules should afford populations the potential to settle
newly available habitats, thus enhancing model performance.

We tested the effects of life history traits on overall model
performance (ρ1) and whether life history traits could predict
sensitivity of a species to climate vs. land-use change (ρ1lc),
we used generalized linear mixed effects (GLME; nlme package
[Pinheiro et al., 2014]) models and phylogenetically independent
contrasts (PIC) in the R package APE (https://cran.r-project.
org/web/packages/ape/ape.pdf) (Paradis, 2015). Both of these
methods take into account lack of independence among species
caused by phylogenetic structure. First, we used GLMEs fit using
maximum likelihood and Akaike’s Information Criterion for
small sample sizes (AICc; “drop 1” command in R) to reduce
the full model (all life history and ecological traits above) to
the most parsimonious model. We specified taxonomic family
as a random effect. However, this approach does not account
for lack of independence at finer and coarser taxonomic levels
(i.e., order, genus). We therefore tested the statistical significance
of individual model parameters in top-ranked models using
Phylogenetically Independent Contrasts (PIC). We obtained
phylogenetic information from Jetz et al. (2012) from www.
birdtree.org.

RESULTS

Overall, climate, land-cover, and combined models all described
bird species abundances with some accuracy; correlations
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FIGURE 3 | Spearman correlations (ρ1;here ’r’) for relationship between predicted and observed abundance changes for 108 terrestrial bird species of the western

U.S. (1980–2010). Predictions were derived from boosted regression tree models using either Climate data, Land-cover data or both (Land-cover x Climate). Solid

and open circles represent statistically significant (α = 0.05) vs. non-significant correlations, respectively. Each species is only depicted only for the change element

(climate, land-cover, land-cover x climate) that best predicted abundance change. See Table S3 for English and scientific names. Bars reflect 95% confidence

intervals from 1000 model runs.

between predicted and observed bird data in the 1980s time
period were high (climate ρ = 0.74 [0.28–0.99], land-cover ρ =

0.75 [0.12–0.98], combined ρ = 0.82 [0.25–0.99] (Figure 2).
Predicting trends in bird abundance over the 30-year period

was more challenging; changes in climate significantly predicted
observed abundance trends for 44/108 species (ρ1 = 0.37 ±

0.09 [SD]) and land-cover changes alone significantly predicted
trends for 47/108 species (ρ1 = 0.36 ± 0.09). Land-cover
trend predictions were rarely superior to climate models; only
8 species had statistically significant observed trend correlations
that were best predicted by land-cover. However, the synergistic
effects of climate and land-cover significantly predicted trends for
59/108 species (ρ1 = 0.37 ± 0.11) and for 37 of these species,
including information on land-cover increased trend prediction
success over climate data alone (Figure 3). We rarely detected
significant spatial autocorrelation in residuals of observed vs.
predicted trend correlations (Figure S2) and the magnitude of
autocorrelation was consistently low (Moran’s I < 0.2).

Life History Traits
The top predicting model performance as a function of
life history and demographic traits included only foraging

preference, model type (i.e., climate, land-cover or both) and
BBS population trend (Table 1). This model had considerable
support in relation to competing models (AIC wi = 0.96,

Tables S2,S4). Across stressors, species with trends in
decline across the western U.S. were more likely to have

accurate estimates of abundance trends (Figure 4). For
instance, species with high correlations between predicted

and observed abundances (>r = 0.4) were declining at rates

that were on average >5% /year (β̂ = −0.019± 0.007 SE,
P=0.021). On average, 45/108 species (41.6%) significantly

declined over the period observed and only 8 increased (mean

trend=−0.84%/year).
Model type was also strongly associated with prediction

success; after accounting for population trend and foraging
preference, combined climate–land-cover models consistently

outperformed those with only climate or land-cover variables;

correlations between observed and predicted abundance
changes (ρ1) were 0.09 (±0.03 SE) higher for models
including land-cover and climate variables vs. climate
variables alone (Table 1). Finally, abundance changes of
seedeaters were consistently more challenging to predict
than insectivores. Model performance was not strongly

Frontiers in Ecology and Evolution | www.frontiersin.org 6 May 2019 | Volume 7 | Article 186

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Betts et al. Synergistic Effects of Climate and Land-Cover Change

TABLE 1 | Parameter estimates from phylogenetically independent contrasts (PIC)

for the influence of life history and ecological traits on the capacity of models to

predict bird abundance changes (ρ1).

β̂ SE t P

(Intercept) −0.003 0.017 −0.188 0.8511

BBS Trend −0.023 0.008 −2.668 0.0089

Model type: C x L 0.098 0.030 3.309 0.0013

Foraging (seeds) −0.059 0.032 −1.835 0.0694

Abundance changes were more effectively predicted for species with declining trends

(BBS Trend; see Figure 3) and with a foraging preference for insects rather than seeds.

Further, species best predicted by the interacting effects of climate and land-cover

variables (C x L) tended to have higher correlation coefficients than those best predicted

by climate or land-cover alone.

associated with a migratory life history strategy (PIC : β̂ =0.026
[0.035 SE], P = 0.45).

Hotspots for Bird Abundance Change
The spatial distribution of population trends varied strongly
across species, as might be expected given the diversity in
life history traits and habitat associations that we examined.
This prompted us to “stack” prediction maps across species to
enable us to examine spatial consistency in predicted declines
and increases across species (i.e., “hotspots”). Only species with
a statistically significant relationship between predicted and
observed abundance change were mapped. Also, we only counted
species as increasing or decreasing if one standard deviation of
mean predicted abundance change along a route did not overlap
zero. We then summed the number of species with predicted
decreases (−1) and increases (+1) for each pixel to yield a map
of net species abundance change (Figure 5). For example, a pixel
with 6 declining species, but 10 increasing species would have a
net abundance change of+4.

Overall, net abundance change tended to be more negative
in the southwestern US (i.e., southern California), and in
topographically simple areas at both lower (e.g., the Mohave
desert) and higher elevations (e.g., the plateau east of the
Washington Cascades). Bird populations of the Oregon Coast
Range andWillamette Valley seemed relatively buffered from the
effects of climate and landcover change (most species increased)
(Figure 5). BBS routes with increasing Landsat band 4, an
indicator of deciduous vegetation growth (Shirley et al., 2013),
also tended to have an increased number of species with positive
population trends (net trends ∼ band 4: r = 0.19, p = 0.0002).
Also, stable or increasing July precipitation seemed to result in
fewer bird population declines than if July precipitation had
declined (net trends∼ July precipitation: r = 0.33, p < 0.0001).

DISCUSSION

Accurate models for predicting future changes in species
distributions and population trends are essential for
understanding the effects of global change and in policy
development (Mazziotta et al., 2015; Thomas, 2017; Titeux et al.,
2017). Such models are particularly relevant considering that the

FIGURE 4 | Relationship between BBS population trend (%/year 1980–2014)

and model prediction success. On average, abundance changes of declining

species were better predicted than those with stable or increasing populations

(β̂ = −0.019± 0.007 SE, P = 0.021).

Earth is likely experiencing a sixth mass extinction event, mostly
due to anthropogenic factors (Barnosky et al., 2011; Ceballos
et al., 2015; Thomas, 2017).

Considerable efforts have been made in recent years to
assess the effects of the diverse aspects of global change on
the ecosystems (Pearson and Dawson, 2003). However, most
of these studies focused on the evaluation of each component
of global change in isolation (Keith et al., 2014; Ostberg et al.,
2015; Pacifici et al., 2015, but see Marshall et al., 2018). Changes
in climate and land use may exert a greater joint effect on
ecosystems biota and ecosystem services than when considered
individually (Gutiérrez Illán et al., 2012; Mantyka-Pringle et al.,
2012; McCauley et al., 2015; Anteau et al., 2016). If this is
the case for most species, predictions about the real effects of
anthropogenic global change, regardless of their spatio-temporal
scale, may have been underestimated (Stanton et al., 2012).
This is why it is surprising that most projections of future
species distributions for different parts of the planet are primarily
based on climate change scenarios, without taking into account
land-use change (e.g., Bakkenes et al., 2002; Peterson et al.,
2002b; Thomas et al., 2004), let alone the synergistic effects of
climate and land use. Thus, there is a pressing need to develop
species distribution models that reflect and predict the impact
of these potentially synergistic factors. In the present study, we
examined the potential synergistic effects of climatic and land-
cover change factors on populations of 108 bird species of the
Pacific Northwest in North America over the last three decades.
To our knowledge, ours is the first study to formally test the
prediction success of land cover and climate models using a
model-validation forecasting approach.

Frontiers in Ecology and Evolution | www.frontiersin.org 7 May 2019 | Volume 7 | Article 186

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Betts et al. Synergistic Effects of Climate and Land-Cover Change

FIGURE 5 | Stacked (summed) regional trend maps showing “hotspots” for (A) number of species declining, (B) number of species increasing, and (C) net numbers

of species increasing or decreasing across all species with statistically significant correlations between predicted and observed abundance changes. Hotspots for

declines tended to be associated with decreases in precipitation, whereas hotspots for population increases were associated with increases in Landsat band 4—a

reflectance associated with recovery from disturbance and deciduous vegetation.

Our results indicate that future and observed effects of global
change on avian biodiversity in the Pacific Northwest may be
greater than the sum of the effects caused by climate and land-
use changes separately. As expected, the inclusion of land-cover
change improved the capacity of our models to estimate bird
abundance in a single time period. If such models were validated
using only data from the same place and time, it is possible
that inclusion of more variables simply resulted in overfitting.
Indeed, our results from cross-validation in the same time period
(1983–86) showed relatively high model performance (Figure 2).
However, our most rigorous validation tested whether models
could predict species abundance trends, a muchmore challenging
task. For 37 species, including land-cover information improved
abundance change predictions.

Overall, synergistic effects of climate and land-cover were
able to significantly predict abundance changes for more than
half of the analyzed species (59 out of 108). Although this is
cause for some optimism, it is important to note that modeled
predictions for 45% of species did not even significantly correlate
with observed changes. Such a result should temper existing
unvalidated projections about species responses to climate and
land-cover change (e.g., Thuiller et al., 2004; Jetz et al., 2007,
Ponce-Reyes et al., 2013; Sohl, 2014; Jantz et al., 2015). This
underscores the reality that even though a model may be well-
validated in a single place and time (e.g., via cross-validation), or
even in different regions (Betts et al., 2006), this is not necessarily
an indication that models will effectively predict future trends.

The relatively low explanatory power of our models in relation
to previous studies could stem from the following: (i) most of the
studies have looked at occupancy predictions, which constitutes
only a pseudo-validation. Predicting actual trends is a much
more challenging task (Regos et al., 2018). (ii) The spatial scale

at which the species’ responses to changes in climate and land-
use change occur are undoubtedly finer resolution than we were
able to measure with current data (e.g., microclimate under
canopy, fine-resolution habitat associations, cold-air pooling,
etc.; Frey et al., 2016; Betts et al., 2018). Mismatches between
predictions and reality likely stem from missing key climate
or habitat variables that were perhaps initially correlated with
the variables used in the analysis, but have become decoupled
over time (for example, perhaps a fine-scale habitat feature
such as cavity trees were associated with a certain reflectance
band in time t, but this is no longer the case in time t +1).
(iii) There are obviously other factors, well known to influence
populations (e.g., dispersal, species interactions, disease), that
were not included in our models.

It is reassuring, to some extent, that the capacity of our models
to predict bird population changes was improved for species with
declining, rather than increasing, populations. This indicates
that we may have a better idea about population stressors for
species of potential conservation concern, which at least offers
the potential for management actions to reverse declines. We
hypothesize that this finding results from the rather deterministic
process of decline and local extinction of species if the climate
changes to exceed the species’ niche. However, colonization and
population increases in a landscape may be more dependent on
less predictable processes that are often a function of landscape
configuration such as dispersal (Gustafson and Gardner, 1996).
Thus, species with expanding ranges and populations may be
inherently more difficult to predict.

Life History and Ecological Traits
Surprisingly, foraging behavior was the only ecological or life
history trait that could predict model performance. Our models
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were able to predict trends of insectivores more accurately than
seedeaters. When there is a difference in model performance
between species traits, we are always tempted to explain it on
the basis of a better, or rather more complete, environmental
predictors for that particular group of species. For example,
climate envelope models for resident species, that spend all
their entire life cycle in the study system, could be expected
to show a greater predicting ability than those for migrant
species (Kerr et al., 2015). Interestingly, most migrant passerines
in our dataset are migratory insectivores (Logistic regression:
χ2 =16.62, β̂ =1.64 (0.41 SE), P < 0.0001), so absence of
information about wintering ground climate and land-cover
changes did not seem to adversely affect model performance in
relation to resident species that spend their entire life cycle within
the study system.

Implications for Management
Climate change is already exerting a substantial impact on
bird populations of the Pacific Northwest (Gutiérrez Illán
et al., 2014; Betts et al., 2018; Northrup et al., 2019). Overall,
climate variables tended to have more effect on populations
than land-cover variables. This is possibly because land-use
change in the NW has still been relatively minor over the time-
period observed, due partly to sweeping policy implemented
in 1993 which precluded clear cutting of old growth forest on
federal land (Phalan et al., 2019). Before strong conclusions
can be made about the relative effect of climate vs. land-
cover change on biodiversity, it will be critical that the current
study be replicated in regions that have experienced severe
land-cover change over the past 30 years (e.g., Borneo, Congo
Basin; Betts et al., 2017); we predict that in such instances
land-cover would exert a much stronger and unambiguous

effects, in relation to climate, on the abundance of birds in
such regions.
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