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Paleoclimate reconstructions are increasingly used to characterize annual climate variability prior to the
instrumental record, to improve estimates of climate extremes, and to provide a baseline for climate-
change projections. To date, paleoclimate records have seen limited engineering use to estimate hydro-
logic risks because water systems models and managers usually require streamflow input at the monthly
scale. This study explores the hypothesis that monthly streamflows can be adequately modeled by sta-
tistically decomposing annual flow reconstructions. To test this hypothesis, a multiple linear regression
model for monthly streamflow reconstruction is presented that expands the set of predictors to include
annual streamflow reconstructions, reconstructions of global circulation, and potential differences among
regional tree-ring chronologies related to tree species and geographic location. This approach is used to
reconstruct 600 years of monthly streamflows at two sites on the Bear and Logan rivers in northern Utah.
Nash-Sutcliffe Efficiencies remain above zero (0.26–0.60) for all months except April and Pearson’s cor-
relation coefficients (R) are 0.94 and 0.88 for the Bear and Logan rivers, respectively, confirming that the
model can adequately reproduce monthly flows during the reference period (10/1942 to 9/2015).
Incorporating a flexible transition between the previous and concurrent annual reconstructed flows
was the most important factor for model skill. Expanding the model to include global climate indices
and regional tree-ring chronologies produced smaller, but still significant improvements in model fit.
The model presented here is the only approach currently available to reconstruct monthly streamflows
directly from tree-ring chronologies and climate reconstructions, rather than using resampling of the
observed record. With reasonable estimates of monthly flow that extend back in time many centuries,
water managers can challenge systems models with a larger range of natural variability in drought
and pluvial events and better evaluate extreme events with recurrence intervals longer than the observed
record. Establishing this natural baseline is critical when estimating future hydrologic risks under condi-
tions of a non-stationary climate.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

While grappling with the question of how future climate
changes will affect the likelihood and severity of hydrological
extremes (floods and droughts), hydrologists, engineers, and
water-resources planners have noted the potential for streamflow
reconstructions to characterize pre-industrial hydrologic variabil-
ity over multiple centuries (Bonin and Burn, 2005). By combining
reconstructions of the past with climate change projections, it
may be possible to place the signal of climate change-induced
streamflow trends in the context of long-term natural variability.
In addition, streamflow reconstructions can significantly increase
the number of scenarios used for drought vulnerability studies or
water resources systems optimization. Despite these potential
benefits, streamflow reconstructions have not gained widespread
use in water systems analysis, in part because flow has typically
been reconstructed at an annual resolution, which is generally
too coarse for analysis of drought vulnerability and decision-
making. This study explores whether monthly streamflows can
be adequately predicted from annual tree-ring chronologies and
other reconstructed data. To confirm this, we outline and test a
novel statistical method to reconstruct monthly flow series.

Existing techniques for annual streamflow reconstruction pri-
marily rely on linear regression to relate carefully chosen tree-
ring chronologies to mean annual flow (MAF) during the available
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instrumental record. This relationship is then applied to the full
tree-ring record to reconstruct flows outside the observed period
(Loaiciga et al., 1993; Cook and Kairiukstis, 2013). Tree-ring
chronologies are carefully developed by selecting sites and species
in which the reconstruction variable is the limiting factor for tree
growth. Multiple replication samples are often taken for each tree
and these measurements across many trees at a given site are com-
bined to generate a master site ring width, through a process called
crossdating, whereby common features in the chronology are
matched (Fritts, 2012; Douglass, 1941). The resulting chronologies
can be linked to climate variables either through simple linear
regression (Duvick and Blasing, 1981), multiple linear regression
(Meko et al., 1980), or more complex approaches.

More complex reconstruction approaches often rely on Princi-
pal Component Analysis (PCA) to extract differences/commonali-
ties across multiple site chronologies and tree species to better
capture regional variations (Cook et al., 1994; Hidalgo et al.,
2000; Maxwell et al., 2011) or seasonal effects (Brubaker, 1980).
Meko et al. (2015) showed that flow reconstruction accuracy can
be improved by using PCA and regression to combine chronologies
from traditional reconstruction species and less traditional species
which capture unique climate signals.

Reconstruction approaches assume that processes relating cli-
mate to tree-ring growth during the instrumental record are iden-
tical to the reconstructed period (Fritts, 2012). This Principle of
Uniformatism has been slightly modified in modern den-
drochronology to separate the important climate signal from
underlying factors affecting tree growth (Cook, 1987). Unifor-
mitism is particularly important for flow reconstructions, where
river reaches should be selected to avoid significant man-made
effects. Alternatively, the effects of impoundments or land use
change can be removed from the time series to approximate a
near-natural flow record. Annual streamflow recontructions have
been produced for regions with adequate tree-ring chronologies
(Meko et al., 2001; Woodhouse et al., 2006) and have been used
for water resources planning, e.g. Woodhouse and Lukas (2006)
and Axelson et al. (2009).

Despite the availability of annual streamflow reconstructions,
few methodologies currently exist to reconstruct sub-annual flow
from annual resolved tree-ring chronologies (Gangopadhyay
et al., 2015; Sauchyn and Ilich, 2017). The Sauchyn and Ilich
(2017) approach uses stochastic hydrology techniques to generate
many feasible sequences of weekly flows that sum to the annual
reconstruction while maintaining statistical properties of the
observed record. The Gangopadhyay et al. (2015) approach instead
resamples annual subsets of temperature and precipitation from
the instrumental records and matches them to tree-ring widths
in the paleo-record using a K-nearest neighbor approach repeated
many times to develop an ensemble of temperature and precipita-
tion timeseries (Gangopadhyay et al., 2009). Temperature and pre-
cipitation are then used as inputs for a water balance model
(Wolock and McCabe, 1999). This method has been used to gener-
ate seasonal streamflow in Nevada (Solander et al., 2010) and
monthly streamflow along the Colorado River (Gangopadhyay
et al., 2015). While useful for generating runoff in well-studied
watersheds, this approach requires a calibrated watershed model
that is not always available. Additionally, by resampling from the
observed record, the potential monthly time series of temperature
and precipitation are limited to re-ordering �60–100 observed
annual subsets from the instrumental record. While this may be
an effective approach for some locations, it is highly desirable to
develop methods to reconstruct monthly streamflow directly,
without the need for watershed models and the limitations of
repeated resampling.

To test the hypothesis that monthly streamflow can be recon-
structed from annual tree-ring chronologies, this study introduces
a novel approach for reconstructing monthly streamflow that
extends fundamental principles of flow reconstruction and then
demonstrates these models by reconstructing flow and evaluating
goodness of fit for two sites in northern Utah. The candidate mod-
els include a simple Monthly Fraction (MF) model, an Annual Per-
centile (AP) model that directly links annual flow percentile with
monthly percentile, and an Annual Percentile with Regression
(APR) model that uses multiple annual reconstructions to predict
the monthly percentile. Several versions of the APR model are con-
sidered, each adding increasing predictors which include: 1) the
original annual streamflow reconstructions; 2) climate reconstruc-
tions of the El Niño-Southern Oscillation (ENSO); and 3) regionally
available tree-ring chronologies. Regional tree-ring chronologies
were included as predictors based on the hypothesis that different
species, elevations, and site locations might capture different parts
of the seasonal hydrologic signal, whereas ENSO was considered
because it has shown coherence with streamflow and precipitation
in the western U.S. and Utah (Cayan et al., 1999; Schoennagel et al.,
2005; Wang et al., 2012; DeFlorio et al., 2013; Zhou et al., 2014).
The paper further evaluates and discusses model results in the con-
text of individual predictors, their physical basis, and implications
for water management.

2. Models

Three model frameworks are introduced in this study as poten-
tial candidates for the reconstruction of mean monthly streamflow.
The MF model uses simplistic assumptions to reconstruct monthly
streamflows and is included as a ‘‘null” model, against which the
other models can be compared. The remaining two models consti-
tute the primary approach proposed herein and are presented in
order of increasing complexity, each applying the same basic
framework, but with increasing numbers of predictors. First, the
AP model directly links the reconstructed annual streamflow per-
centiles to monthly percentiles, using the assumption that the
monthly percentile is constant and identical to the reconstructed
annual percentile throughout each water year. Second, the APR
model estimates monthly percentiles using regression, first consid-
ering only lagged annual streamflow percentiles and ultimately
incorporating additional predictors such as global climate indices
(ENSO) or spatial/species patterns in regional tree-ring chronolo-
gies extracted by PCA. The models and fitting procedures are avail-
able as an R package, paleoAPR (Stagge, 2017), while the code and
data for the specific analyses performed in this paper are available
in an online repository athttps://doi.org/10.5281/zenodo.1029739.

2.1. Monthly fraction (MF) model

The MF model assumes that the monthly proportion of total
annual streamflow (TAF) is identical across all years. Based on this
assumption, the monthly fraction, �f m;y, is determined for each
month by dividing the monthly flow volume, Qm;a, by annual vol-
ume, TAFy. In this notation, ‘‘m” and ‘‘a” subscripts correspond to
monthly and annual steps, respectively. TAF is equivalent to
12�MAF. Monthly streamflow is then reconstructed by multiply-
ing the appropriate mean monthly fraction, �f m, for each of the 12
months by reconstructed TAF:

bQm ¼ �f m � TAFa; where �f m ¼
Pn

a¼1f m;y

n
and f m;a ¼

Qm;a

TAFa
ð1Þ

where bQm represents estimated monthly streamflow. Monthly
flows reconstructed by the MF model retain the same seasonal
shape, but are scaled linearly. For example, if an average of 30% of
each year’s historical flow volume occurred during June, this pro-
portion is maintained in the reconstruction. Prior to performing

https://doi.org/10.5281/zenodo.1029739
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reconstruction, the 12 f m values were re-scaled to sum to 1, to
ensure monthly flows would recreate the original MAF reconstruc-
tion. The mean f m was used to represent the monthly fraction,
rather than the median, which made little difference in the case
study results.

2.2. Annual percentile (AP) model

The AP model forms the base for all subsequent reconstruction
models. It assumes that the streamflow percentile for each month
is equivalent to the MAF percentile for the particular water-year.
That is, if a given year’s MAF is in the 20th percentile, then the mean
flow for each month of that water-year was also the 20th per-
centile, determined by the cumulative probability distribution of
flow for each month. Because subsequent models depend on a
Gaussian distribution, we transformed the percentile (0–100) to a
standard normal value (�1 to 1), represented by the variable N:

bNm ¼ Na ð2Þ

where bNm is the estimated monthly standard normal and the sub-
scripts m and a again represent monthly and annual values of the
normalized streamflow percentile.

For use in the AP model, a univariate probability distribution
was fit to the MAF and each of the monthly mean flows to permit
transformation to and from the standard normal distribution. Non-
parametric alternatives, such as empirical cumulative distribu-
tions, were not considered because they limit the ability to extrap-
olate beyond the original data. Annual and monthly cumulative
distributions were fit based on Maximum Likelihood Estimation
(MLE) using the fitdistrplus package in R (Delignette-Muller and
Dutang, 2015). Candidate distributions were visually compared
using skewness-kurtosis plots (Cullen and Frey, 1999) evaluated
with 500 nonparametric bootstrap realizations. Final selection of
candidate distributions was further validated based on Akaike
information criterion (AIC), quantile plots, and results of
Kolmogorov-Smirnov and Anderson-Darling tests. Statistical distri-
bution tests were based on 5000 bootstrap simulations, thereby
avoiding the issue of applying tests where parameters are esti-
mated from the data (Crutcher, 1975).

2.3. Annual percentile with regression (APR) model

The APR model has the same fundamental structure as the AP
model without enforcing a 1:1 relationship between the annual
and monthly standard normal values. Instead, a unique regression
model for each month was fit, which estimated that month’s
streamflow percentile based on a number of potential predictors.
This regression approaches uses similar principles as other multi-
ple linear regression reconstructions (Meko et al., 1980; Cook
et al., 1994; Hidalgo et al., 2000). It is designed to be flexible so
that, in future studies, any variable with a demonstrated climate
effect could be considered as a predictor.

Three APR models of increasing complexity are considered in
this study. The first uses only the standard normal of the lagged
percentiles from the annual streamflow reconstruction:

bNm;0 ¼ b�1Na;�1 þ b0Na;0 þ bþ1Nþ1 ð3Þ

where bNm;0 represents monthly standard normal, as in Eq. (2), and
Na;�1; Na;0, and Na;þ1 are annual normalized percentiles for the pre-
vious, concurrent, and future water years, respectively. The associ-
ated b values are model coefficients fit using the regression
approach described below. Transformation to standard normal val-
ues, rather than percentiles, was done to permit regression with
standard, normal residuals. The model described in Eq. (3) is
referred to as the APR model with lagged predictors. It can be
viewed as a temporal disaggregation of the original annual recon-
struction, using no additional data. The lagged regression approach
alleviates the need to explicitly define the most appropriate water-
year bounds, as it is naturally derived based on predictive power.

The second and third variants of the APRmodel incorporate pre-
dictors outside the original annual reconstruction. The second
model adds two reconstructions of the ENSO climate index, while
the third model adds regional tree-ring principal components.
These are referred to as ‘‘APR with Climate Indices” and ‘‘APR with
all predictors”, respectively, with the full ‘‘APR with all predictors”
model taking the form:

bNm;0 ¼ b�1Na;�1 þ b0Na;0 þ bþ1Nþ1 þ bENSO ENSOþ
X8
j¼1

bj PCj ð4Þ

where additional predictors for ENSO and regional tree-ring princi-
pal components are included as bENSO and bj, respectively.
3. Methods

3.1. Mean annual reconstructions

The candidate monthly reconstruction approaches were applied
at two sites with previously published annual streamflow recon-
structions in the Bear River watershed of northern Utah. Flows in
this region are snowmelt-dominated, with the majority of annual
precipitation falling in the form of winter snow. The two sites were
located on the Logan River and in the upper Bear River. Both recon-
structions (Allen et al., 2013; DeRose et al., 2015) used similar
methods to reconstruct the MAF based on the USGS water-year
of Oct-Sep.

The Bear River is located in the Intermountain U.S. and is the
single largest river in the eastern Great Basin. It drains portions
of northeastern Utah, southwestern Wyoming, and Southeastern
Idaho, with its headwaters located in the Uinta Mountains. The
Bear River is the largest tributary to the Great Salt Lake, providing
approximately 60% of its annual inflow. The annual flow recon-
struction for the upper Bear River is based on the instrumental flow
record from USGS gauge 1011500 (1942 CE-present). This gauge is
located near the furthest upstream Utah-Wyoming border and
includes flow contribution from a 445 km2 watershed along the
north slope of the Uinta mountains. Flow at this site contributes
approximately 8% of the total Bear River flow. Flow at this site is
considered near-natural, as it is upstream of major diversions, with
only a single, small storage reservoir located upstream. The tree-
ring predictor data used to reconstruct MAF was based on a nearby
Utah juniper (Juniperus osteosperma) chronology. The reconstruc-
tion (DeRose et al., 2015) covered the period 800-2010 CE, and
explained 67% of annual variation (R2 = 0.672).

The Logan River is the largest tributary to the Bear River and
drains 1389 km2 of the Bear River Range in northeastern Utah
and southeastern Idaho. The MAF reconstruction (Allen et al.,
2013) is based on USGS gauge 10109001 (1922 CE – present),
which captures the near-natural upper portion (554 km2) of the
Logan River watershed prior to impoundments and diversions near
the city of Logan, Utah. The reconstruction covers the period from
1605 to 2010 CE. Two reconstruction models were used, one ter-
med the Local Model that relied on two Rocky Mountain juniper
(Juniperus scopulorum) chronologies located within the Logan River
watershed and another termed the Regional Model that also incor-
porated a two-needle pinyon (Pinus edulis) chronology from north-
central Utah and a limber pine (Pinus flexilis) chronology from
western Wyoming. The Regional Model showed better skill (R2 =
0.581) than the local model (R2 = 0.482), but both reconstructions
were considered for this study.
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3.2. Global circulation index predictors

Global circulation indices are one of the variables which could
be included in the APR model framework. For these sites, two
reconstructions of the El Niño-Southern Oscillation (ENSO,
Trenberth, 1997) were considered as potential predictors. ENSO
is the dominant mode of interannual climate variability on Earth
and has a documented effect on the climate of North America
(DeFlorio et al., 2013; Zhou et al., 2014), and Utah in particular
(Cayan et al., 1999; Schoennagel et al., 2005). These reconstruc-
tions do not directly measure ENSO, defined by sea surface temper-
ature in the southern Pacific Ocean, but rather capture its signature
on tree-ring growth over large regions known to be affected by
ENSO. In this way, including reconstructions of ENSO provides a
broader sample of tree-ring chronologies to help characterize the
spatial variability of interannual water balance.

The first ENSO reconstruction, described in detail by Li et al.
(2011), is based on the leading Principal Component (PC) of the
North American Drought Atlas, a reconstruction of annually
resolved summer (JJA) Palmer Drought Severity Index (Cook
et al., 1999). The leading PC of this reconstruction is most corre-
lated with the January-March (JFM) ENSO Nino3 index (r = 0.51)
and uses this relationship to extend the ENSO record back to 900
CE. Loading for the Li et al. (2011) reconstruction is centered on
the American southwest, with northern Utah at the extreme north-
ern range of strong loading values. By comparison, the Li et al.
(2013) ENSO reconstruction uses tree-ring chronologies from
seven broad climate regions surrounding the Pacific Ocean, includ-
ing three in North America, two in South America, two in Asia, and
one in New Zealand. This reconstruction captures a different por-
tion of the ENSO signal and is best correlated with a region further
west in the southern Pacific Ocean (ENSO Nino3.4 index) during
the previous November-January (NDJ). The larger archive of tree-
ring chronologies used by Li et al. (2013) produces a better esti-
mate during the observed period (r = 0.80), but only extends back
to 1300 CE. Because their different underlying tree-ring chronolo-
gies capture different parts of the ENSO signal (geographic extent
and season), these reconstructions are considered complementary
to one another. They are included here to demonstrate the flexibil-
ity and potential for including large-scale climate index recon-
structions, particularly in regions with known teleconnections.
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3.3. Tree-ring chronology analysis

The final set of potential reconstruction predictor variables are
based on regional tree-ring chronologies (49 chronologies located
within a maximum 450 km radius of the reconstruction gauges).
All tree-ring sites had limited soil development and occurred on
southerly or westerly aspects, occupying open canopy positions.
Chronologies included seven different species: Douglas-fir (Pseu-
dotsuga menziesii), two-needle pinyon (Pinus edulis), singleleaf pin-
yon (Pinus monophylla), limber pine (Pinus flexilis), ponderosa pine
(Pinus ponderosa), Utah juniper (Juniperus osteosperma), and Rocky
Mountain juniper (Juniperus scopulorum). Tree-ring indices (ie,
chronologies) were developed using the same approach for each
site using the dplR package (Bunn, 2008). Individual tree-ring ser-
ies were detrended using a cubic-smoothing spline with a fre-
quency cut-off of 50% at a wavelength of 2

3 of the length of the
time-series to remove variability potentially associated with stand
dynamics or biological growth trends. Tree-ring series were then
averaged using a robust biweight mean. Autocorrelation was
retained in the resultant tree-ring chronologies. Preliminary analy-
sis (not presented) showed that correlation between monthly flow
percentiles differed across selected tree-ring chronologies, sug-
gesting that different chronologies could be used to highlight
unique portions of the seasonal hydroclimatic signal. Such findings
have been noted in previous studies, such as Brubaker (1980),
which showed that the first two principal components of regional
tree-ring chronologies explained different summer and winter pre-
cipitation responses and were related to varying species (Douglas-
fir and ponderosa pine).

Regional tree-ring chronologies were selected to include a range
of species, elevations, and locations in an effort to highlight the
most important factors for predicting seasonal flow. Because
tree-ring chronologies can be highly correlated, Principal Compo-
nent Analysis (PCA) was used to isolate unique differences in
response, reducing the chronologies to a smaller set of orthogonal
Principal Components (PCs) that explain a majority of the original
tree-ring variance. The number of retained PCs was based on the
Kaiser-Guttman criterion (Kaiser, 1960; Guttman, 1954), defined
as PCs with eigenvalues greater than 1, and by identifying a signif-
icant change in variance explained through a scree plot. These
stopping criteria are thought to slightly overestimate the number
of retained components (Jackson, 1993), which is desirable in the
context of maximizing seasonal variability across multiple
chronologies.

The regional tree-ring chronologies have varying lengths, pri-
marily due to differences in their earliest measurements (800–
1763 CE) (Fig. 1). Traditional PCA requires a fully defined data
matrix and therefore would require a trade-off, either removing
short chronologies to lengthen the time series or producing PCs
beginning in 1763 CE based on the common period. To avoid this
limitation and to capture potentially valuable information in the
shorter chronologies, missing values were imputed using the mis-
sMDA package (Josse et al., 2016) in R prior to PCA analysis. The
number of components was determined by 10-fold cross-
validation, minimizing mean squared error (MSE) across 100 sim-
ulations (Josse and Husson, 2012). Missing values were imputed
using an iterative algorithm which cycles between estimating
missing values and recalculating PCs until the observed and fitted
values converge. PC scores were calculated in this way for a 600
year duration and compared to loadings derived from traditional
PCA using approximately 400 (1610 CE, 36 chronologies) and
600 year (1390 CE, 19 chronologies) subsets, selected based on
inflection points in chronology availability (Fig. 1). A third cut-off
point at 900 years was initially considered, but dismissed because
the number of available time series (4) was less than the optimal
number of PCs to retain. The imputed PCA results did not signifi-
cantly change results and was therefore used for all subsequent
analysis. The Logan and Bear River sites were located close enough
to each other that the same PCA scores were used for both
locations.
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3.4. Model fitting

Each of the model variants were fit based on USGS stream gauge
data, calculated by accumulating daily flows to determine mean
monthly flow. Models were fit using the paleoAPR package in R
(Stagge, 2017). The entire observed period (7/1942 to 9/2016 for
Bear River and 10/1921 to 9/2015 for Logan River) was used as
the dependent variable for fitting the models. For each site, two
reconstruction models were generated, the first using the true
observed MAF as training data and the second using the recon-
structed MAF. The model using observed MAF provides an upper
envelope for model performance, given perfect input data, while
the model using reconstructed MAF provides an estimate of model
fit that can be expected for the full reconstruction.

The APR models were the only reconstruction models in this
study that rely on regression. Regression fitting was performed
using elastic nets (Zou and Hastie, 2005), chosen as an alternative
to traditional step-wise Ordinary Least Squares regression used in
previous reconstructions (Cook et al., 1994; Hidalgo et al., 2000).
Elastic nets are designed to solve issues with stepwise regression,
reducing overfitting while also handling high dimensional data
with multi-collinearity. This is accomplished by blending ridge
regression (Hoerl and Kennard, 1970) and LASSO (least absolute
shrinkage and selection operator) regression (Tibshirani, 1997;
Tibshirani, 1996) using a term, a, that can range from 0 (ridge
regression) to 1 (LASSO regression). Blending these models combi-
nes the benefits of each: ridge regression is effective at reducing
overfitting and handling highly related predictors, while the LASSO
approach can perform variable selection by shrinking non-
significant coefficients to zero. Ridge and LASSO regression use
similar approaches that seek to minimize the sum of mean squared
error along with a penalty term. The penalty terms are the primary
difference between the approaches, using either the square of
model coefficients,

P
b2 in ridge regression, or the absolute value

of the model coefficients,
P

bj j in LASSO regression. The penalty
is then multiplied by a shrinkage parameter, k.

Calibration and validation of the APR models was performed by
tuning the blending, a, and shrinkage, k, terms in the elastic net
regression. The best parameter set was chosen from a grid search
of a 10� 100 a� k grid using 10-fold cross-validation, repeated 8
times with random selections, with RMSE as the selection criterion.
This produces effective validation and variable selection simulta-
neously because as the a approaches 1 (LASSO regression) and
the k penalty increases, non-significant variables are removed from
the regression by setting them to zero.

The APR model assumes that reconstructed flow percentiles
should approximate the standard normal distribution, with a mean
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Fig. 2. Monthly flow proportion relative to mean annual
of 0 and variance of 1, during the reference period. This assumption
follows from the univariate probability distributions which were
defined using flows during the reference period and are ultimately
used to convert monthly flows into the standard normal, and vice
versa. To guarantee that reconstructed flow normals during the ref-
erence period approximate the standard normal, a post-processing
step was added to the APR model to correct the mean and variance
for each month, extending this correction across the full
reconstruction.
3.5. Model goodness-of-fit

Goodness-of-fit was evaluated using a suite of tests and mea-
sures during the common reference period of 10/1942 to 9/2015,
to allow for equal comparisons across the two sites. These
goodness-of-fit measures included mean error (ME) to estimate
systematic model bias, mean absolute error (MAE) and root-
mean-squared error (RMSE) to estimate the residual magnitudes,
measures of parametric (Pearson, R) and non-parametric (Spear-
man, RSpearman) correlation, and Nash-Sutcliffe Efficiency (NSE) to
estimate overall model predictive power. In addition, residual
and time-series plots were generated to allow for visual inspection
of residual patterns or timing issues that might not be captured by
these metrics (McCuen et al., 2006; Criss and Winston, 2008).
Finally, model fit was evaluated for each month separately using
the same goodness-of-fit metrics and residual plots. This allowed
for a more detailed review of model performance, particularly in
months with low flow, which could otherwise be obscured by high
flow periods in the full time series.
4. Results

4.1. Monthly fraction (MF) model fitting

Estimation of the MF model required only the calculation of the
mean monthly proportion of flow. The Logan and Bear River sites
showed similar seasonal patterns, with strong seasonality and flow
peaks in the summer caused by delayed melting of the winter
snowpack (Fig. 2). Fig. 2 presents all available years, with the mean
monthly fraction used for reconstruction shown as a dark line.
Logan River (Fig. 2a) had a higher proportion as baseflow and more
gradual rising and falling limbs around a peak which occurred in
May or June. The Bear River (Fig. 2b) had a more drastic seasonal
peak flow, that predominantly occurred in June and occasionally
May.
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4.2. Annual Percentile (AP) model fitting

The primary model fitting task for the AP model was to deter-
mine the best cumulative probability distribution for the MAF
and each of the monthly flows. For both sites, skewness-kurtosis
plots recommended the use of a gamma distribution for monthly
flows and a logistic distribution for MAF. Choice of these distribu-
tions was further supported by low AIC values and non-significant
tests for violations of the candidate empirical cumulative distribu-
tions. The logistic distribution used for annual flows was nearly
Gaussian, but with slightly thicker tails, while the gamma distribu-
tion used for monthly flows accounted for the positively skewed
nature of monthly flows combined with a lower bound at zero.

4.3. APR model with lagged annual reconstructions

The APR model with lagged annual flows reconstruction was
equivalent to a temporal disaggregation of the original reconstruc-
tion and required model coefficients for the effect of the lagged
(�1, 0, +1) annual standard normal values on each of the monthly
normalized percentiles. The resulting fit (Fig. 3) showed that the
importance of the reconstructed annual flow, quantified by the
coefficient, transitions between the reconstructed flow from the
previous year (�1) to the concurrent year (0) for both locations.
For the Logan River (Fig. 3a), this transition was gradual. The cross-
over point occurred in March, while the highest model coefficients
occurred during the peak and falling limb of the seasonal hydro-
graph (June through September), before being carried over into
the next water-year. The Bear River had a much more abrupt tran-
sition (Fig. 3b) between the previous water-year, which explained
October through March, and the concurrent water year, which
explained monthly flow from June through the end of the water
year. As expected, the future (+1) water-year reconstruction had
little to no predictive power for monthly flows.

4.4. Tree-ring chronology analysis

From the imputed regional tree-ring dataset, which included all
49 chronologies (Fig. 1), 8 PCs were retained based on minimizing
MSE from repeated 10-fold cross-validation. This result was similar
to the result from a traditional PCA and a smaller (36 chronologies)
dataset, which recommended retaining 8 PCs based on the Kaiser-
Guttman criterion. As expected, the smaller 600-year, 19-
chronology dataset had a smaller range of species and sites, which
resulted in the retention of only 5 PCs. Retaining 8 PCs with impu-
tation was therefore deemed reasonable.

In all tests, the first PC (PC1) explained a large proportion of the
total variance, from 38.4% in the imputed dataset to 33.9% and
Fig. 3. APR model coefficients for concurrent and lagged (
35.7% in the 400- and 600-year datasets, respectively. The propor-
tion of variance explained by subsequent PCs fell after PC1, from
7.8% to 2.7% between PCs 2 and 8, and ultimately explained
73.1% of the total variance. Loadings for the imputed dataset were
nearly identical to loadings from the traditional PCA based on spa-
tial and species patterns, which further validated the imputation
scheme.

While a total of eight PCs were considered as predictors, focus
was given to the first five, as these represented a majority of the
explained variance. PC1 was the only PC where all chronologies
loaded in the same direction (Fig. 4). Because of this common pat-
tern and the relatively large variance explained, PC1 appeared to
characterize the general dry or wet state of the entire region. Load-
ing for PC1 was dominated by Douglas-fir from low-elevation sites
(Fig. 4). However, this does not mean that Douglas-fir was neces-
sarily best at capturing the region’s hydroclimatology. For exam-
ple, both annual reconstructions (Allen et al., 2013; DeRose et al.,
2015) originally considered Douglas-fir chronologies, but instead
relied on other species that better explained MAF. Instead,
Douglas-fir likely dominated PC1 because they have good predic-
tive skill, and were the best represented species (43%) among the
available chronologies, covering the largest spatial extent.

While PC1 explained regional hydroclimatology and a major
portion of the variability among all chronologies, subsequent PCs
captured smaller spatial and species-specific patterns and devia-
tions from the larger climate signal (Fig. 4). PC loadings are shown
spatially and by species in Fig. 4 and were summarized as:

� PC1: General hydroclimatology, as captured by Douglas-fir at
lower elevations

� PC2: Dipole between Bear River Douglas-fir and Southern Utah
pinyon/ponderosa pine

� PC3: High-elevation sites, dominated by two limber pine and
two Douglas-fir chronologies

� PC4: East/west dipole between Utah juniper species andWyom-
ing Douglas-fir/limber pines

� PC5: Dipole between juniper sites near the Logan River and a
singleleaf pinyon site in the Great Basin.

Subsequent PCs (Supplemental figures) become more site-
specific and explained less variance.

4.5. APR model with additional reconstructions

More complex APR models were fitted, first adding ENSO
indices to the lagged annual flow reconstructions, and then adding
regional tree-ring PCs, termed ‘‘all predictors”. Model coefficients
for the lagged annual flow reconstruction had nearly identical
�1, +1) years at the (a) Logan and the (b) Bear rivers.
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shapes as those presented in Section 4.3 and Fig. 3, with a transi-
tion from the prior year’s reconstruction to the current year, cross-
ing in spring (March-May). This transition was more gradual for
the Logan River and more dramatic for Bear River.

The Logan and Bear River sites had broadly similar responses to
the two ENSO reconstructions. At both locations, ENSO 3.4 recon-
structed using Pacific Ocean proxies (Li et al., 2013) produced a
negative response, beginning in January (Fig. 5). This effect contin-
ued throughout the winter, spring, and summer for the Logan River
(Fig. 5a), while its effect was absent during the spring for the Bear
River reconstruction (Fig. 5c). The negative sign of this coefficient
suggests that estimated flows at both sites should be decreased
when November through January ENSO 3.4 reconstructed by Paci-
fic proxies is strongly positive, and vice versa. ENSO3 as quantified
by tree-rings from the North American Drought Atlas (NADA) (Li
et al., 2011) amplified the effect of the Pacific Proxies during March
and April, but contributed an opposite effect during the summer
(June through August) (Fig. 5a and c). See Section 5.2 for a more
detailed discussion of these model predictors.

For both sites, PC1 had an insignificant effect as a predictor
within the APR model. The only significant regional tree-ring pre-
dictor during the fall (October-December) was PC3 (Fig. 5b and d).
During the winter, PCs 6 and 7 provided additional information
for both sites. PC4 was the most important component during
the winter for the Bear River site (Fig. 5b), but does not appear in
the Logan model (Fig. 5d). Spring showed little consistency among
PC coefficients at both sites. Several regional tree-ring signals were
important during the summer, with components 2, 5, and 7 provid-
ing the largest andmost consistent effects at both sites (Fig. 5b and d).
PC8 displayed a unique effect during the summer, with a strongly
negative coefficient for the Logan River site and a weakly positive
coefficient for the Bear River site. Lagged PC effects were initially
considered, using lags of �2 to +2 years, but were ultimately
Fig. 5. Model coefficients for the Logan River (a and b) and the Bear River (c and d). Globa
the right (b and d).
removed due to weak explanatory skill and concerns about over-
fitting.
4.6. Goodness-of-fit

The APR model with all predictors produced the best fit across
all goodness-of-fit measures, which included analyses of the full
time-series, monthly fit, residual patterns, and visual inspection.
Considering the full time-series, goodness-of-fit improved for
nearly all measures (MAE, RMSE, NSE, R) with increasing numbers
of parameters, except for mean error (Table 1). Correlations (R) for
the APR model with all predictors and the observed MAF was 0.97
for the Logan River and 0.96 for the Bear River. This represents an
assumed best possible fit, given that observed annual flows were
exactly known. In all cases, using annual flows reconstructed from
tree-rings lowered the goodness-of-fit, decreasing R to 0.93 and
0.94, for the Logan and Bear Rivers, respectively. For many fit mea-
sures, as additional parameters were added to the model, not only
did the overall fit improve, but the gap between observed annual
flows and reconstructed annual flows decreased. The MF model
is unique in that it excelled at minimizing ME, i.e. systematic bias,
but tended to perform only moderate well to poorly for other
measures.

Goodness-of-fit at the monthly scale provided more detailed
information about model performance. Using the NSE as a good-
ness of fit measure, it was clear that the MF and AP models have
little predictive power (NSE < 0) for much of the early water year,
from October until late winter or spring (Fig. 6). The MF model per-
formed particularly poorly during this period. There was a rapid
increase in model skill during May and June, when the majority
of annual flow volume occurred (Fig. 2). The MF and AP models
performed similarly during this period, with the MF model
l circulation indices are shown on the left (a and c), while tree-ring PCs are shown on



Table 1
Annual goodness of fit for Logan River. ME represents mean error, MAE represents mean absolute error, RMSE represents root mean squared error, NSE represents Nash-Sutcliffe
Efficiency, R represents Pearson correlation, and RSpearman represents Spearman’s rank correlation.

Model MAF ME (m3/s) MAE (m3/s) RMSE (m3/s) NSE R RSpearman

MF Observed 0.008 1.30 2.00 0.896 0.950 0.870
AP Observed 0.082 1.16 1.87 0.910 0.957 0.880
APR + Lags Observed �0.004 1.02 1.70 0.924 0.963 0.913
APR + Clim Ind Observed �0.032 1.00 1.67 0.928 0.964 0.913
APR + All Predictors Observed �0.026 0.94 1.62 0.932 0.966 0.925

MF Reconstructed 0.007 1.70 2.83 0.794 0.893 0.857
AP Reconstructed �0.088 1.66 2.93 0.779 0.888 0.846
APR + Lags Reconstructed �0.033 1.59 2.91 0.781 0.890 0.885
APR + Clim Ind Reconstructed �0.035 1.52 2.73 0.808 0.903 0.890
APR + All Predictors Reconstructed �0.008 1.35 2.35 0.858 0.928 0.902
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performing slightly better for reconstructed annual flows (Fig. 6b
and d). NSE remained high for the remainder of the water year.

Removing the pre-defined water year in the APR model with
lagged annual reconstruction predictors represented the largest
structural improvement among the models (Fig. 7). Improvement
by the APR model occurred primarily during the early part of the
water year, from October until March or April (Fig. 7). April was
unique in its consistently poor reconstruction skill across all
models.

Expanding the APR model to include global climate indices and
regional tree-rings produced smaller, but still significant improve-
ments in model fit. The largest improvements occurred in the Bear
River, where inclusion of these additional predictors improved fits
Fig. 6. Nash-Sutcliffe Effici
for all months, though still showing relatively poor fits during the
spring season (Fig. 6d). Fit for the Logan River was quite good with-
out these additional predictors, with the most noticeable improve-
ment occurring during the difficult spring months and the summer
(Fig. 6b). Fit during October through January on the Logan River
site remained relatively low in quality, though still much improved
over the AP or MF models. When the model predictors were added
successively (Fig. 7), the ENSO reconstructions provide a smaller
incremental improvement than the regional tree-rings.

A sample of the historical reconstruction for both sites is pre-
sented in Fig. 8, highlighting a period of severe regional drought
during the 1730s CE (Woodhouse and Brown, 2001). The entire
reconstructed timeseries is available online athttp://www.
ency (NSE) by month.

http://www.paleoflow.org
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paleoflow.org. By instead focusing on the observed period and visu-
ally comparing reconstructed to observed flows (Fig. 8b), it was pos-
sible to confirm the good fit of the APR model and to identify
structural errors in theMF and APmodels. In theMF and APmodels,
the transition between water years was not smooth and sometimes
produced drastic jumps in flow, particularly between years with
very different annual reconstructed flow, such as between 1961
and 1962 CE on the Logan River (Fig. 8b). This shift from a dry to
wet year produced a sudden increase in flow at the water year tran-
sition,prior to thehighflowperiodrecorded in theobservations. This
type of error was not present in the APR models due to the smooth
transition between annual reconstructions. Including all predictors
in the APR model smoothed annual transitions and improved the
Fig. 8. Reconstructed flows at the Logan River site for subsets of the (a) historical and (b)
River site.
fit and shape of the rising and falling hydrograph limbs (Fig. 8b
and d), despite only producing a modest improvement in monthly
and annual fit metrics. This finding was further supported by
reduced residuals formediumand lowflows in the non-peak season
when using regional tree-rings and global climate indices.

Without post-processing, the regression equations often
reduced the variance of the estimated monthly flow normalized
anomalies. The resulting variance ranged from 0.24 to 0.91 across
all months, with median values of 0.71 and 0.66 for the Logan and
Bear River sites, respectively. This resulted in underestimation of
extreme high flows and overestimation of extreme low flows.
Increasing variance to 1 through post-processing greatly improved
the fit for extreme flows and the resulting flow distribution, while
slightly decreasing overall goodness of fit.
5. Discussion

5.1. Reconstruction model comparison

Of the models proposed in this study, the APR model provides
the most favorable measures of goodness-of-fit. This model pro-
duces NSE greater than zero (0.26–0.60) for all months except April
and Pearson’s correlation coefficients (R) are 0.94 and 0.88 for the
Bear and Logan Rivers, respectively, confirming that the model can
adequately reproduce monthly reference period flows. Goodness-
of-fit decreases slightly when using reconstructed MAF, rather than
observed MAF, but this decrease is minor and reasonable given the
challenge and potential benefit of reconstructing centuries of
streamflow at a monthly scale.

The MF model is the simplest approach, but it makes a strong
assumption about seasonal flows, namely that the hydrograph
shape is constant and thus independent of annual flow. Because
of this assumption, the MF model accurately captures flows during
the peak, but tends to produce errors in timing and magnitude for
observed periods, and the same for (c) historical and (d) observed periods at the Bear

http://www.paleoflow.org
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all other parts of the year. This is particularly an issue for low flows,
which are scaled linearly with annual flow. This assumption is not
reasonable because groundwater sources typically provide a buffer
to extreme low flows. Additionally, theMFmodel produces artifacts
at the transitions between water years. The only metric for which
the MF model excels is mean error, a measure of consistent model
bias. This is because the MF model relies on the seasonal mean pro-
portion, which in turn ensures that reconstructed flows are evenly
distributed around mean flows, even if accuracy is poor.

The AP model addresses the issue of hydrograph shape, allow-
ing the shape to change with annual flow percentile, but it retains
the limitation of applying the same percentile across the entire
water-year. This also produces calculation artifacts at the water-
year transitions and scaling errors that propagate backwards in
time from the peak season. This results in little or no predictive
power prior to the peak flow season. Another potential limitation
of the AP approach is the potential for generating negative flows
if the univariate distribution used to transform flows does not have
a lower bound. Here, we have prevented this by selecting a distri-
bution that is strictly positive.

The introduction of regression in the APR model provides the
most significant improvement in reconstruction quality. With this
improvement, the gap in NSE decreased between models using
reconstructed MAF and models using observed MAF. Models using
observed MAF have perfect flow estimates at the annual scale and
were therefore considered the likely maximum goodness-of-fit. For
the sites examined here, using a flexible regression approach
allowed fall and winter low flows to retain information from the
prior flow peak, rather than depending on the peak flow yet to
occur. Adding additional predictors, such as global climate indices
and regional tree-ring signals provides further model improve-
ment, particularly in difficult to reconstruct months. Regional
tree-rings were the second most important set of predictors, fol-
lowed by global climate indices, defined here by two ENSO recon-
structions. When considering the use of these models for other
sites, the modeler must consider the potential trade-off between
improved model fit and reconstruction length because the recon-
struction will be limited by the length of the shortest reconstruc-
tion. The approach provided here attempted to minimize this
limitation for the set of regional tree-rings through a process of
PCA imputation.

It should be noted that correlation (R) values shown here for the
full time series are not directly comparable to R values from annual
reconstructions because some of the variance explained is due to
capturing the seasonal pattern of flows. Still, the R values are
exceptionally good and further supported by excellent model skill
measured for individual months.

The APR model had difficulty modeling flows at both sites dur-
ing the months of April and May. During these months, all coef-
ficients for external predictors were either set to zero or the
coefficients became large and opposed. These are the two
opposed behaviors of LASSO and ridge regression, respectively,
within the elastic net framework as one or the other attempts
to handle poor predictive skill. For the Bear River in particular,
none of the reconstructed climate indices or regional tree-ring
chronologies showed any predictive capabilities in April, includ-
ing the lagged annual reconstruction. This is likely because April
and May occur at the beginning of the snowmelt season when
minor changes in temperature near 0 �C and solar radiation can
produce large changes in snowmelt, runoff, and flow. Rapid
changes in temperature that likely drive snowmelt timing and
amount are unlikely to be directly captured in growing season
ring-width indices such as those used in this study. For future
implementations of the APR model, it will be important to con-
sider additional climatic predictors to help improve the explana-
tion of spring snowmelt timing.
5.2. Interpretation of model predictors

In addition to providing the best model fit, the inclusion of
external predictors in the APR model provides an opportunity to
explore the effect of global teleconnections and regional hydrocli-
matology on local streamflow as a form of validation. However, it is
important to note this study was not designed to test these links or
to isolate their effects. All predictors were considered simultane-
ously in the APR model and therefore, if the effect of a given driver
is accounted for by another measure, it would not appear to be sig-
nificant. For instance, if the effect of ENSO is already accounted for
in the annual MAF reconstruction or modeled better by the regio-
nal patterns of tree-rings, it would not appear in the final model.

The canonical understanding of ENSO effects on western U.S.
climate is that positive ENSO index values are associated with a
warmer, drier winter in northern states and a wetter, cooler winter
in the south (Cayan et al., 1999; Redmond and Koch, 1991). The
Logan and Bear River sites are situated near the geographic transi-
tion between the drier north and wetter south impacts of positive
ENSO (DeFlorio et al., 2013; Zhou et al., 2014). However this tradi-
tional understanding of the teleconnection does not always hold
because it can be modified by other, more local effects. Addition-
ally, recent studies have questioned ENSO’s effect across large por-
tions of the western U.S. (Malevich and Woodhouse, 2017). For all
of these reasons, ENSO was screened as a potential predictor along-
side regional and local tree-rings using multiple regression.

The APR model results associated with the Li et al. (2013) recon-
struction using Pacific Ocean proxies were consistent with prior
studies (Allen et al., 2013; Cayan et al., 1999; Redmond and
Koch, 1991; Kurtzman and Scanlon, 2007). The Logan River exhib-
ited a negative relationship to ENSO due to its northern location
which began in the winter and continued throughout the year.
The Bear River site’s more southern location exhibited only a minor
winter response. While the lack of strong ENSO relationship in the
Bear River reconstruction can partially be attributed to its latitude,
its unique orientation in the watershed may also play a role. The
Bear River site is located along the north slope of the Uinta Moun-
tains, the most prominent east–west-oriented mountain in the
United States, and which exceeds elevations of 4,000 m. This large
mountain range receives substantial winter snow due to oro-
graphic effects on Pacific westerlies and can block or redirect
southern storm tracks.

Both sites showed a consistent and opposite response during
summer to the ENSO3 reconstruction based on the NADA summer
Palmer Drought Severity Index (PDSI) reconstruction (Li et al.,
2011). Based on the summer effect, which coincides with the
underlying NADA summer (JJA) reconstruction, we hypothesize
that the contribution of the Li et al. (2011) reconstruction is more
strongly related to capturing some of the NADA tree-ring signal
than truly measuring an ENSO3 teleconnection on summer flows.
It should be noted that ENSO winter effects for both reconstruc-
tions are slightly delayed from their ENSO definition. Li et al.
(2013) reconstructs ENSO3.4 during November through January
and this reconstruction enters the flow model in January, while
Li et al. (2011) reconstructs ENSO3 for January through March
and enters the flow model in March and April. This provides
greater confidence that there is a true influence rather than mod-
eling noise.

The Pacific Decadal Oscillation (PDO, Mantua and Hare, 2002)
was initially considered as a third predictor because it has a
demonstrated link to northern Utah climate over the recent
observed climate record, particularly when considered in conjunc-
tion with ENSO (Wang et al., 2009b; Wang et al., 2009a). Inclusion
of a PDO reconstruction predictor (Biondi et al., 2001) increased
model fit significantly during the fall; however this teleconnection
was ultimately excluded from this study because other PDO
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reconstructions show little agreement – and thus high uncertainty
– outside the observed period (Newman et al., 2016). Further,
MacDonald and Case (2005) concluded that while ENSO recon-
structions showed a persistent effect on northern Utah climate,
the multidecadal variability of the PDO for the past two hundred
years has not been stable. Therefore, while future studies could
examine the link between Logan and Bear River flow during fall
and tree-rings along the west coast of the United States and Mex-
ico, it was deemed too uncertain for consideration here.

Regional tree-ring predictors were also useful for validating
model results. PC1 was likely not important for explaining regional
wet/dry variability because this measure of overall wetness is
already captured by the annual flow reconstructions in the model.
PC2 was an important predictor for monthly summer flow at both
sites. The spatial pattern of PC2 mirrors the ENSO dipole, where
northerly sites (predominantly Douglas-fir) responded in an oppo-
site manner to more southerly species, which were primarily two-
needle pinyon, but also ponderosa pine and Douglas-fir. This coun-
terintuitive result is best explained by considering that the annual
streamflow reconstruction already explains much of the variability
associated with tree-ring sites located near the gauges, leaving the
north–south chronology dichotomy to mediate baseflow recession,
and prevent flows from decreasing excessively during dry years.
PC3 directly captured variability in ring width at high-elevation
sites and should therefore reflect variation in monthly streamflow
not predicted by the more prevalent low-elevation sites. PC3 was
most important in late fall and winter (October through January)
and again during April and May. This likely represents a rough
measure of temperature, signifying the transition to snow in the
fall and melt in the spring. PC4, though only a factor in the Bear
River winter, indicated an east/west dipole identified in previous
studies (Wang et al., 2009b). The other important winter predic-
tors, PCs 6 and 7, relied on a few important tree-rings along the
Wyoming border, which appear to be related to snow or winter
flow. Summer predictors are more varied spatially, but it is impor-
tant to note that PC8, which is significant for the Logan reconstruc-
tion, relies on several tree-ring chronologies near the Logan site
that behave slightly differently from the surrounding area. This
can be seen as a fine-tuning predictor.

5.3. Sources of uncertainty

As with all climate reconstructions, the underlying climate
proxies represent a source of uncertainty. In this case, uncertainty
regarding the tree-ring chronologies was minimized by carefully
selecting chronology sites, using multiple samples per tree, and
ensuring sufficient replication (sample depth) for each chronology.
Other sources of uncertainty include the univariate probability dis-
tributions used to normalize flows. It is assumed that reference
period flows used to fit these distributions are representative.
We have carefully chosen the Logan and Bear River sites to mini-
mize upstream watershed changes that produce discontinuities
or non-climate related trends in the observed flow record.

5.4. Implications for water management

The model presented here is the first approach to reconstruct
monthly streamflows directly from tree-ring chronologies and cli-
mate reconstructions, without routing climate reconstructions
through a hydrologic model. With reasonable estimates of monthly
flow, extending many centuries back in time, water managers can
challenge systems models with a larger range of natural variability
in the duration and severity of drought and pluvial events. This
could significantly increase the potential for the use of streamflow
reconstructions in water management applications, permitting
better drought vulnerability simulations and more robust opti-
mization of reservoir operations. For example, engineers are often
asked to design systems to address drought events with 100-year
return periods in watersheds where the observed flow record is
shorter than 100 years. Extrapolation using extreme value analysis
can estimate the magnitude of a hypothetical event, but multi-
century flow reconstructions likely include more useful and realis-
tic scenarios. Multi-year or decadal periods of drought and succes-
sive small drought events can challenge water management
operations and reservoir recovery in ways that a single, severe
drought event does not. Establishing a long catalog of near-
natural flow is also critical when estimating future hydrologic risks
under conditions of a non-stationary climate.

Other available methodologies used to reconstruct sub-annual
streamflows (Gangopadhyay et al., 2015; Sauchyn and Ilich,
2017) do not use tree-rings to directly estimate monthly flows.
Instead, they generate many feasible sub-annual scenarios, either
by stochastic hydrology (Sauchyn and Ilich, 2017) or resampling
temperature and precipitation as inputs to a water balance model
(Gangopadhyay et al., 2015). These approaches have benefits, pro-
ducing many ensembles to be used for water systems model sim-
ulations and ensuring water balance within large watersheds
(Gangopadhyay et al., 2015). However, they also have several lim-
itations not present in the APR model. First, by resampling com-
plete water years, the number of potential temperature and
precipitation time series are limited to the years in the observed
record (Gangopadhyay et al., 2015). If this method were applied
to the Logan and Bear Rivers, there would be 88 and 68 potential
annual segments, respectively. Using k = 10 nearest neighbor
resampling, the same years would be repeated across many real-
izations. This ensures realistic years, but severely limits variation
within the range of observed conditions and prevents reasonable
extrapolation slightly outside this range. Second, by requiring a
fully-developed water balance model, this approach limits its
applicability to regions that have adequate gauge data and
modeling.

The APR model proposed here has both greater flexibility and
lower data requirements, avoiding the need for developing a full
hydrologic model, while also allowing a freer range of flows, still
constrained by the historical flow distribution. The APR model also
provides a direct statistical link between tree-ring proxies and glo-
bal circulation drivers that can be used for model validation. We
assert that the approach outlined here provides several important
improvements over the method of Gangopadhyay et al. (2015). At
the same time, we note that these two methods are fundamentally
different and designed to address different research questions. The
Gangopadhyay et al. (2015) method focuses on capturing uncer-
tainty and ranges of potential flow, while the APR method pro-
posed here focuses on a single best estimate.

Given the value of monthly streamflow reconstructions for
water managers and the potential growth in this new field of
research, it is important for future studies to test the global appli-
cability of both methods by evaluating their use outside the west-
ern U.S. This study, as well as the prior efforts to reconstruct
monthly flows, has focused on a relatively narrow geographical
area of the western U.S. Given the potential value for monthly
reconstructions in water resources and the availability of
climate-sensitive tree-ring chronologies elsewhere in the world,
there is an important opportunity to test whether these
approaches can be applied globally.
6. Conclusions

A new framework for generating monthly streamflows directly
from annual reconstructions was introduced and demonstrated
using two sites in northern Utah. Several potential models were
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evaluated, beginning with a simple monthly flow ratio (MF model),
introducing a link between annual and monthly percentiles (AP
model), allowing lagged annual flows to predict monthly per-
centiles (APR model), and ultimately including regional and global
indices as regressors (APR model with predictors). Of the different
models tested, the APR model was shown to successfully repro-
duce flows across nearly all months and across the entire range
of flows. This model can be applied using only data from annual
flow reconstructions or can incorporate regional tree-ring
chronologies and global climate index reconstructions. Adding
these additional predictors was shown to improve predictive skill,
while also providing insight with regard to streamflow drivers.
More simple model variants were presented as a comparison and
to highlight potential modeling challenges, such as sudden flow
jumps at water year transitions.

While annual paleostreamflow reconstructions have great
potential for use in water resources planning (Tingstad et al.,
2014; Rice et al., 2009; Woodhouse and Lukas, 2006; Axelson
et al., 2009), their annual resolution is a potential limitation.
Monthly reconstructions, rather than annual, are therefore extre-
mely valuable for drought vulnerability planning. This study shows
that monthly flow reconstructions are feasible and presents a new
model that makes monthly paleostreamflow reconstruction more
tractable. This will hopefully improve the utility and accessibility
of these reconstructions for water managers, systems analysts,
and decision makers.
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