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Abstract
Wildland fire is a critical process in forests of the western United States (US). Variation in fire
behavior, which is heavily influenced by fuel loading, terrain, weather, and vegetation type, leads to
heterogeneity in fire severity across landscapes. The relative influence of these factors in driving fire
severity, however, is poorly understood. Here, we explore the drivers of high-severity fire for forested
ecoregions in the western US over the period 2002–2015. Fire severity was quantified using a
satellite-inferred index of severity, the relativized burn ratio. For each ecoregion, we used boosted
regression trees to model high-severity fire as a function of live fuel, topography, climate, and fire
weather. We found that live fuel, on average, was the most important factor driving high-severity fire
among ecoregions (average relative influence = 53.1%) and was the most important factor in 14 of 19
ecoregions. Fire weather was the second most important factor among ecoregions (average relative
influence = 22.9%) and was the most important factor in five ecoregions. Climate (13.7%) and
topography (10.3%) were less influential. We also predicted the probability of high-severity fire, were
a fire to occur, using recent (2016) satellite imagery to characterize live fuel for a subset of ecoregions
in which the model skill was deemed acceptable (n = 13). These ‘wall-to-wall’ gridded ecoregional
maps provide relevant and up-to-date information for scientists and managers who are tasked with
managing fuel and wildland fire. Lastly, we provide an example of the predicted likelihood of
high-severity fire under moderate and extreme fire weather before and after fuel reduction treatments,
thereby demonstrating how our framework and model predictions can potentially serve as a
performance metric for land management agencies tasked with reducing hazardous fuel across large
landscapes.

Introduction

Wildland fire is a critical natural disturbance and
ecological process in many ecosystems around the
globe, particularly in the forested regions of the west-
ern US (Agee 1993, Bond et al 2005). Fire affects a
wide range of ecosystem components and processes
such as post-fire successional trajectories, nutrient
cycling, hydrology, andcarbondynamics (Turner2010,

McKenzie et al 2011, Larson et al 2013). Wildland
fire often exhibits high inter-and intra-fire heterogene-
ity, generally burning with varying degrees of severity
(Lentile et al 2007) depending on fuel load, domi-
nant vegetation type, topography, climate, and weather
(Cansler and McKenzie 2014, Harvey et al 2016).
Fire severity is defined here as the amount of fire-
induced change to physical ecosystem components
such as vegetation and soil (Key and Benson 2006,
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Morgan et al 2014). The need to better understand
those factors controlling fire severity (e.g. Dillon
et al 2011) are invoked by concerns about public
safety, infrastructure, critical wildlife habitat, water-
shed health, and successional trajectories (e.g. Savage
and Mast 2005, Moody et al 2013, Calkin et al 2014).
Such concerns are heightened in forests with a legacy
of past logging and fire exclusion, where significant
shifts in ecosystem composition, structure, and func-
tion have triggered fuel conditions at greater risk for
high-severity fire (Mallek et al 2013, Hessburg et al
2015).

Over the last decade, our understanding of fac-
tors that influence fire severity has improved, but the
relative importance of these factors remains unclear.
Topography, for example, is clearly an influential fac-
tor (Holden et al 2009, Dillon et al 2011), as is the
amount and composition of live vegetation and dead
fuel (Fang et al 2015, Harris and Taylor 2015). A lim-
ited number of studies also indicate that long-term
climate (i.e. 30-year climate normals) is an impor-
tant factor driving fire severity (Parks et al 2014c,
Kane et al 2015a), although many suggest that cli-
mate likely has an indirect influence via its effect
on productivity and dominant vegetation type (e.g.
Miller and Urban 1999a, Pausas and Bradstock 2007,
Krawchuk et al 2009). Surprisingly, empirical evidence
is extremely varied pertaining to the importance of fire
weather as a driver of high-severity fire; some stud-
ies have shown that its influence is marginal (Fang
et al 2015, Birch et al 2015) whereas others have
concluded it is a highly influential factor (Keyser
and Westerling 2017, Lydersen et al 2017). Other
factors that influence fuel, such as vegetation man-
agement activities (Thompson et al 2007, Prichard and
Kennedy 2014) and the presence of previous wildland
fire (Parks et al 2014b, Stevens-Rumann et al 2016),
have also been shown to influence fire severity.

Research to date pertaining to the key drivers of
high-severity fire has been either comprehensive in
ecological scope but geographically limited, or geo-
graphically broad but lacking important environmental
components. Dillon et al (2011) conducted perhaps
the most comprehensive evaluation (in terms of geo-
graphic scope and number of fires) of the drivers of
high-severity fire using data from three ecoregions in
the northwestern US and three in the southwestern
US (∼1500 total fires). Dillon et al (2011), however,
did not evaluate some of the factors likely responsi-
ble for high-severity fire such as fuel, thereby making
it difficult to interpret their findings from an ecolog-
ical perspective. Keyser and Westerling (2017) also
conducted a comprehensive evaluation of fire sever-
ity in the western US, but their unit of analysis was
coarser—at the individual fire (i.e. fires were catego-
rized as either ‘high-severity’ or ‘other’). Conversely,
most studies to date (and this study) evaluated pix-
els within individual fires as the unit of analysis,
thereby preserving and analyzing intra-fire variability.

Some studies have evaluated a more inclusive set of
environmental drivers but were often conducted at
disparate temporal and spatial scales, ranging from
those of individual fires (Thompson et al 2007, Har-
ris and Taylor 2015) to landscapes with ∼50–100 fires
(Fang et al 2015, Birch et al 2015), thereby making
broader-scale generalizations challenging. Differences
in methodology among these studies also compli-
cate interpretation. An evaluation using consistent
data and methods across the broad geographic range
of forested landscapes of the western US will allow
for an improved understanding of the most influ-
ential factors driving fire severity and will provide
forest managers with highly relevant information for
planning and mitigation purposes.

In this study, we assessed a comprehensive suite of
potential drivers of high-severity fire using a consistent,
repeatable approach that was not only geographically
extensive but also predictive in nature. We built a sta-
tistical model describing high-severity fire for each
ecoregion in the contiguous western United States
(hereafter western US) with the exception of those with
insufficient data (e.g. Sonoran Desert was excluded; see
Methods). We defined high-severity fire as those that
are stand-replacing as inferred by the relativized burn
ratio (RBR) (Parks et al 2014a), a gridded satellite-
based fire severity metric. Our evaluation included
explanatory variables representing live fuel, topog-
raphy, climate, and fire weather. The models we
developed have the potential to support fire and fuel
management (cf Hessburg et al 2007) because several
of the explanatory variables are dynamic (i.e. varying
on daily to annual time scales), such as those repre-
senting live fuel and daily fire weather. Consequently,
raster maps representing predictions of high-severity
fire (cf Holden et al 2009) can be updated annu-
ally and under different weather scenarios to assess,
for example, the potential for high-severity fire in
an upcoming fire season. Such products may facil-
itate the development of more adaptive strategies
for addressing the contemporary challenges of wild-
land fire management. Similarly, model predictions
have the potential to monitor and quantify potential
changes in the probability of high-severity fire result-
ing from management actions, such as fuel reduction
treatments.

Our overarching objectives were three-fold. First,
we aimed to identify the most influential factors driv-
ing high-severity fire for each ecoregion in the western
US. Second, we designed a quantitative framework
such that the model predictions for each ecore-
gion can be updated annually using recent (e.g.
2016) satellite imagery and implemented to evalu-
ate the probability of high-severity fire (were a fire
to occur) under a range of potential weather scenar-
ios. Third, we incorporated the capability for model
predictions to assess and monitor the effectiveness of
fuel treatments in changing the probability of high-
severity fire.
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Figure 1. Ecoregions in the western US for which we built models describing the probability of high-severity fire.

Methods

This is anabridgedversion—seeappendixAavailable at
stacks.iop.org/ERL/13/044037/mmedia for a detailed
description of the Methods.

Data
We built a statistical model describing high-severity
fire for each ecoregion in the western US (Olson and
Dinerstein 2002) (figure 1). Fire severity was mea-
sured using the relativized burn ratio (RBR), a satellite
measure of fire severity (resolution = 30 m) that differ-
ences pre-and post-fire Landsat data. We classified the
RBR into binary categories representing high-severity
(RBR≥ 298) and other severity (RBR< 298) (Parks
et al 2014a). High-severity fire can be considered stand-
replacing fire in the context of this study.

We evaluated 16 explanatory variables in the model
for each ecoregion which can be categorized into four
groups representing live fuel, topography, climate, and
fire weather (table 1). The fuel group is comprised of
three satellite vegetation indices: NDVI, NDMI, and
EVI (table 1). These metrics implicitly incorporate
management activities and disturbances such as fuel
reduction treatments and wildland fire. Inclusion of
‘static’ fuel metrics such as vegetation type or cover
(e.g. www.landfire.gov) (cf Birch et al 2015, Keyser
and Westerling 2017) was not considered since such
products are only updated periodically and are thus
not sensitive to annual dynamics. The variables rep-
resenting topography, climate, and fire weather are
summarized in table 1; see appendix A for further
details.

Sampling design and statistical models
We sampled individual 30 m pixels within fires that
occurred from 2002–2015. Each ecoregion was mod-
eled separately. We only sampled pixels identified as
forest (i.e. forest,woodland, andsavanna).Weremoved
all pixels<100 m from the fire perimeter to reduce edge
effects common at fire boundaries (Stevens-Rumann
et al 2016). All analyses and predictions were con-
ducted using the native resolution of the response
variable (30 m). For each ecoregion, we used boosted
regression trees (BRT) using the ‘gbm’ package in R to
model high-severity fire (binary response) as a func-
tion of live fuel, topography, climate, and fire weather
(table 1). A handful of ecoregions were not evaluated
because they contained a low proportion of forest or
did not have enough fire data (e.g. Sonoran Desert and
North Cascades ecoregion, respectively) (appendix A).

In an effort to reduce overfitting and build the most
parsimonious model for each ecoregion, we employed
a cross-validated stepwise procedure in which specific
variables were removed if they did not provide unique
information that improved model fit. Models for each
ecoregionwere evaluated with five-fold cross validation
that was spatially and temporally structured such that
20% of fires (as opposed to pixels) within an ecore-
gion were held out in each iteration. Specifically, we
built a model for each ecoregion using the full suite
of variables (table 1) and evaluated it with the area
under curve (AUC) statistic derived from the receiver
operating characteristic curve as measured with the
’verification’ package in R. We then built an addi-
tional set of models for each ecoregion in which each
explanatory variable was removed and calculated the
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Table 1. Variables used as predictors in modeling the probability of high-severity fire in forests of the western US.

Group Variable name Description Source

Live fuel NDVI Normalized differenced vegetation index. Calculated using pre-fire

imagery distributed by the Monitoring Trends in Burn Severity

(MTBS) program (Eidenshink et al 2007).

Pettorelli et al (2005)

NDMI Normalized differenced moisture index. Calculated using pre-fire

imagery distributed by MTBS (Eidenshink et al 2007).

McDonald et al (1998)

EVI Enhanced vegetation index. Calculated using pre-fire imagery

distributed by MTBS (Eidenshink et al 2007).

Huete (2002)

Topography DISS Dissection index with a 450 meter radius. DISS is a measure of

topographic complexity.

Evans (1972)

TPI Topographic position index with a 2000 meter radius. TPI is a

measure of valley bottom vs. ridge top.

NA

SRAD Solar radiation, as calculated using the SOLPET6 model. Flint et al (2013)
Slope Slope angle NA

Climate CMD Climatic moisture deficit (Wang et al 2016). Mean over the

1981–2010 time period.

Wang et al (2016),

https://adaptwest.databasin.org/
ET Evapotranspiration (i.e. Eref—CMD). Mean over the 1981–2010

time period.

Wang et al (2016),

https://adaptwest.databasin.org/
T.sm Average summer temperature. Mean over the 1981–2010 time

period.

Wang et al (2016),

https://adaptwest.databasin.org/

Fire weather BI.day Burning index; a measure of fire intensity. Raw value converted to

per-pixel percentile.

Preisler et al (2016)

Jolly and Freeborn (2017)
ERC.day Energy release component; an index describing the amount of heat

released per unit area at the flaming front of a fire. Raw value

converted to per-pixel percentile.

Preisler et al (2016)

Jolly and Freeborn (2017)

Tmax.day Maximum daily temperature. Raw value converted to per-pixel

percentile.

Abatzoglou (2013)

HM.ann Heat moisture for the year in which the fire occurred. HM is

calculated as follows: (annual temperature + 10) / (annual

precipitation/1000). Raw value converted to per-pixel z-score.

Climate NA software package;

Wang et al (2016)

Temp.ann Mean annual temperature for the year in which the fire occurred.

Raw value converted to per-pixel z-score.

Climate NA software package;

Wang et al (2016)
CMD.ann Climatic moisture deficit for the year in which the fire occurred.

Raw value converted to per-pixel z-score.

Climate NA software package;

Wang et al (2016)

AUC as previously described. If the cross-validated
AUC increased when any given variable was removed
from the model, it indicates that the model is over-
fit and that the variable does not provide any unique
information. In these cases, the variable that resulted in
the largest increase in AUC was permanently removed
and the process was repeated until all variables resulted
in a decreased AUC when removed from the model.
As such, all variables in the final models provided
unique information and ensured that our models
were spatially and temporally transferable.

Once the final model for each ecoregion was iden-
tified, the relative influence of variable groups was
calculated using the AUC of a five-fold cross valida-
tion using a process that excluded all variables from
a particular group. Specifically, we compared the five-
fold cross validated AUC of the full model to models
that iteratively excluded all variables representing live
fuel, topography, climate, and fire weather. The specific
equation was as follows:

Relative inf luence
𝑖
=

AUC.full−AUC.no.var𝑖
∑𝑖=4

𝑖=1(AUC.full−AUC.no.var𝑖)
× 100

where AUC.full was the AUC of the full model,
AUC.no.var was the AUC of the model excluding any

particular variable group, and i represented one of the
four variable groups.

Model implementation and map production
From the BRT models, we produced wall-to-wall
raster maps (objective 2) depicting the probability of
high-severity fire, if a fire were to occur, for each
ecoregion in which the cross-validated AUC ≥0.70.
For the fuel inputs (NDVI, NDMI, and EVI), satellite
imagery from 2016 spanning the entirety of each ecore-
gion was obtained using Google Earth Engine (GEE;
https://developers.google.com/earth-engine/). Conse-
quently, these raster predictions represent fairly current
fuel conditions across each ecoregion. Predictions the-
oretically range from zero to one and depict the
probability of high-severity fire.

Weaimedtoproduce these severitypredictions rep-
resenting the average weather conditions under which
fires burn. This is somewhat challenging, however,
given that weather is spatially and temporally dynamic.
Consequently, we produced 100 initial predictions and
varied the weather for each of these predictions; all
other inputs across each ecoregion (fuel from 2016,
topography, and climate) were held static. To vary
the weather, we randomly selected 100 records from
our fire severity datasets. Each record represents one
burned pixel with a unique combination of observed
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Table 2. Cross-validated AUC and the relative influence for each of the four groups of variables used to model the probability of high-severity
fire in 19 ecoregions in the western US.

Relative influence

Region ID Ecoregion name Cross-validated AUC Live fuel Topography Climate Weather

1 Okanagan 0.66 40.5 14.4 29.9 15.2
2 Columbia Plateau 0.67 35.3 3.1 17.4 44.2
3 East Cascades 0.68 60.7 12.4 5.6 21.2
4 West Cascades 0.71 40.7 2.3 14.6 42.5
5 Klamath 0.68 38.8 25.0 0 36.2
6 Sierra Nevada 0.67 58.7 15.7 19.1 6.5
7 California North Coast 0.70 5.1 19.6 9.1 66.2
8 California Central Coast 0.73 64.6 22.3 13.1 0
9 California South Coast 0.72 40.6 9.4 0 50.1
10 Canadian Rockies 0.71 53.9 14.0 24.0 8.1
11 Northern Great Plains 0.69 43.4 9.7 29.3 17.6
12 Middle Rockies 0.72 46.2 14.8 34.9 4.1
13 Utah-Wyoming Rockies 0.75 99.0 1.0 0 0
14 Great Basin 0.76 63.6 7.0 17.6 11.8
15 Southern Rockies 0.72 57.4 12.5 22.9 7.3
16 Utah High Plateaus 0.76 93.2 5.1 0.2 1.5
17 Colorado Plateau 0.81 39.0 6.9 2.1 52.0
18 Arizona-New Mexico Mountains 0.79 75.0 0.2 9.7 15.0
19 Apache Highlands 0.75 53.3 1.0 9.9 35.9

AVERAGE 0.72 53.1 10.3 13.7 22.9

fire weather. We used the observed fire weather from
each random record for each of the 100 initial predic-
tions. We then averaged the 100 initial predictions over
each 30 m pixel, resulting in one raster map depict-
ing the probability of high-severity fire under average
weather conditions in which fires burn. An important
consideration here is that the severity predictions do
not represent ‘average weather conditions’, but the
‘average weather conditions under which fires burn’.
That is, because fires often burn under more extreme
fire weather, our predictions implicitly incorporate
weather associated with high fire activity. This consid-
eration also pertains to our mapped predictions under
moderate and extreme fire weather, as described in the
next paragraph.

For those ecoregions in which the relative influ-
ence of fire weather≥15%, we produced two additional
raster maps, one depicting the probability of high-
severity fire under conditions representing moderate
weather and the other under conditions representing
extreme weather. To do so, we calculated the 50th and
95th percentile for each pixel out of the 100 previ-
ously described initial predictions. While these maps
represent the 50th and 95th percentile in predicted
outcomes for each pixel, we use them to represent
the outcomes of moderate and extreme fire weather,
respectively. Neither says anything specific about the
percentile of weather conditions under which they
occurred, but they can be interpreted as resulting
from moderate and extreme fire weather conditions.

To illustratehowourmodels canpotentiallybeused
to monitor changes in the probability of high-severity
fire due to fuel treatments (objective 3), we made pre-
and post-treatment predictions using the BRT model
from the Arizona—New Mexico Mountains ecoregion.
We obtained imagery representing the live fuel vari-
ables using GEE for the years 2007 (pre-treatment)
and 2011 (post-treatment). Again, we produced two

sets of predictions for each time period (pre-and post-
treatment) representing moderate and extreme fire
weather, as previously described.

Results

We incorporated data from over 2000 fires across all
ecoregions to describe and explain the probability of
high-severity fire (appendix B). On average, the BRT
models performed moderately well for the 19 ecore-
gions for which we modeled (table 2). The average
spatially and temporally independent cross-validated
AUC statistic was 0.72 and ranged from 0.66 (Okana-
gan) to 0.81 (Colorado Plateau). Following Mason and
Graham (2002), all five cross-validated models were
statistically significant (p< 0.01) for each of the 19
ecoregions.

Although there was substantial variation across
ecoregions (table 2), live fuel was the most impor-
tant variable group, with an average relative influence
of 53.1% among ecoregions; this ranged from 5.1%
(California North Coast) to 99.0% (Utah—Wyoming
Rockies). Fire weather was the second most influential
variable group (22.9% average), ranging from 0% (Cal-
ifornia Central Coast and Utah – Wyoming Rockies) to
66.2% (California North Coast). Climate was the third
most influential variable group (13.7% average) and
topography the least influential (10.3% average) (table
2). The cross-validated variable selection approach
reduced overfitting and produced parsimonious mod-
els (i.e. all variables provided unique information)
(table 3).

Raster maps depicting the probability of high-
severity fire were built for the 13 ecoregions in which
the cross-validated AUC ≥0.70 (figure 2; appendix C).
These gridded probabilities represent fuel conditions
(i.e. as measured with Landsat imagery) in 2016 and
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Table 3. Final models for each ecoregion. Variables were selected through a cross-validated stepwise procedure to ensure that each variable
provides unique information and improves the cross-validated AUC (see Methods).

Region ID Ecoregion name Fuel Topography Climate Weather

1 Okanagan EVI

NDMI

Slope ET Tmax.day

2 Columbia Plateau NDVI

EVI

NDMI

DISS

TPI

SRAD

Slope

CMD

ET

T.sm

Tmax.day

ERC.day

HM.ann

Temp.ann

3 East Cascades NDVI

EVI

NDMI

DISS

TPI

SRAD

Slope

T.sm ERC.day

Tmax.day

HM.ann

4 West Cascades NDVI

EVI

NDMI

DISS

TPI

Slope

ET

T.sm

ERC.day

HM.ann

5 Klamath EVI

NDMI

DISS

TPI

Slope

— BI.day

ERC.day

HM.ann

Temp.ann

6 Sierra Nevada NDMI DISS

SRAD

Slope

ET

T.sm

ERC.day

Tmax.day

HM.ann

CMD.ann

Temp.ann

7 California North Coast NDVI

EVI

NDMI

DISS

TPI

SRAD

T.sm Tmax.day

HM.ann

8 California Central

Coast

NDVI

EVI

NDMI

DISS

TPI

Slope

T.sm —

9 California South Coast NDVI

EVI

NDMI

DISS

Slope

— HM.ann

CMD.ann

Temp.ann

10 Canadian Rockies EVI

NDMI

DISS

SRAD

Slope

T.sm BI.day

Tmax.day

HM.ann

11 Northern Great Plains NDVI

NDMI

DISS

TPI

SRAD

Slope

CMD

ET

T.sm

BI.day

ERC.day

12 Middle Rockies NDVI

EVI

NDMI

DISS

SRAD

Slope

CMD

ET

T.sm

BI.day

ERC.tay

Temp.day

13 Utah-Wyoming

Rockies

NDVI

EVI

DISS — —

14 Great Basin NDVI

EVI

DISS

SRAD

Slope

CMD

T.sm

HM.ann

CMD.ann

Temp.ann

15 Southern Rockies NDVI

EVI

NDMI

DISS

SRAD

Slope

ET

T.sm

HM.ann

CMD.ann

Temp.ann

16 Utah High Plateaus NDVI

EVI

NDMI

DISS

TPI

SRAD

Slope

T.sm ERC.day

Tmax.day

17 Colorado Plateau NDVI

NDMI

DISS

SRAD

Slope

ET ERC.day

Tmax.day

HM.ann

Temp.ann
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Table 3. Continued.

Region ID Ecoregion name Fuel Topography Climate Weather

18 Arizona-New Mexico

Mountains

EVI

NDMI

TPI CMD

ET

BI.day

Tmax.day

HM.ann

CMD.ann

19 Apache Highlands NDVI

EVI

TPI CMD Tmax.day

CMD.ann

Figure 2. Maps depict the probability of high-severity fire (were a fire to occur) in the Canadian Rockies (a) and Southern Rockies (b)
ecoregions. We used satellite imagery from 2016 to represent live fuel. See figure 1 to reference ecoregion locations. Predictions for
other ecoregions available in appendix C.

average weather conditions under which fires burn
and show substantial spatial variability in the prob-
ability of high-severity fire. For ecoregions in which
the relative influence of weather ≥15% (n = 6), we
produced two additional raster maps depicting the
probability of high-severity fire under conditions rep-
resenting moderate and extreme fire weather (figure 3;
appendix D).

Maps of pre-and post-treatment predictions pro-
vide an example of how our models and approach can
potentially be used to quantify and monitor changes
in the probability of high-severity fire due to fuel
treatments (figure 4). This example shows that, under
conditions representing both moderate and extreme
fire weather, there is an overall reduction in the proba-
bility of high-severity fire within treatment units.

Discussion

High-severity fire is oftenof high ecological and societal
consequence, thereby motivating increasing attention
and research towards better understanding its drivers
and distribution (Cansler and McKenzie 2014, Whit-
man et al 2015, Morgan et al 2017, Reilly et al 2017).
Research to date has been either comprehensive in
ecological scope but geographically limited or geo-
graphically broad but capturing only a subset of the

key elements affecting fire severity. Our study expands
upon these previous investigations of fire severity by (a)
including a more complete suite of relevant explanatory
variables, (b) evaluating fires over a large geographic
extent (i.e. forests of the western contiguous US) at
fine spatial resolution (30 m), and (c) including a high
number of fires in our models (n = 2061 unique fires
among all ecoregions; appendix B). Our results show
that fuel is the most important driver of high-severity
fire in forested regions of the western US, followed by
fire weather, climate (i.e. 30 year normals), and topog-
raphy. Our results are supported by the findings of past
research but also contrast with several previous stud-
ies (see below) and provide important new insights
regarding the drivers of high-severity fire. Our study is
also a substantial step forward by providing a modelling
framework that enables the prediction for high-severity
fire while incorporating fuel and fire weather inputs.
In particular, this framework involves the inclusion of
fuel and fire weather inputs as dynamic variables (i.e.
those that change over time) and gives us the ability
to produce maps depicting the probability of high-
severity fire, were a fire to occur, over entire ecoregions
(e.g. figures 2 and 3). This framework also provides
the means to evaluate changes in the probability of
high-severity fire due to fuel treatments (e.g. figure 4).

Live fuel, as measured with Landsat vegetation
indices, was on average the most important group of
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Figure 3. Maps depict the probability of high-severity fire (were a fire to occur) for the West Cascades ecoregion under weather
conditions representing moderate (i.e. 50th percentile prediction) (a) and extreme (i.e. 95th percentile prediction) (b). We used
satellite imagery from 2016 to represent live fuel. See figure 1 to reference ecoregion location. Predictions for other ecoregions available
in appendix D.

Figure 4. Example shows pre-and post-treatment predictions (top and bottom row, respectively) of the probability of high-severity fire
under moderate (50th percentile prediction) (a) and (b) and extreme (95th percentile prediction) (c) and (d) fire weather conditions
on the Apache-Sitgreaves National Forests, Arizona, USA. Treatment units are represented by the solid black outlines. All treatments
are commercial thinning that occurred in 2010 or 2011.
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variables driving high-severity fire and was the most
important group in 14 out of 19 ecoregions. This find-
ing provides valuable insight pertaining to the ongoing
debate as to whether fuel or fire weather are more
important in driving fire severity (cf Thompson and
Spies 2009). Whereas some studies found fuel was
more important (Fang et al 2015, Birch et al 2015,
Harris and Taylor 2015), others concluded weather
was more important (Bessie and Johnson 1995, Brad-
stock et al 2010, Price and Bradstock 2010). We found
that live fuel was 2.3 times (on average) more influen-
tial than fire weather across the 19 ecoregions in the
western US we analyzed (but see ‘caveats’ section).
This finding is not trivial in terms of management
efforts to reduce fire severity because land man-
agers can control fuel via fuel treatments, prescribed
fire, and managed wildland fire (formerly termed
wildland fire use) but cannot control fire weather.

Our study found that fire weather was, on average,
the secondmost important variable groupdrivinghigh-
severity fire. Previous studies have reported somewhat
conflicting findings pertaining to the relative influence
of fire weather in driving fire severity in the western
US. Whereas some studies found weather to be mod-
erately to highly influential (e.g. Collins et al 2007,
Lydersen et al 2017), others found that the influence
of weather was marginal to negligible (e.g. Kane et al
2015a, Harris and Taylor 2015). We posit that the vari-
ability we observed pertaining to the influence of fire
weather among ecoregions could partly explain the
divergentfindingsof previous studies: the relative influ-
ence of fire weather ranged from 0% to 66.2% and
was the most important variable group in five out of
the 19 ecoregions we analyzed. Although our results
show that weather was less influential in driving high-
severity fire than fuel, its influence was important in
most ecoregions and should not be discounted in terms
of managing fuel and fire. For example, the maps we
generated (e.g. figure 3) clearly show that the proba-
bility of high-severity fire is reduced under moderate
vs. extreme fire weather.

On average, climate ranked as the third most influ-
ential variable group.This contrastswith someprevious
studies. For example, Kane et al (2015a) found that
climate was highly influential in driving fire severity
in the Sierra Nevada. However, we suspect that cli-
mate was less important in our study because, over
broad spatial and temporal extents, climate provides
an indirect measure of fuel associated with inherent
biophysical environments (Parks et al 2014c). More
specifically, biomass amount is known to vary along
climatic gradients (Meyn et al 2007, Krawchuk and
Moritz 2011), which implies that climate can serve as
an indirect surrogate for biomass. However, satellite-
derived vegetation indices such as those used in this
study are a more direct measure of biomass (Zhao et al
2005). Consequently, when fuel and climate are both
included as variables (as was done in our study), cli-
mate is ranked as less important. This said, climate

was a non-negligible factor in most ecoregions. We
suggest, as do others (Miller and Urban 1999b), that
climate may indirectly measure factors that were not
well accounted for by our variables. We believe that cli-
mate may correspond to dominant vegetation type, in
that climate promotes particular physiognomic vegeta-
tion types and species that are more or less susceptible
to fire (Parks et al 2018). For example, cooler and wet-
ter climates are more likely to support species that are
more susceptible to fire-induced mortality (e.g. Engel-
mann spruce), whereas warmer and drier climates are
more likely to support species that can survive fire (e.g.
ponderosa pine) (Lutz et al 2010).

Nearly every fire severity study to date has found
that topography had a moderate to high influence on
fire severity (e.g. Holden et al 2009, Dillon et al 2011,
Fang et al 2015, Kane et al 2015a, Birch et al 2015,
Estes et al 2017). Conversely, our study indicates that
topography is on average the least important variable
group. We posit that topography is an indirect mea-
sure of fuel, and that because we directly account for
fuel (using satellite-derived vegetation indices), topog-
raphy is deemed a relatively unimportant factor. It is
worth noting that many of these previously mentioned
studies do not incorporate any measure of fuel or vege-
tation into their analyses (Holden et al 2009, Dillon et al
2011, Kane et al 2015b), and consequently, the influ-
ence of topography may be unintentionally elevated.
For example, even though Dillon et al (2011) found
topography to be the strongest driver of fire severity
across large regionsof thewesternUS, theyclearly stated
that topography was serving as a proxy for variation in
fuel and bioclimatic variables (i.e. fuel moisture and
temperature) which were not accounted for in their
study. Since we capture such variability in live fuel
using satellite-derived vegetation indices, the influence
of topography on its own is greatly diminished.

Caveats
There are several difficulties associated with building
statistical models describing fire severity across broad
geographic regions. Our ability to characterize fuel, for
example, was limited to satellite indices that gener-
ally characterize overstory vegetation and have limited
capacity to measure live and dead surface and ladder
fuels known to drive fire behavior and effects (Rother-
mel et al 1972, Scott and Burgan 2005). Our ability to
adequately characterize fire weather was also limited.
For example, we estimated the day at which any given
pixel burned using MODIS fire detection data. These
day-of-burning estimates are not without error (Parks
2014, Veraverbeke et al 2014); this error increases
uncertainty and likely diminishes our ability to char-
acterize the influence of weather. Also, the temporal
and spatial resolution of currently available gridded
weather datasets do not necessarily match the real-
ized spatial and temporal weather variability associated
with any given fire (Wagenbrenner et al 2016). Fires
have even been known to generate their own weather
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(Potter 2012) and gridded weather datasets do not and
will not likely be able to account for such phenomenon
in the foreseeable future.

It is also worth noting that our data is potentially
biased due to undersampling of non-extreme weather
conditions, thereby limiting our ability to completely
capture the full range of weather conditions conducive
to fire and to completely characterize the influence
of fire weather. Specifically, fire suppression success
rates are higher under less-than-extreme weather con-
ditions (Arienti et al 2006, Fernandes et al 2016,
Beverly 2017), thereby reducing the amount of area
burned under more moderate weather; this biases the
weather associatedwithourfire severity data. For exam-
ple, we found that the relative influence of weather was
zero in two ecoregions; this result is more likely an arti-
fact of biased data (and the other caveats mentioned
in this section) than an unconditional representation
of the relative influence of weather. Simply put, we
potentially mischaracterized the relative influence of
weather since we could not sample the full range of
weather under which fire can burn. We also suggest
that more data (i.e. fires) are needed in some ecore-
gions to better characterize the influence of fire weather
and other variables (e.g. the coastal ecoregions in
California; see appendix B).

Management implications
Managing for wildland fire has become incredibly com-
plex as we face the nexus of increasingly large and
intense wildfires linked to a warming climate and more
frequent drought, landscapes with heavy fuel accumu-
lations due to prolonged fire exclusion, and a rapid
expansion of the wildland-urban interface (Littell et al
2016, Stephens et al2016, Schoennagel et al2017). Land
management agencies have a daunting challenge to
reduce risks from fire to communities and fire fighters
while simultaneously restoring forests to more resilient
conditions (www.forestsandrangelands.gov) (Barnett
et al 2016). In response, land management agencies
in the US established a long-term fuel reduction pro-
gram in which millions of hectares have been treated
since 2001 using a variety of methods such as mechan-
ical thinning and prescribed burning (US Congress
2003). Various efforts are underway to assess how
to best focus such fuel reduction activities given that
land management agencies have limited resources. In
particular, spatially explicit planning frameworks have
offered an effective means to strategize locating treat-
ments across landscapes (e.g. Ager et al 2016, Scott
et al 2016). These planning frameworks are often
built on spatial assessments of quantitative wildfire
risk that incorporate the probability of wildfire occur-
rence across a range of simulated fire intensities, and
the effects of fire on specific values at risk (e.g. nat-
ural resources, built assets) (Finney 2005, Scott et al
2013). We suggest that the modeling framework in
this study could complement these efforts and allow
predictions of high-severity fire to be integrated with

fire occurrence and behavior predictions to provide
managers with a more comprehensive set of risk-
analysis information to target locations in wildfire
mitigation planning.

We also suggest that our models and the result-
ing predictions of high-severity fire could potentially
serve as a performance metric for evaluating hazardous
fuel treatments (see figure 4). For example, the US
Forest Service often uses ‘acres treated’ as a perfor-
mance measure, but this measure does not capture
anything about whether treatment objectives have been
met (USDA Forest Service 2016). Specifically, the pri-
mary objective of most hazardous fuel treatments is to
reduce the intensity and resulting severity of potential
wildland fires (Hudak et al 2011, USDA OIG 2016).
Some treatments are quantitatively more effective at
achieving this objective than others (Wimberly et al
2009, Hudak et al 2011, Safford et al 2012). Further-
more, although detailed fuel treatment assessments
have been conducted at the stand (Johnson et al 2011,
Noonan-Wright et al 2014) and landscape scale (Vail-
lant et al 2009, Collins et al 2013), consistent and
long-term monitoring methods have yet to be realized.
The protocols developed in this study offer a means
to provide predictions that are objective, consistent,
updateable, spatially detailed (30 m resolution), and
spatially extensive as a measurable benchmark to char-
acterize changes in the potential for high-severity fire.
We acknowledge, however, that substantial financial
resources would be necessary to implement our frame-
work to monitor the potential for high-severity fire,
but such a tool is essential if not timely for filling a key
information gap in fire management on public lands
in the US and elsewhere.

Conclusions

Fuel is on average the most influential factor driving
high-severity fire in forests of the western US. Con-
sequently, efforts to reduce fuel will likely reduce the
potential for high-severity fire (Pollet and Omi 2002,
Stephens et al 2009, Arkle et al 2012). Our results also
indicate that fire weather has a substantial influence on
fire severity and highlight that the probability of high-
severity fire is reduced under conditions representing
moderate vs. extreme fire weather. This finding, when
considered with the fact that fire suppression is more
effective under less-than-extreme fire weather (Arienti
et al 2006, Beverly 2017), underscores that land man-
agement agencies may be paradoxically selecting for
high-severity fire by aggressively suppressing fire (cf
Calkin et al 2015). Simply put, aggressive fire sup-
pression reduces the occurrence of low severity fire,
thereby increasing fuel on the landscape and select-
ing for higher severity fire when the inevitable fire
occurs. This has substantial ecological and social con-
sequences, particularly for dry forests that historically
experienced low-and mixed-severity fire. For example,
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fire-facilitated conversions from dry forest to non-
forest vegetation (shrubland and grassland) are now
evident, but it is important to note that such con-
versions appear to be triggered only by high-severity
fire (not low severity) (Savage and Mast 2005, Coop
et al 2016, Coppoletta et al 2016). Consequently, to
limit the probability of high-severity fire, fire-facilitated
conversions to non-forest, and altered successional tra-
jectories in dry forests (Johnstone et al 2016, Walker
et al 2018), land managers could consider, in addi-
tion to traditional fuel reduction treatments, expanding
opportunities that allow wildland fires to burn under
less-than-extreme weather conditions.
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