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Abstract. Population viability analysis (PVA) uses concepts from theoretical ecology to provide a
powerful tool for quantitative estimates of population dynamics and extinction risks. However,
conventional statistical PVA requires long-term data from every population of interest, whereas many
species of concern exist in multiple isolated populations that are only monitored occasionally. We
present a hierarchical multi-population viability analysis model that increases inference power from
sparse data by sharing information among populations to assess extinction risks while accounting for
incomplete detection and sampling biases with explicit observation and sampling sub-models. We
present a case study in which we customized this model for historical population monitoring data
(1985–2015) from federally threatened Lahontan cutthroat trout populations in the Great Basin,
USA. Data were counts of fish captured during backpack electrofishing surveys from locations associ-
ated with 155 isolated populations. Some surveys (25%) included multi-pass removal sampling, which
provided valuable information about capture efficiency. GIS and remote sensing were used to estimate
August stream temperatures, peak flows, and riparian vegetation condition in each population each
year. Field data were used to derive an annual index of nonnative trout densities. Results indicated that
population growth rates were higher in colder streams and that nonnative trout reduced carrying
capacities of native trout. Extinction risks increased with more environmental stochasticity and were
also related to population extent, water temperatures, and nonnative densities. We developed a graphi-
cal user interface to interact with the fitted model results and to simulate future habitat scenarios and
management actions to assess their influence on extinction risks in each population. Hierarchical
multi-population viability analysis bridges the gap between site-level field observations and popula-
tion-level processes, making effective use of existing datasets to support management decisions with
robust estimates of population dynamics, extinction risks, and uncertainties.

Key words: conservation; extinction risk; hierarchical Bayesian time series; imperfect detection; isolated populations;
Lahontan cutthroat trout; observation model; population viability analysis; removal sampling; Ricker model.

INTRODUCTION

Population viability analysis (PVA) plays a central role at
the crossroads of population ecology, conservation biology,
and environmental policy (Beissinger and McCullough 2002,
Morris and Doak 2002). It bridges the gap between theoreti-
cal and applied ecology, and it is sought after to forecast
dynamics of imperiled populations and to estimate extinction
risks under different management or climate scenarios.
Applications have included high profile conservation efforts
for threatened species including grizzly bears (Shaffer 1978,
1983) and northern spotted owls (Lande 1988, Doak 1989,
Boyce 1994). However, traditional demographic PVA
requires many years of data from each population to be
assessed. Monitoring programs for imperiled species gener-
ally collect data from multiple populations, but may not
monitor any single population enough to perform a data-dri-
ven PVA. A statistical framework is needed that can harness

sparse data that already exist from across the range of a spe-
cies to rigorously assess population viability for all of its iso-
lated populations. This requires a synthesis of classical
concepts in theoretical ecology (May 1973, Gotelli 2008) and
conservation biology (Beissinger and McCullough 2002,
Morris and Doak 2002) with recent advances in occupancy
modeling (Royle and Dorazio 2008) and Bayesian statistics
(Gelman et al. 2013, Hobbs and Hooten 2015).
Two paradigms in conservation biology have developed in

parallel (Caughley 1994): The declining population para-
digm and the small population paradigm. The declining
population paradigm focuses on environmental or demo-
graphic factors associated with population declines, often
with the intention of manipulating those factors (Boyce
1992, Akcakaya and Raphael 1998). Favored by managers
for its practicality, this approach often relies on site-level
observations of abundance and habitat. The challenge with
this approach can be extrapolating inferences to population-
level processes like recruitment, demographic stochasticity,
and extinction. The small population paradigm is more
focused on population-level processes, relying heavily on
concepts from theoretical ecology. The primary goal is to
identify minimum viable population sizes (Shaffer 1981) that
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can persist in the face of demographic and environmental
stochasticity (May 1973), without regard for habitat factors
associated with population dynamics. A challenge with this
approach is incorporating site-level observations to inform
parameter estimates rather than relying on expert opinion
or pure simulation studies. PVA models that include demo-
graphic and environmental stochasticity while also estimat-
ing effects of habitat covariates can be used to explore the
intersection of these two paradigms theoretically and to bet-
ter harness the strengths of both approaches for applied
conservation issues.
The challenge of linking site-level observations to popula-

tion-level processes has been a wedge between the declining-
and small-population paradigms, and more generally,
between applied and theoretical ecology. Population-level
processes are often difficult to observe directly because they
operate at larger spatial and temporal scales than field sam-
pling can accommodate. There are several challenges: (1)
accurately estimating site abundances using field observa-
tions that imperfectly detect organisms, (2) scaling-up site
abundances to estimate total population sizes while account-
ing for sampling error and unsampled habitat, and (3)
obtaining sufficient time-series data to estimate demo-
graphic rates and their responses to the environment. There
has been significant progress in each of these areas using
hierarchical observation and process models (Berliner 1996,
Royle and Dorazio 2008) and integrated population models
(Shaub and Abadi 2011).
Imperfect detection is a topic rich with theoretical

advancements followed by widespread conservation applica-
tions (MacKenzie et al. 2006, Royle and Dorazio 2008).
Methods have historically focused on site-level abundances
and covariate effects rather than population-level processes,
but recent progress has linked these models to time-series
models and demographic processes at the scale of the sample
site. N–mixture models (Royle 2004) have been particularly
influential because they require only count data, avoiding
resource intensive mark–recapture surveys. We will use the
term N–mixture models to include the class of models
designed for counts of unmarked individuals, be it repeated
point counts common for birds or removal sampling com-
mon for fish. Appropriate count data are collected by many
conservation monitoring programs and historical data are
available for many species. N–mixture models glean infor-
mation from repeated counts of unmarked animals at each
site to estimate true site abundances, with the critical
assumption that the site is closed to migration and there are
no births or deaths during the survey period. Dail and Mad-
sen (2010) relaxed these assumptions by explicitly modeling
“gains” (births + immigration) and “losses” (deaths + emi-
gration) to the population each year. Zipkin et al. (2014)
added stage structure to this framework, and Kanno et al.
(2015) added density-dependent recruitment and covariate
effects. Kanno et al. (2015) assumed that covariate effects
on demographic rates were consistent among sites, allowing
them to leverage data from multiple sites to estimate these
effects, which may have otherwise required many years of
data from each site. These models account for imperfect
detection and they link site-level observations to demo-
graphic processes, but they assume that a sampled site is rep-
resentative of the entire population and independent from

other sampling locations. For this reason, they cannot incor-
porate data from multiple sample sites within a population,
and most importantly, they cannot estimate total population
sizes or extinction risks.
Incomplete sampling from the total spatial extent of a

population is a necessary limitation for almost all monitor-
ing programs, but sampling error can bias estimates of
population size and extinction risk with a tendency toward
overly pessimistic estimates of viability (Staples et al. 2004).
Carlin et al. (1992) and Berliner (1996) provided a hierarchi-
cal Bayesian framework for time series models (i.e.,
state-space models) that explicitly accounts for both the
observation process (i.e., field surveys) and its relationship
to unobserved demographic processes. Clark (2007) thor-
oughly explored a range of ecological applications for this
class of models, including concepts like age structure, den-
sity dependence, demographic and environmental stochas-
ticity, mark–recapture studies, and covariate effects. Hobbs
and Hooten (2015) added a sampling model to this hierar-
chical structure (i.e., process, sampling, and observation
model) to accommodate data arising from incomplete sam-
pling of a population’s spatial extent. The sampling model
also allowed them to include multiple sampling locations
from a single population. This is a critical step towards
leveraging existing data from population monitoring pro-
grams to assess population viability because it allows infer-
ences to be made for the total population extent rather than
being limited to the sampling location. This is necessary to
estimate total population sizes and overall extinction risks.
Unfortunately, there are few cases where sufficient time ser-
ies data exist from a single population to fit these models.
We developed a hierarchical Bayesian model for popula-

tion viability analysis that uses data from multiple isolated
populations simultaneously to bolster inference power across
the range of a species and into the future. Hierarchical multi-
population viability analysis (MPVA) bridges the gap
between the declining- and small-population paradigms by
including demographic and environmental stochasticity
while also relating demographic rates to environmental
covariates. Wenger et al. (2017) previously introduced the
process model that lies at the core of MPVA, demonstrating
how information can be borrowed from well-sampled popu-
lations to predict viability of data-poor populations. How-
ever, they did not link this to an observation model or
sampling model, which is necessary to derive the full benefits
of the approach. Here we present the full hierarchical model,
which can accommodate counts of unmarked individuals
from multiple sampling locations within each population,
making it appropriate for use with many existing datasets.
The Bayesian framework provides flexibility to customize
the model for specific datasets and it explicitly accounts for
uncertainty at each level of the model. Hierarchical MPVA
makes it possible to: (1) Use all available abundance data
from multiple isolated populations, (2) Account for observa-
tion and sampling error, (3) Infer population-level parame-
ters from site-level observations, (4) Estimate effects of
spatio-temporal covariates on demographic rates, and (5)
Account for demographic and environmental stochasticity.
We provide an overview of a general model structure for

hierarchical MPVA along with a case study using 30 years
of sporadic population monitoring data from 155 isolated
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populations of federally threatened Lahontan cutthroat
trout (Oncorhynchus clarkii henshawi).

OVERVIEW: MULTI-POPULATION VIABILITYANALYSIS

Following the structure outlined by Hobbs and Hooten
(2015), a hierarchical MPVA model has three components:
an observation model, a sampling model, and a process
model. The observation model accounts for imperfect detec-
tion of organisms during field surveys at each site. The sam-
pling model accounts for sampling error that arises from
incomplete sampling from the spatial extent of a population
and non-uniform distributions of individuals. The process
model represents the temporal dynamics of population
growth and can include features like density dependence,
age structure, and environmental stochasticity.
Biological data for MPVA should include multiple popu-

lations monitored over multiple years, with multipass sur-
veys conducted at some sites. Time series may include years
without data. Observations yi;t;j;m are counts of individuals
observed during each survey pass m at site j in year t for
population i. Surveys could be repeated point counts,
removal sampling, multi-surveyor designs, distance sam-
pling, or virtually any other count-based survey design for
which an appropriate observation model can be specified.
Age or stage structure may be included or not.
Hierarchical MPVA has three key model parameters: (1)

Demographic rates Ri;t from the process model: rates of
population change from year-to-year, (2) Occurrence proba-
bilities ti;t;j from the sampling model: probability that an
individual from the population would occur at sample site j
and Detection probabilities pi;t;j;m from the observation
model: probability that an individual occupying a site would
be observed during survey m.
A general model structure for hierarchical MPVA can be

written as

½Ni;tjNi;t�1;Ri;t�
½Ri;tjxi;t; b�
½ni;t; j jti;t; j ;Ni;t�
½yi;t; j;mjpi;t; j;m; ni;t; j �:

Bracket notations represent generic probability distributions
(i.e., the first line indicates that Ni;t is stochastic and depen-
dent on Ni;t�1 and Ri;t). Ni;t are total population sizes each
year, ni;t;j are total abundances at each site j, and yi;t;j;m are
counts of individuals observed during each survey m. The
xi;t are spatio-temporal covariates and b are their effects on
population growth rates Ri;t.
Modeling Ri;t as a function of spatiotemporal covariates

enables data-driven population simulations anywhere within
the modeling domain where covariates can be measured or
estimated. Remotely sensed and GIS-based covariates are
valuable in this context because they provide consistent
range-wide habitat measurements annually. This general
structure for hierarchical MPVA can be customized by
selecting appropriate error structures, functional relation-
ships, and covariates for each sub-model based on character-
istics of the data and expectations about how the system
behaves.

CASE STUDY: LAHONTAN CUTTHROAT TROUT

We demonstrate MPVA using data from multiple moni-
toring programs for federally threatened Lahontan cut-
throat trout (LCT; Oncorhynchus clarkii henshawi)
throughout its range in Nevada, Oregon, and California,
USA. We chose this species because it exists in isolated pop-
ulations, there is a substantial amount of data available, and
it is a focus of management programs. Our intention was to
demonstrate MPVA using a real-world example to highlight
key concepts and model results, but it is beyond the scope of
this paper to give thorough treatment to ecological infer-
ences and management recommendations. Our LCT model
was developed in collaboration with project partners who
contributed data and expert opinion. These included repre-
sentatives from U.S. Fish and Wildlife Service, Bureau of
Land Management, U.S. Forest Service, Nevada Depart-
ment of Wildlife, Oregon Department of Fish and Wildlife,
and California Department of Fish and Wildlife.
We aggregated LCT survey data from project partners to

build a database that included 155 populations with data
from the 30-yr period from 1984 to 2015. This included 71
streams where LCT were extirpated. Traditional population
viability analyses were previously conducted for 13 popula-
tions individually (Peacock and Dochtermann 2012) provid-
ing 5–10 consecutive years of data for these populations
from 1993 to 2002. The rest of the data were from sporadic
sampling events with few consecutive years of data for most
populations. Spatial coverage of sampling was usually small
compared to populations’ spatial extents (mean = 3%, max-
imum = 20%). Multi-pass removal sampling (i.e., repeated
sampling without replacement from a closed habitat unit)
was conducted during 25% of sampling events, and single-
pass sampling was conducted during the rest. Our goals for
the Lahontan Cutthroat Trout MPVA model were: (1) Esti-
mate population sizes and extinction probabilities for popu-
lations with monitoring data, (2) Assess population viability
for unsampled streams using environmental covariates only,
and (3) Evaluate potential effects of management actions
and future environments on population viability.

MPVA model development

Throughout the paper, we numbered only the mathemati-
cal expressions that were used in multi-population viability
analysis for Lahontan cutthroat trout. Unnumbered mathe-
matical expressions were included to demonstrate connec-
tions with previously published models and possible model
extensions. The directed acyclic graph (Fig. 1) provides an
overview of how parameters and data throughout the model
relate to one another and to numbered expressions in the
text. Table 1 provides definitions for symbols.

Process model.—The process model represents population
change from one year to the next. From classical population
ecology, there are a number of models for density-dependent
population growth that may be appropriate to use with
count data (Verhulst 1838, Beverton and Holt 1957). If age
or stage structured counts are available, structured popula-
tion dynamics could potentially be modeled (Leslie 1945).
We will focus on a basic Ricker model (Ricker 1954), which
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is fundamental to theoretical ecology and has been widely
applied for management. This model assumes density-
dependent population growth with no age structure. It is
often written in the form

Nt ¼ Nt�1erð1�
Nt�1
K Þ

where Nt is population size (age 1 + ) in year t, r is the
intrinsic rate of population growth, and K is carrying capac-
ity. This is an exponential growth model with growth rates
that decline toward zero as the population approaches
carrying capacity.
One of the primary goals for MPVA is to model multiple

populations simultaneously to reduce data requirements
from any single population by sharing information among
populations. To make carrying capacities Ki comparable
among populations occupying different spatial extents Ei,
we redefined them in terms of density rather than abun-
dance

Ni;t ¼ Ni;t�1e
rð1�

Ni;t�1 =Ei
Ki

Þ
:

Attempting to estimate both free parameters r and Ki can
lead to identifiability issues (multiple parameter states that
produce identical model behavior) because their relationship
is multiplicative in this model. To improve identifiability, we
used an alternative formulation of the Ricker model (Hobbs
and Hooten 2015)

Ni;t ¼ Ni;t�1e
rþ/i

Ni;t�1
Ei :

This is simply an algebraic rearrangement where /i ¼
ð�r=KiÞ, representing the effect of density dependence. The

units for /i are changes in realized growth rates resulting
from adding one individual per unit area to last year’s popu-
lation. This linear formulation improves our ability to model
r and / as a function of spatio-temporal covariates xi;t

ri;t ¼ b0 þ b1xi;tþ
/i;t ¼ c0 þ c1xi;t þ :

So far, this deterministic process model is a multi-popula-
tion form of a simple exponential growth model with growth
rates that are a linear function of covariates, density, and
their interactions. It could be re-written as:

Ni;t ¼ Ni;t�1e
b0þb1xi;tþc0

Ni;t�1
Ei

þc1xi;t
Ni;t�1
Ei

þ

At this stage of formulation, the model does not account for
demographic and environmental stochasticity. Random vari-
ation is critical to account for because it can drive small
populations extinct (Shaffer 1981). Demographic stochastic-
ity arises from the fact that reproduction and survival are
integer-based processes (May 1973). If average per-capita
recruitment is 2.5, most adults produce either two or three
offspring but never 2.5 offspring. This can cause population
sizes to drift randomly over time. To capture this, we mod-
eled population sizes Ni;t as a Poisson process

Ni;t �Poisson ðNi;t�1eRi;tÞ (1)

where Ri;t are realized population growth rates.
Environmental stochasticity (May 1973) arises from varia-

tion in unmodeled environmental factors that affect demo-
graphic rates. Following others, we modeled this as normally
distributed random variation in realized population growth

FIG. 1. Directed acyclic graph (DAG) for hierarchical multi-population viability analysis. Numbers refer to mathematical expressions in
the text that are represented by each arrow. Symbols are defined in Table 1.
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rates (Morris and Doak 2002, Clark and Bjornstad 2004,
Gotelli 2008)

Ri;t �Normalð�Ri;t;rRiÞ (2)

where �Ri;t is the mean and rRi is the standard deviation. rRi

is a population-specific estimate of environmental stochas-
ticity, and it can be modeled hierarchically with hyper-para-
meters shared among all populations

rRi �Half Cauchyðlr;rrÞ
lr;rr �Uniformð0; 10Þ: (3)

We used Half-Cauchy distributions to represent standard
deviations in realized growth rates following recommenda-
tions of Gelman (2006) for hierarchical variance models.
The hierarchical structure shares information among popu-
lations to estimate this data-hungry parameter, and it con-
strains estimates of environmental stochasticity to be similar
among populations unless observed data provide significant

evidence to the contrary. It also allows predictions for
populations where no data have been collected. Uniform
hyper-priors were selected to be uninformative. As a practi-
cal decision to improve convergence, we truncated the distri-
bution of rRi to be above 0.01, avoiding unrealistic
accumulation of density near zero that sometimes occurred.
For this parameter to approach zero would imply that our
four covariates explained all of the variation in realized
growth rates, which is extremely unlikely.
In this stochastic Ricker model, expected realized popula-

tion growth rates �Ri;t are a linear function of the prior year’s
population density

�Ri;t ¼ ri;t þ /i;t
Ni;t�1

Ei
(4)

where the intercept ri;t is intrinsic population growth rate
and the slope /i;t is the effect of density dependence. We
selected spatio-temporal covariates as predictors of ri;t and
/i;t in collaboration with project partners. We emphasized
remotely sensed and GIS-based covariates because they can
be measured consistently every year for all populations. We
included two predictors of intrinsic population growth rates

ri;t ¼ b0 þ b1tempi;t�1 þ b2flowi;t�1

b�Normalð0; 10Þ: (5)

The normal priors for elements in the vector of regression
coefficients b were selected to be uninformative.
The variable tempi;t�1 is mean August stream temperature

estimated using a regional stream temperature model (Isaak
et al. 2017) averaged throughout each population’s extent
each year. We expected intrinsic population growth rates to
increase with colder stream temperatures because the trout
populations we modeled are at the southern extent of the
species’ range (Selong et al. 2001, Wenger et al. 2011).
Notice that we modeled this effect with a 1-yr time lag. We
expected environmental conditions in the previous year to
influence recruitment of age 1 individuals into the current
year’s population. tempi;t�1 was centered and scaled (i.e.,
subtract the mean among all years and populations, divide
by the standard deviation).
The variable flowi;t�1 is peak stream discharge (maximum

3-day average) estimated using surface flows from the
National Land Data Assimilation System (Xia et al. 2012)
at the downstream-most point of each population extent.
We expected population growth to increase after high flows
because of their potential to increase production (Bellmore
et al. 2017) and available space (Dunham and Vinyard
1997). flowi;t�1 was centered and scaled on a per-population
basis so that it reflected deviations from each population’s
normal peak discharge.
We included two predictors of density-dependence

/i;t ¼ c0 þ c1nonativi;t þ c2elevindvii;t

c�Normalð0; 1Þ (6)

The normal priors for elements in the vector of regression coef-
ficients c were selected to be uninformative. Different priors
from Eqs. 5 and 6 reflect differences in scale between r and /.

TABLE 1. Definitions of symbols with references to expressions
where they are used.

Symbol Definition Expression

Data
yi,t,j,m Count of individuals observed each

survey pass
15

Yi,t,j Total observed individuals among
passes at a site

14

Yi,t Total observed individuals among all
sites

13

ai,t Translocated individuals 8
Ei Extent of population (length or area) 5
~Ei;t;j Extent of sample site (length or area) 11
tempi,t Water temperature 6
flowi,t Peak flow 7
nonativi,t Density of nonnative trout 7
ndvii,t Riparian vegetation condition 7
elevi Binary elevation indicator (above or

below 2,000 m)
7

Parameters
Ni,t Population size 2,8,5,8,2,13
ki Expected initial population size 8
Ri,t Realized population growth rate 2,3,5
ri,t Intrinsic population growth rate 5,6
b Effects of covariates on ri,t 6
φi,t Strength of density dependence 5,7
c Effects of covariates on φi,t 7
rRi Environmental stochasticity 3,3
lr Mean of rRi among populations 3
rr Standard deviation of rRi among

populations
3

ni,t,j Site abundance 2,14
υi,t,j Occupancy probability 2,11,13
s Sampling precision 11,12
pi,t,j,m Detection probability during pass m 13,14,15,16,17
Qi,t,j,m Probability of non-detection in prior

passes
15,16

d Decline in detection rates in each
subsequent pass

15,18

h Effects of covariates on first-pass
detection rates

15,18
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The variable ndvii;t is a satellite-derived measure of ripar-
ian vegetation condition based on the Normalized Difference
Vegetation Index (NDVI; Pettorelli et al. 2011). The variable
elevi is a binary indicator variable that is 1 for populations
below 2,000 m elevation and 2 for populations above
2,000 m. This represents two separate effects of ndvii;t above
and below the ecotone between sagebrush-steppe and mon-
tane forests within the Great Basin where riparian communi-
ties are dominated by willow–sedge or alpine forests,
respectively. We expected a weaker effect of density depen-
dence (i.e., increased carrying capacities) when riparian zones
were greener (i.e., higher NDVI) due to the association with
greater vegetation cover and primary productivity (Sellers
1985) and the corresponding influence on trout habitat via
stream shading, habitat complexity, and terrestrial food sub-
sidies (Wesche et al. 1987, Zoellick 2004, Baxter et al. 2005).
We expected this effect to be particularly strong for low eleva-
tion sites where there is greater riparian disturbance from cat-
tle grazing (Li et al. 1994, Saunders and Fausch 2012, 2017).
We calculated NDVI based on surface reflectance Landsat
images (Landsat 5, 7, and 8) using Google Earth Engine
(Gorelick et al. 2017). For each year, we identified the peak
NDVI value observed during the late growing season (day of
year 206–260) and calculated a spatial average with a 25-m
buffer of each population’s spatial extent. The variable ndvii;t
was centered and scaled on a per-population basis.
The variable nonativi;t is an index of nonnative trout den-

sity estimated based on field data obtained from project
partners. Nonnatives included rainbow trout (Oncorhynchus
mykiss), brown trout (Salmo trutta), brook trout (Salvelinus
fontinalis), and hybrids. We expected stronger density depen-
dence (i.e., reduced carrying capacities) as nonnative trout
densities increased (Seegrist and Gard 1972, Dunham and
Vinyard 1997, Dunham et al. 2002). Nonnative densities
were calculated by summing counts among all sites and
dividing by the total length of stream reaches sampled. This
did not account for imperfect detection or sampling error.
Years with missing data were common. In consultation with
experienced LCT biologists, we filled in missing data with
zeros for streams thought to be free of nonnatives. For other
streams, a moving weighted average was used to fill in miss-
ing data. The variable nonativi;t was scaled (divide by the
standard deviation among all years and populations) but
not centered, so that other regression coefficients reflected
conditions with zero nonnatives.
To accommodate data from historical fish translocations

for Lahontan cutthroat, we added the following modification:

~Ni;t�1 ¼ Ni;t�1 þ ai;t�1: (7)

This included additions to recipient populations (ai;t�1 [ 0)
and removals from donor populations (ai;t�1\0). We
plugged the supplemented ~Ni;t�1 into Eqs. 1 and 4 to pro-
vide a mechanism for populations to recover after extirpa-
tion from isolated streams, an observed pattern that could
not otherwise be represented by our Ricker model. We
assumed that translocated individuals survived and repro-
duced at the same rates as resident fish because we did not
have data to support better estimates. Effects of violating
this assumption would be minor.

The population time series must be initialized, and we
chose the year before the first year with field surveys (t ¼ 0)
for each population

Ni;0 �Poisson ðkiÞ
ki �Gamma ð1� 10�3; 1� 10�3Þ (8)

The Gamma distribution is the conjugate prior for the Pois-
son parameter and we chose the Gamma hyperparameters
to be minimally informative.

Sampling model.—The focus of the sampling model is to esti-
mate the probability ti;t;j that an individual from the popula-
tion would occupy a given sampling location j. This reflects
relative habitat suitability at a site compared to available habi-
tat throughout the population extent. This parameter relates
population sizes Ni;t from the process model to site abun-
dances ni;t;j from the observation model: Eðni;t;jÞ ¼ Ni;tti;t;j .
We estimated the probability ti;t;j that an individual would

occur at a given site as a binomial process

ni;t;j �Binomialðti;t;j ;Ni;tÞ (9)

where ni;t;j is the number of individuals from the total popu-
lation that occur at site j. We assume with Eq. 9 that individ-
uals could occur at multiple sites surveyed within a
population in a year. If we assume that individuals are
randomly distributed throughout the spatial extent of
each population (i.e., no habitat selection) then a good
approximation of the occurrence probability would be
ti;t;j ¼ Êi;t;j=Ei, where Êi;t;j is the spatial extent of sample site
j (e.g., area or length of site) and Ei is the total population
extent. For example, if site j represents 5% of the population
extent, we would expect about 5% of the population to
occur there.
Habitat selection and other processes resulting in non-

random distributions of individuals will cause deviations
from this expectation. We can account for this by modeling
occurrence probabilities ti;t;j as stochastic. Beta regression
(Ferrari and Cribari-Neto 2004) provides a good framework

ti;t;j �Betað�ti;t;js; ð1� �ti;t;jÞsÞ

�ti;t;j ¼ Êi;t;j

Ei

(10)

where �ti;t;j is the expected occurrence probability at site j
(i.e., mean of the Beta distribution) and s is the precision of
the Beta distribution. In practice, the Beta distribution must
be truncated to avoid values of one or zero where the density
may be infinity. We truncated the Beta distribution between
1 9 10�10 and 1–1 9 10�10. We used an uninformative uni-
form prior for sampling precision

s�Uniformð0; 1� 104Þ: (11)

Sampling precision s will be low when survey data suggest
that site abundances strongly deviate from the expectation
of ni;t;j ¼ Ni;t�ti;t;j. This would mean that site densities differ
from the overall population density (ni;t;j=Êi;t;j 6¼ Ni;t=Ei). If
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individuals were not selecting habitat or clustering for other
reasons, we would expect the overall population density and
all site densities to be equal and for sampling precision s to
be high.
So far, we have not included any survey data in the sam-

pling model. Remember, our data are counts of individuals
yi;t;j;m observed during each survey pass m at site j. Assum-
ing no individuals were captured at multiple sites, we also
know the total number of individuals observed among all
sites sampled in a given year Yi;t ¼

PJi;t
j¼1

PMi;t;j

m¼1 yi;t;j;m. This
total count Yi;t for a population in a given year is important
because it is the only observed data related directly to total
population size

Yi;t �Binomialð.i;t;Ni;tÞ

.i;t ¼ 1�
YJi;t

j¼1

1� ti;t;j ~Pi;t;j
(12)

where .i;t is the probability that an individual from popula-
tion i occupied any surveyed site in year t and was also cap-
tured in a survey. ~Pi;t;j is the probability that an individual at
site j was detected during one of the survey passes con-
ducted there (see Observation model).
Eq. 12 provides more information about the magnitude of

Ni;t than Eq. 9, but it relies on the additional assumption
that an individual can only be captured at one sampling
location in a given year. This information about the magni-
tude of Ni;t is important because the process model only
accounts for changes in Ni;t from year to year, not its overall
magnitude. Notice that Eqs. 9 and 12 have somewhat con-
flicting assumptions: that individuals could occur at multi-
ple survey sites within a year (Eq. 9), but they could only be
captured at one site (Eq. 12). Population sizes Ni;t would be
overestimated if individuals were frequently captured at mul-
tiple sites. Double-counting individuals is unlikely when
sample sites cover only a small portion of the population
extent, as in our case study.
For Lahontan cutthroat trout, we delineated the total

extent Ei of each population based on (1) population delin-
eations in the range-wide status assessment (USFWS, 2009),
(2) where the most upstream and downstream LCT were
observed, (3) elevation limits estimated by the topographic-
thermal niche model of Warren et al. (2014), (4) known
barriers to fish movement, and (5) expert opinion from
experienced field biologists. Lengths of sampled sites Êi;t;j

were obtained from field notes.

Observation model.—The focus of the observation model is
to estimate the probability pi;t;j;m that an individual present
during a site survey would be captured. There have been
observation models developed for many common survey
designs including mark–recapture surveys, repeated point
counts, and removal sampling. We will start with a model for
repeated point counts for simplicity and consistency with
work on N–mixture models (Royle 2004, Dail and Madsen
2010, Zipkin et al. 2014), and we will build toward a removal
sampling model customized for Lahontan cutthroat trout.
For repeated point count surveys (i.e., sampling with

replacement), observed counts yi;t;j;m for each survey pass m
at site j can be modeled as

yi;t;j;m �Binomialðpi;t;j;m; ni;t;jÞ

logitðpi;t;j;mÞ ¼ h0 þ h1xi;t;j;mþ

where pi;t;j;m are pass-specific detection probabilities, and
ni;t;j are true site abundances. To account for effects of site
conditions on detection probabilities, it is often desirable to
include site- or pass-specific covariates xi;t;j;m using logit
regression. As written, this model assumes that covariates
affect detection probabilities consistently at all sites and
populations, but this assumption could be relaxed using ran-
dom effects.
For Lahontan Cutthroat Trout, electrofishing surveys

included either single-pass or multi-pass removal sampling
where captured fish were temporarily removed from the
stream while additional survey passes were conducted (i.e.,
sampling without replacement). This provides additional
information about detectability because we know that fish
captured during the third pass were present but not detected
during the first and second passes. Block nets were usually
(but not always) placed at the upstream and downstream
end of stream reaches being sampled. Fish collected during
each pass were counted and their lengths recorded. We used
counts of age 1+ fish as our response variable. Age 1 + fish
were defined as those longer than 60 mm for surveys prior
to August and greater than 80 mm after August based on
age-length frequencies reported by Neville et al. (2016).
Removal sampling provides two pieces of data: pass-speci-

fic counts yi;t;j;m and the total number of fish Yi;t;j captured
among all survey passes at a site. Our first data model
relates true site abundances ni;t;j to total observed fish

Yi;t;j �Binomialð~Pi;t;j ; ni;t;jÞ

~Pi;t;j ¼ 1�
YMi;t;j

m¼1

1� pi;t;j;m
(13)

where ~Pi;t;j is the probability that a fish occupying site j
would be captured in any of the Mi;t;j survey passes con-
ducted there and pi;t;j;m is the capture probability for a fish
present during the mth electrofishing pass.
Our second data model relates total fish counts Yi;t;j to

pass-specific counts

yi;t;j;ðmÞ �MultinomialðCi;t;j;ðmÞ;Yi;t;jÞ

Ci;t;j;m ¼ pi;t;j;mQi;t;j;m

~Pi;t;j
:

(14)

We used parentheses notation in the indexing for yi;t;j;m and
Ci;t;j;m to indicate vectors with an element for each pass m
conducted at site j. Ci;t;j;m is the conditional probability that
a fish was captured during pass m and not during previous
passes, given that it was detected in one of the passes con-
ducted. Qi;t;j;m is the probability of not capturing a fish that
was present during all previous survey passes

Qi;t;j;1 ¼ 1

Qi;t;j;mjm[ 1
¼

Ym�1

�m¼1

1� pi;t;j;�m
(15)
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In contrast to the assumption of equal capture probabilities
among passes underlying many abundance estimators, it has
been demonstrated that detection rates for salmonids
decline with each subsequent electrofishing pass (Peterson
et al. 2004, Rosenberger and Dunham 2005). We specified
an exponential model to allow for this

pi;t;j;m ¼ pi;t;j;1edðm�1Þ

logitðpi;t;j;1Þ ¼ h0 þ h1draini;t;j :
(16)

We modeled first-pass detection probabilities (m = 1) as a
function of drainage area draini;t;j at sampled sites. We
expected detection rates to decline in larger streams. We are
not aware of other observation models for removal sampling
that include declining detection rates and also share infor-
mation among sites to bolster inference power, although
similar approaches have been used independently (Otis et al.
1978, Mantyniemi et al. 2005, Rivot et al. 2008).
We used uninformative normal priors for parameters in

the observation model

h0; h1; d�Normalð0; 10Þ (17)

We could have used informative priors for h0 and d based on
previous empirical estimates (Peterson et al. 2004, Rosen-
berger and Dunham 2005), but we chose instead to preserve
our ability to conduct an unbiased comparison of MPVA
parameter estimates to these previous studies. In practice,
pi;t;j;m cannot be zero because then Ci;t;j;m may be undefined,
so we set a limit where pi;t;j;m [ 0:001.

Model fitting and evaluation

Our MPVA model was implemented using JAGS software
(Plummer 2015) and the R package runjags (Denwood
2013, R Core Team, 2016). The fitted JAGS model (with
data and model code) is included as Data S1. We ran 10
chains in parallel on separate processing cores using the
“parallel” method of the run.jags() function. A total of
14,401,501 Markov chain Monte Carlo (MCMC) iterations
were run for each of 10 chains with a burn-in period of
1,000,000 iterations and a thinning rate of 500. A total of
26,804 MCMC samples were retained from each chain. Con-
vergence was assessed using the Gelman-Rubin statistic
(Gelman and Rubin 1992) from the R package coda (Plum-
mer et al. 2006). Gelman-Rubin statistics (also known as
potential scale reduction factors) with upper confidence lim-
its less than 1.1 were interpreted as indicating convergence
for a parameter (Gelman et al. 2013).
We evaluated model fit graphically by comparing posterior

predictions to the observed data: yi;t;j;m, Yi;t;j , and Yi;t. This is
a very weak test of the model’s ability to estimate population
sizes or extinction risks because (1) the model was fit to these
data and should predict them well, and (2) posterior predic-
tions are constrained by observed data in other parts of the
model (e.g., predicted ŷi;t;j;m is constrained by observed Yi;t;j).
Poor fit here would indicate a lack of basic error structure to
accommodate variation in the observed data.
We evaluated out-of-sample prediction accuracy using

both temporal and spatial cross-validations. Forecast accu-
racy was assessed by withholding the last year of data for

each population, refitting the model, and then forecasting
population dynamics to the last year of data. Spatial predic-
tion accuracy was assessed by witholding all data from the
five populations with the most data, refitting the model, and
then predicting population dynamics for each of the five
time series. The first year of data from these populations
was retained in the model to initialize the time series. For all
cross-validations, we compared observed survey data (with-
held from model fitting) to model-based predictions of sur-
vey results expected at those sites. This is a severe test of
model fit because it not only requires accurate estimates of
population sizes but also accurate predictions of survey
results at specific sites. For this reason, we focused our
cross-validation assessment on Yi;t because it aggregates
data among sites and is therefore least dependent on site-
specific predictions.
We summarized residuals for in-sample model fit and out-

of-sample cross-validations by measuring bias (mean of
residuals), imprecision (standard deviation of residuals),
and inaccuracy (mean of absolute residuals). Residuals of
Yi;t and Yi;t;j are not comparable among populations
because different numbers of sites may have been sampled
(i.e., 1–44 sites) and those sites may differ in size (i.e., 24–
200 m) and number of survey passes conducted (i.e., one to
six passes). Therefore, we focused on yi;t;j;m for summarizing
residuals because they are more comparable among popula-
tions and sites, but we still needed to standardize by the
length of sample sites to make them comparable. We stan-
dardized yi;t;j;m into units of fish captured per 30 m to reflect
the most common site length.

Forecasting

A fitted MPVA model can forecast population dynamics
and extinction risks by applying process model parameters to
future covariate scenarios. There are many ways to construct
time series to represent future covariate scenarios, but we
chose a simple resampling procedure based on historical con-
ditions. For each forecast year in a population, we randomly
selected a year from that population’s historical record and
used all covariate values from that year for the forecast year.
Resampling with replacement was repeated for each forecast
year to construct a future covariate time series for a popula-
tion. Hundreds or thousands of time series may be con-
structed with parameter values from each MCMC iteration.
This approach preserves relationships among covariates (e.g.,
warmer years tend to have lower stream flows) and random-
izes the sequence of environmental conditions from year to
year. This procedure assumes that future conditions will be
similar to historical conditions.
We created stand-alone R functions to simulate different

future covariate scenarios and to forecast population
dynamics based on MPVA parameter estimates (i.e., saved
MCMC samples). Scenarios could include reintroductions
of Lahontan cutthroat trout, changes in nonnative trout
densities, and changes in total population extent. Future
environmental stochasticity could also be manipulated to
represent different frequencies of extreme events (e.g., catas-
trophes or rare migration events).
We developed a graphical user interface (Data S2) using

the R packages shiny (Chang et al. 2017) and leaflet (Cheng
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et al. 2017). This provided managers and decision-makers
direct access to the model so they could estimate extinction
risks for any population and evaluate effects of different
environmental and management scenarios. Populations can
be explored on an interactive map; results from each popula-
tion can be easily accessed in graphs and tables (e.g., popula-
tion forecasts, demographic rates, environmental conditions,
raw data); and future scenarios can be manipulated from a
menu of buttons and slider bars.
The forecasting results presented here for Lahontan cut-

throat trout were based on a 30 year forecast period from
2015 to 2045 (see Appendix S1 for an example). We ran 100
forecast simulations for each of 53,610 MCMC samples
(thinned from the full model) for each population. Confi-
dence intervals for extinction risks represented variation
among the 100 simulations. See Data S2 for code and data.

Results

We detected covariate effects on demographic rates
and detection probabilities that were consistent with

expectations (Fig. 2, Table 2). Cold streams and high flush-
ing flows in the previous year were positively related to
recruitment into the current year’s population. Densities of
nonnative trout were negatively related to carrying capaci-
ties of Lahontan cutthroat trout populations (i.e., caused
/i;t to be more negative). Greener riparian vegetation had a
weak positive relationship with carrying capacities in low
elevation sagebrush steppe, but no effect in higher elevation
populations with forested catchments. The effects of water
temperature and nonnative trout were statistically signifi-
cant at the 95% confidence level, but effects of high flow and
riparian vegetation were not (Table 2).
As an example, we will present results from a population in

a 7.3 km segment of Abel Creek in the Santa Rosa Range of
northern Nevada (see Appendix S1). This stream had a mean
August water temperature of 13.2°C, which was about aver-
age among streams that we assessed. The most recent density
of nonnative trout at Abel Creek was 139 trout/km, higher
than most streams. Assuming future conditions will be simi-
lar to historical conditions for this population, MPVA esti-
mated its probability of extinction by the year 2045 to be

FIG. 2. Effects of covariates on intrinsic population growth rates ri;t, density-dependence /i;t, and first-pass detection rates pi;t;j;1.
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17.6% (16.8–18.5%). That assumes a constant density of 139
nonnative trout per kilometer. Increasing the density of non-
natives back to the highest historical level from this stream
(661 per km) raised the extinction risk to 22% (19.7–25.2%).
When we simulated the removal of nonnatives from Abel
Creek, extinction risk was reduced to 12.9% (13.7–14.6%).
Differences in extinction risks among populations were

associated with several factors (Figs. 3 and 4). Populations
with the most environmental stochasticity always had very
high extinction risks, and populations with the lowest envi-
ronmental stochasticity always had very low extinction prob-
abilities. Most, however, had moderate environmental
stochasticity and a range of extinction risks. The relationship
of extinction risk with other parameters was less pronounced,
but a few trends were observed (Fig. 3). Populations occupy-
ing more than 15 stream km usually had extinction risks
<50%. Almost all populations in streams with average sum-
mer water temperatures below 11°C had extinction risks less
than 50%. The median extinction risk for streams without
nonnative trout was 27% (quartiles = 14–42%), whereas the
median extinction risk was 47% (23–86%) for streams with
nonnative trout. Populations with high extinction risks were
almost always in streams with average August water tempera-
tures above 11°C or with less than 15 km of available habitat.
MPVA estimated detection rates for first survey passes in

average sized streams (63 km2 drainage) to be 45%, and to
decline to 27% in the second pass and 16% in the third pass
(Fig. 5). These results are consistent with previous experimen-
tal evaluations of detection rates for salmonids with backpack
electrofishing in streams (Peterson et al. 2004, Rosenberger
and Dunham 2005). Our results also indicated that detection
rates were significantly reduced in larger streams (Fig. 2).
Posterior predictions matched very well to the observed data

that were used for model fitting (Fig. 6, Table 3). One excep-
tion was the error structure in our observation model, which
did not quite accommodate all of the variation in the data (i.e.,
a few credible intervals do not overlap the 1:1 line in Fig. 6).
We explored the addition of an error term in the observation
model (i.e., beta regression for pi;t;j;1), but this led to identifia-
bility issues among observation error, sampling precision s,
and the intercept for detection h0, and so was not used.
As expected, cross-validation results showed fits that were

much worse than the fit to model data (Fig. 7, Table 3).
Spatial and temporal predictions were relatively unbiased,

but they were imprecise. Spatial cross-validations were most
imprecise because these predictions relied almost entirely
on covariates, whereas temporal cross-validations were
constrained by fish counts from previous years. Note that
spatial cross-validation used the first year of data to initial-
ize the time-series, but in reality MPVA predictions at new
locations will usually not have these data. If new locations
are being considered for reintroductions, the expected num-
ber of animals to be introduced can be used to initialize an
MPVA time series, otherwise an educated guess would be
required and this may affect prediction accuracy.
All root node parameters in the model converged. Popula-

tion-specific estimates of environmental stochasticity did
not converge for 28 populations due to insufficient data. We
used random draws from Half-Cauchy(lr, rr) to represent
environmental stochasticity in these populations, just as we
would for populations with no survey data.

DISCUSSION

We consider MPVA to be an adaptive management tool
(sensu Walters 1986). It provides explicit estimates of uncer-
tainty to support informed decision making and it requires
periodic updates with new data and model structures to keep
pace with improving ecological knowledge and changing
management needs. A fitted hierarchical MPVA can be used
in a variety of ways to meet conservation objectives. It can
help target data collection towards populations where uncer-
tainty is greatest, as more data from those populations will
reduce uncertainty when the model is updated. A fitted
model can use simulated covariate scenarios to evaluate
potential risk reduction due to management actions in real
populations (e.g., reintroductions, nonnative removals). It
can identify habitat characteristics related to population
declines and it can assess the risk posed by environmental
stochasticity when populations are small.

Model extensions

We focused on an observation model for removal sam-
pling, but various other observation models could be devel-
oped for hierarchical MPVA to accommodate other survey
designs such as point counts, distance sampling, multi-
observer surveys, or mark–recapture studies (Royle and

TABLE 2. Means and quantiles of posterior densities for MPVA parameters.

Parameter Mean 2.5% 5% 25% 50% 75% 95% 97.5%

b0 0.964 0.604 0.672 0.859 0.971 1.076 1.231 1.281
b1 �0.181 �0.343 �0.316 �0.236 �0.181 �0.125 �0.047 �0.021
b2 0.048 �0.076 �0.057 0.003 0.046 0.091 0.157 0.18
c0 �0.0036 �0.0048 �0.0046 �0.004 �0.0036 �0.0032 �0.0026 �0.0024
c1 �0.0119 �0.0219 �0.0198 �0.0145 �0.0114 �0.0088 �0.0057 �0.0049
c2low 0.00029 �0.00057 �4e�04 6e�05 0.00032 0.00055 0.00087 0.00097
c2high �8e�05 �0.00074 �0.00062 �0.00029 �7e�05 0.00014 0.00044 0.00054
lr 1.084 0.914 0.943 1.028 1.085 1.141 1.224 1.252
rr 0.302 0.137 0.156 0.23 0.291 0.361 0.485 0.533
s 307 279 283 297 307 317 332 336
h0 �0.219 �0.628 �0.566 �0.373 �0.226 �0.073 0.158 0.232
h1 �2.25 �2.99 �2.88 �2.52 �2.27 �1.99 �1.56 �1.4
d �0.518 �0.685 �0.661 �0.582 �0.522 �0.457 �0.359 �0.329
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Dorazio 2008). It may also be possible to apply different
observation models to subsets of data within an MPVA
when historical data sets were obtained using multiple sur-
vey designs (Shaub and Abadi 2011).
In the sampling model, it would be ideal to include site-

level covariates that influence occurrence probabilities. This
would essentially create population- and year-specific spe-
cies distribution models nested within the MPVA model.
Additional work is needed to extend our MPVA covariate
structure to account for habitat in un-sampled portions of a
population’s extent. A Dirichlet-Multinomial sampling
model may be more appropriate when individuals cannot
move among sites.
Within the process model, stage-structured models (Leslie

1945, Zipkin et al. 2014) or meta-population models (Han-
ski and Gilpin 1997) are obvious extensions that could
potentially be incorporated when appropriate data are avail-
able. The Ricker model could also be replaced with a

Beverton-Holt model (Beverton and Holt 1957) or logistic
growth model (Verhulst 1838). Another useful addition may
be region-based random intercepts or spatial block covari-
ance to constrain nearby populations to be similar to one
another or to covary through time (Cressie and Wikle 2011).

Challenges

Although MPVA benefits from sharing information
among populations, it still requires a substantial amount of
data. The minimum data requirements depend on the char-
acteristics of the biological system (e.g., degree of environ-
mental stochasticity, spatial extent of populations, longevity
of organisms), the level of model complexity (e.g., covariates,
variance structure, type of observation model), and strength
of priors. With informative priors, an MPVA model can be
fit with few data, but the effectiveness of such an exercise
will depend on the suitability of prior estimates.

FIG. 3. Extinction risks across all populations in response to population extent (Ei), environmental stochasticity (rRi), average stream
temperature (meanðtempi;1:T Þ), and the most recent observed density of nonnative trout (nonativi;T ). Vertical lines are thresholds beyond
which extinction risks tend to be less than 50% (Ei [ 15km; rRi\1:2; mean(tempi) < 11°C). Points represent individual populations. In the
boxplot, mid-lines represent median values, box edges represent interquartile ranges, and whiskers extend to the most extreme data points
not exceeding 1.5 times the interquartile range.
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It is difficult to include field-based habitat measurements
in MPVA because covariates must be measured consistently
among all populations and years. Missing data in the covari-
ate time series (e.g., years when field surveys were not con-
ducted) must be filled in and this introduces measurement

error. In some cases, noisy field measurements are adequate
because the signal is strong, as was the case with nonnative
trout in our example. In most cases, MPVA will rely heavily
on GIS and remotely sensed covariates. Fortunately, appro-
priate data are widely available (Dauwalter et al. 2017,
Gorelick et al. 2017).
Assessing model fit for hierarchical MPVA is a challenge.

A fair test would be to compare predicted population sizes to
observed population sizes or extinction outcomes, but it is
usually not possible to measure these response variables
directly (a problem for all PVAs). Posterior predictive checks
are often used to assess Bayesian model fit. These compare
model predictions to the observed data that were used to fit
the model. In our case, that included yi;t;j;m, Yi;t;j , and Yi;t.
For MPVA, this would usually indicate excellent fit to data in
the model, but it is a biased assessment of forecast accuracy
or spatial predictions, the two primary uses of MPVA. Spatial
and temporal cross-validations seem ideal for this, but they
provide pessimistic estimates of MPVA model fit because
they require the model to not only forecast population sizes
but to also accurately predict survey data at sample sites
within those populations. We focused on Yi;t for cross-
validation because it was less dependent on site-specific or
pass-specific predictions (i.e., it aggregated data among sites).

FIG. 4. Map of extinction risks for current Lahontan cutthroat populations.

FIG. 5. Detection rates pi,t,j,m expected during each electrofish-
ing pass in an average-sized stream (i.e., 62-km2 drainage).
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However, this was still particularly challenging when only a
few sites (or a single site) were surveyed or when individuals
had clumped spatial distributions within population extents.
We urge users of MPVA to explore the assumptions and

behavior of fitted MPVA models using covariate simulations
and sensitivity analyses. This is best done on a population-
by-population basis because changes in covariates and
model parameters may affect extinction risks very differently

among populations. For example in our LCT model, a pop-
ulation in a warm stream would be more sensitive to increas-
ing temperatures than a population in a cold stream.
Populations restricted to small stream segments may be
more sensitive to increases in environmental stochasticity.
We recommend graphical user interfaces for fitted MPVA
models so that users can explore the sensitivity of individual
populations to changes in covariates and model parameters.
This allows stakeholders to better understand the strengths
and weaknesses of the model overall, and to better interpret
results for specific populations where decisions are being
made.

Conclusion

Hierarchical multi-population viability analysis (MPVA)
provides data-driven estimates of extinction risks by

FIG. 6. Observed vs. predicted plots for Yi,t, Yi,t,j, and yi,t,j,m to assess fit of in-sample posterior predictions showing 95% credible
intervals. Panels to the right are zoomed in to the region with 95% of observed data.

TABLE 3. Summaries of residuals for in-sample posterior
predictions and out-of-sample cross validations for yi,t,j,m.

Prediction Bias Imprecision Inaccuracy

In-Sample 0 1.4 0.8
Temporal 0.8 7.3 3.0
Spatial �0.3 14.8 3.4
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connecting field observations to theoretical population
models. It harnesses the statistical power of sparse datasets
by sharing information among multiple populations. With
creative user interfaces, we can put these sophisticated mod-
els directly into the hands of managers and decision makers.
These tools can serve as a focal point for organizing people
and information, assessing uncertainty, and making collabo-
rative, well-informed decisions. At its best, hierarchical mul-
ti-population viability analysis can be a process that brings
together disparate datasets and the biologists who collected
them; it can help to formalize prevailing hypotheses and test
them against data; and it can provide an objective basis for
evaluating risks and prioritizing investments.
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