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Sampling bias overestimates climate change
impacts on forest growth in the southwestern
United States
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Climate−tree growth relationships recorded in annual growth rings have recently been the

basis for projecting climate change impacts on forests. However, most trees and sample sites

represented in the International Tree-Ring Data Bank (ITRDB) were chosen to maximize

climate signal and are characterized by marginal growing conditions not representative of the

larger forest ecosystem. We evaluate the magnitude of this potential bias using a spatially

unbiased tree-ring network collected by the USFS Forest Inventory and Analysis (FIA) pro-

gram. We show that U.S. Southwest ITRDB samples overestimate regional forest climate

sensitivity by 41–59%, because ITRDB trees were sampled at warmer and drier locations,

both at the macro- and micro-site scale, and are systematically older compared to the FIA

collection. Although there are uncertainties associated with our statistical approach, pro-

jection based on representative FIA samples suggests 29% less of a climate change-induced

growth decrease compared to projection based on climate-sensitive ITRDB samples.
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Projected increases in global temperatures for the twenty-
first century exceed the variability of the past several cen-
turies1. Semi-arid forests, in particular, have been identified

as vulnerable to global warming2,3. Rising temperatures and
associated increasing evaporative demand4 will increase the fre-
quency, intensity, and duration of droughts in many semi-arid
regions. Resulting declines in tree growth and vigor5,6 potentially
increase tree vulnerability to insect attack, contributing to large-
scale outbreaks that amplify the magnitude and scale of mortality
events7. Warmer and drier conditions, combined with a history of
fire suppression, have increased wildfire activity8 and the poten-
tial for high-severity fire9. Cumulatively, these effects have the
potential to reduce the carbon sink strength of semi-arid forests,
along with other ecosystem services that they provide. Although
increasing forest vulnerability with sustained global warming is
generally supported, particularly in water-limited areas, there are
few direct sources of information to quantify the magnitude of
climate change impacts.

Tree-ring networks provide rich information on tree growth
response to environmental variation at regional to hemispheric
scales10,11 and have recently been used to forecast future forest
growth. Growth reductions of up to 70% have been projected for
forests of the interior western U.S. in the second half of the
twenty-first century compared to the first half of the twentieth
century12. Across the southwestern U.S., a tree-ring-derived
“forest drought stress index”, which correlates well with tree
mortality, bark-beetle outbreaks, fire, and remotely sensed pro-
ductivity, has been projected to be more severe by the 2050s than
the most severe 6-year drought conditions of the last 1000 years5.

However, it is recognized that climate sensitivity estimated from
tree-ring records in the International Tree-Ring Data Bank
(ITRDB) may overestimate forest vulnerability to climate
change12,13, because many of the samples in the ITRDB are the
result of targeted sampling of old trees on ecologically marginal
sites in order to maximize climatic signal in ring-width variation
(c.f. “The site and tree selection principles of dendrochronology”,
Fig. 1)14. In fact, the ecological and geographic distributions of

individual tree species encompass a range of climatic and edaphic
conditions (e.g., deeper soils, cooler aspects) across which climate
may be a more or less important factor limiting tree growth14–16.
Representative sampling across these gradients is necessary to
characterize the response of a forest ecosystem to climate variability.

In this study we analyze and quantify the consequences of
targeted sampling of old trees on marginal sites by comparing
ITRDB chronologies from the U.S. Interior West against sys-
tematically sampled tree-ring collections. Currently the most
extensive systematically sampled tree-ring collection in the
region, the U.S. Forest Service Interior West-Forest Inventory and
Analysis (FIA)17 dataset includes 4655 trees from permanent
forest inventory plots. The FIA plot network is designed to
representatively sample all forested lands of the U.S., with one
plot per 2428 ha, resulting in a dataset that is, to a large degree,
spatially and ecologically unbiased18. We augment the FIA
sample with two densely sampled, landscape-scale collections
including 828 trees in Arizona and New Mexico19,20 (Fig. 2, cf.
Methods section “Tree-ring data”) and refer to this combined
dataset as the FIA or “inventory” collection.

We analyze ring-width time series from forest inventory vs.
targeted (ITRDB) samples, evaluating the expectation that both
ring-width variability and climate sensitivity are higher in the
targeted sample. Our analyses focus on some of the most wide-
spread, important, and densely sampled tree species in the
Interior West—Douglas-fir (Pseudotsuga menziesii var. glauca,
PSME), ponderosa pine (Pinus ponderosa, PIPO) and common
pinyon (Pinus edulis, PIED). We investigate possible explanations
for differences in year-to-year ring-width variability between the
two samples, with age, macro-site, and micro-site selection as
alternative (but not mutually exclusive) hypotheses (Fig. 1).
Finally, we demonstrate how much future tree growth projections
across the southwestern U.S. differ when based upon targeted, old
trees vs. the representative, inventory samples. That is, we address
the following three questions: (1) Do targeted vs. forest inventory
tree-ring collections differ in growth variability and climate sen-
sitivity? (2) What factors explain the differences? (3) What are the
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Fig. 1 The site and tree selection principles of dendrochronology. The majority of tree-ring time series in the International Tree-Ring Data Bank (ITRDB)
were sampled to maximize chronology length and climate sensitivity. a Comparison of the elevation at which three important species (PIED= Pinus edulis,
PIPO= Pinus ponderosa, PSME= Pseudotsuga menziesii) were sampled in Arizona, Colorado, New Mexico, and Utah. A bias towards sampling low-elevation
sites (therefore, warmer and drier) is evident for ITRDB samples of PSME compared to the representative inventory (Forest Inventory and Analysis; FIA)
dataset, leading to a “macro-site selection bias”. b Selection of trees on steep, rocky slopes with little soil water holding capacity leads to greater ring-width
variability (modified from Fritts14). We hypothesize that this sampling practice—the “micro-site selection bias”—explains higher standard deviation of ring-
width index in the ITRDB collection (Fig. 2), even after accounting for elevation, age, and other factors. Vertical bars show the age distribution of the two
collections in 1995. Tick marks indicate the median in each density strip
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implications for projection of future forest growth in response to
climate-related stress?

Results
Growth variability and climate sensitivity. We assessed the
growth variability of trees at each ITRDB sampling site over the
1930–1995 period, measured as the standard deviation (SD) of
detrended ring-width time series, and compared this against
growth variability (SD) of all FIA tree-ring time series of the
same species within a search radius of 100 km. Less variability
indicates more stable growth—i.e., a weaker response to
temporally variable environmental conditions (macroclimatic
variation)21.

Throughout the interior west, targeted samples of all three
species show higher growth variability compared to nearby forest
inventory samples (Fig. 3a). Mean growth variability (SD) of
Douglas-fir is 9 ± 20% (mean ± standard deviation) higher in the
ITRDB collection than in the FIA collection, with no evident

geographic trend. Mean growth variability of common pinyon
and ponderosa pine were 11 ± 18% and 14 ± 26% higher,
respectively, in the ITRDB sample, and this difference was
significantly greater in the south (interaction effect between
database and latitude; p < 0.001, n= 2648 and 4178, respectively).
In addition, growth variability increased with decreasing eleva-
tion, from north to south, and west to east, i.e., all in the direction
of increasing aridity15, as well as with increasing tree age
(Supplementary Figure 1). Common pinyon, which occupies a
smaller geographic area and ecological niche than the other two
species, showed no influence of latitude on growth variability
when sampled on forest inventory plots.

We then compared climate sensitivity of the ITRDB vs. FIA
collections, i.e., partial regression coefficients from multiple linear
regressions explaining tree-level relative ring-width variation as a
function of climate data. We used climate variables known
to explain ring-width variation in the southwestern United
States: mean monthly maximum temperature of the
antecedent fall (August to October), current summer temperature
(May to July), and cool-season precipitation (November to
March)5,13,14,16.

Ring-width variation across the interior western U.S. is better
explained by and is more responsive to climate variation in the
great majority of targeted samples compared to nearby forest
inventory samples (larger coefficient of determination and steeper
regression slopes; Fig. 4). ITRDB ponderosa pine and common
pinyon are significantly more negatively sensitive to antecedent
fall temperatures compared to nearby forest inventory samples
(average difference between regression coefficients: −0.02,
p < 0.001, n= 88 and 63, respectively; Fig. 4a), whereas
Douglas-fir shows predominantly positive differences north of
42°N (approximately the southern border of Montana, Supple-
mentary Figure 2a). Targeted samples of Douglas-fir are also less
negatively sensitive to summer temperatures compared to forest
inventory samples (Supplementary Figure 3). In fact, in the
northern Rockies (north of 42°N) they tend to be much more
positively sensitive to temperature (Fig. 4c and Supplementary
Figure 2b)—which may reflect sampling aimed at snowpack
reconstruction22—in spite of the fact that the two samples do not
differ in elevation in this region (p= 0.59, n= 30). Targeted
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Fig. 3 Comparisons of growth variability in ITRDB vs. FIA (targeted vs. representative forest inventory) time series. a Distribution of the standard deviation
(SD) of ring-width index (RWI) time series of the three focal species, with FIA vs. ITRDB data in left vs. right density strips, respectively. Species
abbreviations (PSME, PIPO, and PIED) follow Fig. 1. b Difference between the median SD of ITRDB vs. surrounding FIA time series (ITRDB median SD minus
FIA median SD). Contrasts are filled blue if the median ITRDB SD is significantly greater than the median FIA SD; red if the difference is significantly
negative (p < 0.01, two-sided Wilcoxon test). The smoothed regression line is the expected difference between the median SD of the two samples with
respect to latitude, with 95% confidence intervals
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Pseudotsuga menziesii
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Fig. 2 Geographic distribution of targeted samples (ITRDB; red) vs.
representative forest inventory samples (FIA; blue)
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samples of ponderosa pine are generally more negatively sensitive
to summer temperatures. Common pinyon and ponderosa pine
samples in the ITRDB are, on average, more than twice as
sensitive to winter precipitation (p < 0.001, n= 63 and 88,
respectively), with the strongest contrasts in Colorado (Fig. 4b).
ITRDB Douglas-fir are on average 17% more sensitive (p < 0.05,
n= 128) with no clear geographical pattern.

Considering just the forest inventory sample, all three species
are similarly sensitive to warm season maximum temperatures.
We found a stronger negative impact of antecedent fall
temperature southward and eastward for Douglas-fir and
ponderosa pine (p < 0.001, n= 6127 and 4178, respectively) and
stronger negative impacts of summer temperature on these two
species eastward (Fig. 4c). All three species are strongly positively
sensitive to winter precipitation, with a significant trend towards
greater sensitivity in the south and east. Older trees are
significantly more sensitive to all three climate parameters
(Supplementary Figure 3).

Climate explains on average 12% more variance in the targeted
samples of common pinyon and 10% for ponderosa pine (both
p < 0.001, n= 2648 and 4178, respectively) compared to forest
inventory samples. This metric of climate sensitivity, explained
variance, increases significantly towards the south for ITRDB
samples of Douglas-fir and ponderosa pine (p < 0.001, n= 6127
and 4178, respectively, Fig. 4d). The geographic trend in R2 was

weak but significant in the FIA sample, resulting in a strong
gradient in the contrast of explained variance for Douglas-fir and
ponderosa pine with decreasing latitude (Fig. 4d and Supple-
mentary Figure 2d).

Projection of future growth for the U.S. Southwest. Differences
in climate sensitivity between the targeted vs. representative
samples are expected to yield different projections of future
tree growth in response to changing climate. To illustrate this
point, we used the simple multiple regression model above to
project tree growth forward. We aggregated all time series
south of 38°N (the southern borders of Colorado and Utah)
into two regional chronologies (one ITRDB and one FIA), as
in Williams et al.5. The two chronologies are strongly corre-
lated (r= 0.93, 1902–2008, Fig. 5), with comparable 1- and 2-
year lag effects (1-year autocorrelation of 0.368 vs. 0.408 in the
ITRDB vs. FIA time series, and 2-year partial autocorrelation
of 0.270 vs. 0.241, respectively). However, the chronology
derived from targeted sampling has more pronounced varia-
bility (SD of 0.29) compared to the chronology derived from
forest inventory sampling (SD of 0.20). Strikingly, this dif-
ference in SD translates to approximately 50% greater climate
sensitivity of the ITRDB chronology compared to the FIA
chronology; regression slopes against cool season precipitation
and warm season maximum temperatures were 59 and 41%
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Fig. 4 Comparison of median climate sensitivity and explained variance of targeted (ITRDB) vs. forest inventory (FIA) samples. Symbol size indicates the
absolute magnitude of a−c sensitivity to three climate variables (regression slopes) and d explained variance (R2) of ITRDB samples, with positive
contrasts (ITRDB minus FIA) in blue, and negative contrasts in orange to red. Filled symbols denote significant differences at p < 0.01 (two-sided Wilcoxon
test) of the FIA distribution surrounding each ITRDB site. R2 contrast values range from −0.30 to +0.41, while slope contrasts range from −0.18 to +0.23
(temperature) and −0.03 to +0.06 (precipitation)
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steeper (p < 0.001 and p= 0.035, n= 214), respectively:

ITRDBð Þ ring width index ¼ 0:161 ´ ln precipð Þ � 0:139 ´ tmax;

R2
adj ¼ 0:647;

ð1Þ

FIAð Þ ring width index ¼ 0:101´ lnðprecipÞ � 0:098´ tmax;

R2
adj ¼ 0:607:

ð2Þ
That is, the difference in sensitivity to cool season precipita-
tion between ITRDB and FIA chronologies is 0.06
(0.161 minus 0.101), which is 59% of 0.101. Although the
average correlation between tree-level time series differs sub-
stantially between the ITRDB and FIA samples (rbar=0.328
vs. 0.202, respectively), climate predictors explain nearly the
same amount of variance in the two regional chronologies

R2
adj ¼ 0:647 vs:0:607

� �
.

We used CMIP5 projections of future decadal averages of these
two climate variables to project relative radial growth across the
U.S. Southwest. A strong decline is projected based upon either
tree-ring sample throughout the remainder of the twenty-first
century. However, the magnitude of the projected growth decline
differs substantially: by the end of the twenty-first century, the
median of 15 different general circulation models projects an
average growth rate decline of forest inventory trees of about 75%
compared to the twentieth century mean, whereas the median
projection for the targeted trees is below 0% (106% decrease).
Thus, the projection based on forest inventory samples shows
29% less of a growth decline compared to the projection based on
targeted samples (106–75= 31; 31/106= 29). Equivalently, we
find a 41% stronger growth reduction when projection is based on
the climate-sensitive trees of the ITRDB compared to the
representative forest inventory sample (31/75= 41; Fig. 5).

Replacing precipitation and mean maximum temperature with
climatic water balance and vapor pressure deficit as predictors of
tree growth increases the projected relative difference in growth
decrease by just 1% (Supplementary Figure 4).

Discussion
Large-scale inference based upon tree-ring time series sampled
from old, targeted trees overestimates the impact of climate
change, especially on southwestern U.S. forest growth. This is not
a surprise—it has been known for half a century that trees at the
arid edge of the forest biome are more sensitive to climate var-
iation—i.e., their growth correlates more strongly with climate
and varies from year to year more strongly15,16. This observation,
made by one of the founding fathers of dendrochronology (H.C.
Fritts), has been the basis for targeted sampling by den-
droclimatologists for decades. That our tree-by-tree analysis
revealed significant differences between ITRDB and FIA samples
in the variance explained by climatic parameters verifies that the
practice of targeting open-grown trees occurring under ecologi-
cally marginal conditions, in order to maximize climate signal
with a few samples, achieved that goal.

We found evidence in support of three hypotheses for the
observed differences in growth variability and climate sensitivity
between the FIA and ITRDB collections: First, Douglas-fir ITRDB
sites in the U.S. Southwest are located at noticeably lower ele-
vation than the representative FIA collection (Fig. 1a), reflecting a
tendency to target sites that are marginal with respect to its ele-
vation distribution, which we term the “macro-site selection bias”.
Second, across all three species, there is a striking age difference
between the two samples, with the average cumulative ring count
of FIA time series 77 years compared to 274 years for ITRDB time
series (Fig. 1b). Age is a significant predictor of radial growth
variability and climate sensitivity (Supplementary Figure 1 and 3).
Age- or size-related differences in climate sensitivity have been
reported in several studies, and have been attributed, among other
factors, to differences in water and nutrient translocation
mechanisms between young (small) and old (large)
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arising from GCM-projected future climate. Asterisks show the significance level of differences in projected future tree growth based upon the two
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axis) in gray (ITRDB) and red (FIA) shaded areas below the chronologies (right-hand y axis)
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individuals23,24. Third, in the case of ponderosa pine and com-
mon pinyon, growth variability (SD) of ITRDB time series is
significantly greater than growth variability of the forest inventory
time series, even after controlling for elevation, age, latitude,
longitude, climate normals, and two-way interactions between
these factors (Supplementary Figure 1). We hypothesize this is
caused by targeted sampling of trees found on steep, rocky slopes
with less soil water capacity (as illustrated in Fig. 1b, and Fritts
et al.15, Fig. 4), which we refer to as the “micro-site selection
bias”. Indeed, dendrochronologists have long paid attention to
fine-scale site characteristics like landscape position, aspect, slope,
and soil depth that affect ecohydrological and micro-
meteorological characteristics (runoff, radiation, snow responses,
wind, and humidity), driving inter-annual variability in ring
widths, which are not captured by coarse-scale climate predictors.

There was clear agreement between the FIA and ITRDB
chronologies that the expected net effect of climate change on tree
growth is strongly negative (Fig. 5). But by quantifying the bias of
the ITRDB towards climate-sensitive trees, we can put projected
forest growth decrease based upon ITRDB samples12,13 in context
—an unbiased context that suggests a considerable upward cor-
rection (29% in our model) for southwestern U.S. forests. The
marginal conditions under which ITRDB samples have been
collected represent a very small fraction of the distribution of
forest conditions across the U.S. Southwest. The projection of
negative growth in the future for this subset of trees suggests that
mortality may occur at range margins, consistent with the pre-
diction of range retractions made by climate envelope or species
distribution models25. However, heterogeneity in the strength of
tree growth response to climate variation, and how that hetero-
geneity is arranged on landscapes, suggests reduced landscape-
scale vulnerability of tree growth to drought stress. Decreased
growth variability, in turn, has been linked to lower risk of tree
mortality26,27, implying that a representative sample of south-
western U.S. trees may be less vulnerable to mortality than trees
growing at the arid edge of their distribution.

Though we have been able to compare projections of future US
Southwestern tree growth with respect to the climate-sensitive
nature of the ITRDB sample, there remain important
caveats associated with our analysis. The first analytical step—
detrending—is intended to remove the long-term trend of
decreasing ring-width with increasing bole diameter that is
imposed by geometry. However, this procedure also removes
environmental signals that vary on time scales longer than dec-
adal to multi-decadal, including climate trends, possible
increasing water use efficiency associated with CO2 fertilization,
other plastic physiological responses, and stand dynamics.
Because we neither model these drivers explicitly nor model
absolute growth rates, we cannot parse their effects or investigate
how they will interact to determine future tree growth. Further,
our model only accounts for linear responses of tree growth to
climate, i.e., it assumes stationarity of responses, when it is likely
that trees’ climate-growth responses will change as they experi-
ence increasingly unusual climatic conditions, changing phenol-
ogy, and extreme events. True growth responses to climate are
also likely to deviate from our statistical predictions in the face of
no-analog combinations of climate variables, including beyond
temperature and precipitation, novel covariance structure of the
array of plant-relevant environmental variables that influence
evapotranspiration. For all these reasons, we draw attention to the
difference between projections, caused by biased sampling (poor
representation of elevation, age structure, and micro-site condi-
tions). Finally, we point out that our projection does not account
for increased vulnerability to insect attack and increased risk of
fire, which both have the potential to strongly and suddenly
change the carbon source vs. sink balance of forests.

A remaining question is whether a similar systematic climate
sensitivity bias exists in tree-ring networks in other parts of the
world and, if so, at what magnitude. On the one hand, the

potential for bias may be greatest at the arid edge of the forest
biome, and the problem may be limited to certain places, like the
southwestern United States. Supporting this, Klesse et al.28 found
no significant difference, between targeted (ITRDB) and non-
targeted samples, in the sensitivity of tree growth to May−August
temperatures in more mesic forests of Central and Northern
Europe. On the other hand, we see an indication of positive
summer temperature sensitivity bias in ITRDB Douglas-fir sam-
ples in the northern Rockies, so there seems to be the potential for
other kinds of bias in other regions. Absent information
regarding the original purpose of the sampling, we advise caution
when using ITRDB chronologies. For example, the environmental
space sampled by ITRDB collections (e.g., mean annual tem-
perature and precipitation, elevation) should be compared against
the distribution of environmental conditions of the forested study
area of interest, to evaluate how representative (at the macro-site
scale) those sites might be—keeping in mind that micro-site and
age biases are likely to be present as well.

The ITRDB is a treasure trove for records of tree growth
variability, both in space and time. However, in order to answer
broad-scale ecological questions, and improve our understanding
of forest vulnerability to climate change across forest biomes,
dendrochronological sampling designs must be more repre-
sentative—not just within a site29, but also spatially by covering
an ecological gradient30,31 or with a systematic grid20,32. We are
optimistic that the establishment of a new data standard on the
ITRDB (TRiDaS33) that allows additional information about sites
(slope, aspect, stand density, soil depth, etc.) and trees (diameter,
height, pith offset, etc.) to be readily shared will improve the value
and versatility of publicly available data for ecological forecasts of
forested ecosystems. Such metadata will enable explicit modeling
of the many influences on tree growth, help to close the scaling
gap between gridded climate products and the growth conditions
experienced by individual trees, and ultimately lead to better
estimates of the sensitivity of forest ecosystem productivity to
changes in climate.

Methods
Tree-ring data. We focused our analysis on the three species of the interior
western U.S. most well-represented in publicly available tree-ring archives (the
International Tree-Ring Data Base, ITRDB): Pseudotsuga menziesii var. glauca
(Douglas-fir), Pinus ponderosa (ponderosa pine), and Pinus edulis (common pin-
yon). Our data consisted of two independent collections: (1) tree-ring time series
downloaded from the ITRDB as of December 2016, and (2) tree-ring time series
developed as part of the Interior West Forest Inventory and Analysis (FIA) Pro-
gram, sampled in a gridded fashion over all forested areas17. The latter collection
was complemented by two additional inventory-style datasets from (a) the Pina-
leño Mountains in southeastern Arizona, where sampling was performed in a
systematic grid of 54 0.05-ha circular plots spaced 1 km apart34, and from (b)
northeastern Arizona and northwestern New Mexico, where a subset of forest
inventory plots on the Navajo Nation was sampled along a climate gradient19.

Interior West-FIA tree-ring data. The Interior West Forest Inventory and
Analysis (IW-FIA) Program encompasses the states of Arizona, Colorado, Idaho,
Montana, Nevada, New Mexico, Utah, and Wyoming, U.S.A. Tree-ring data used
in this study originated from two inventory designs, periodic (late-1980s – 2001), in
which a state was typically inventoried over a period of a few years and not
revisited again for a decade or more, and annual (2000 to present), in which the
systematic grid of plots is divided into equal, interpenetrating panels of plots that
are measured on a continuous 10-year rotation in the interior western states. While
periodic FIA inventories covered all forest types in the Interior West at high spatial
density (i.e., generally no spatial bias), they were not temporally balanced. Different
parts of a given state were measured over the course of a periodic inventory, and
different states were inventoried at different times. The current and ongoing FIA
annual design is also geographically unbiased, but the interpenetrating panel design
simultaneously creates a temporally unbiased sample35 across the United States.
This sampling approach is designed to infer population-level estimates of the
Nation’s forests36 through the use of statistical estimators (e.g., forest area, tree
volume, or trees per area) applied to plot-level representation, which is approxi-
mately one plot per 2428 ha18. As part of the IW-FIA data collection program, a
single increment core per tree was collected from a subset of trees on plots for the
purpose of determining stand age, periodic growth rates, and potential productivity
(see ref. 17 for details). Cored trees represented the dominant species on the plot in
terms of size (i.e., diameter) and forest type at each location. The number of trees
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cored per plot across the Interior West varied from one to as many as 14. For the
three species in this study, the average number of cored trees per plot was 1.4.
While the tree-ring data in this study have extraordinary spatial representation, our
analysis is limited to series that were crossdatable (i.e., some samples were either
too complacent or had too many missing rings for year assignments to be made
with confidence), and this introduces some (but only minor) filtering of the ori-
ginal sample. We did not include cores from New Mexico in our analysis, because
the processing (crossdating and measuring) of those samples is ongoing and cannot
yet be considered representative. In total, we included 1670 Douglas-fir samples
from 1239 plots, 1830 ponderosa pine samples from 1156 plots, and 717 common
pinyon samples from 603 plots.

Tree-ring data from the Pinaleño Mountains. The Pinaleño Mountains in
southeastern Arizona are the tallest of the Madrean Sky Island ranges, spanning a
vertical gradient of more than 2100 m, from Chihuahuan mixed-desert shrubland
at 1150 m to spruce-fir forest up to 3268 m. Tree demographic and fire history
information across the landscape was collected on a systematic grid of 54 0.05-ha
circular plots spaced 1 km apart, established between 2006 and 2009 (c.f. Figure 2
in ref. 20). Increment cores were collected from all trees with diameter at breast
height (DBH) ≥ 19.5 cm throughout each plot, and from trees between one and
19.4 cm DBH on a nested sub-plot equal to one third the area of the full plot (0.017
ha). More detailed information on sampling is found in ref. 34. We included 43
ponderosa pine samples from 12 plots, and 316 Douglas-fir samples from 43 plots
from this study.

Tree-ring data from the Navajo Nation. Tree-ring collections from the Navajo
Nation in northeastern Arizona and northwestern New Mexico were sampled
within a systematic grid of 272 continuous forest inventory (CFI) plots installed
between 1974 and 2005 monitored jointly by the Bureau of Indian Affairs and
Navajo Forestry Department. This plot grid encompasses ~250,000 ha of largely
ponderosa pine-dominated forest, with areas of piñon-juniper and dry mixed-
conifer. Each CFI plot consists of three 0.1 ha circular subplots. As described in
ref. 19, our subsample includes 36 plots randomly selected across a climate gradient
consisting of topographic relative moisture index37 and elevation. At each plot,
5–15 trees of one to three target species (ponderosa pine, Douglas-fir, or common
pinyon) were cored perpendicular to slope at 20–50 cm above ground level. We
included 469 trees (908 samples) from 33 plots with ponderosa pine, 13 plots with
Douglas-fir, and 11 plots with common pinyon.

Sample processing. All increment cores and cross-sections were mounted and
surfaced following standard procedures38. Samples were crossdated, ensuring the
accuracy of years assigned to annual rings, using a combination of visual pattern
matching, skeleton plots, and statistical verification using the program COFE-
CHA39 on ring widths measured on a Velmex TA system (0.001 mm precision)
and recorded in the software program Measure J2X or Tellervo40.

Climate data. We used climate data from ClimateNA v5.40 41 (http://tinyurl.com/
ClimateNA), which are based on CRU TS3.22 42 gridded historical monthly data,
downscaled and interpolated to adjust the mean and variance of the original CRU
time series to elevation- and location-specific values. Future climate projections
were taken from 15 Atmosphere-Ocean General Circulation Models of the CMIP5
multimodel dataset, i.e., the IPCC Assessment Report 5 (2013). We focus on cli-
mate normals for the 2010–2039, 2040–2069, and 2070–2099 periods under
emission scenario RCP8.5, an extra 8.5Wm−2 of energy retained by the atmo-
sphere compared to the pre-industrial baseline.

Statistical analysis. Because tree size and forest stand information is not available
on the ITRDB, we were constrained to analyze tree growth in relative terms. That
is, raw ring widths were detrended prior to analysis, controlling for the ontogenetic
trend of decreasing radial growth with increasing bole diameter, as well as possible
effects of stand dynamics. The dependent variable is thus tree growth in a given
year relative to an expected value, following one of several possible detrending
methods. Results presented in the main manuscript are based on ratio-detrended
ring-width time series using a modified negative exponential curve (substituted by
straight line if a curve yielded a poor fit to raw data). Results from two alternative
methods of detrending, i.e., spline-detrending with a 50% frequency-cutoff at 30
and 100 years—with and without prewhitening, i.e., the removal of temporal
autocorrelation by fitting an autoregressive (AR) or autoregressive moving average
(ARMA) model to the original time series—can be found in the supplementary
material (Supplementary Figures 1, 5–7). Conclusions were robust to these alter-
native detrending choices.

We refrained from performing analyses at the site level, because the number of
trees sampled per FIA plot is low (usually 1–2). Instead, we took a tree-level
approach, comparing geographically specific distributions of values43. We used
1930–1995 as the period of analysis, because 1995 is the most common last year in
the FIA core collection, at which time median FIA tree age is ~80 years. Ring-width
time series that had less than 30 years of overlap with this window were excluded
from analysis. Standard deviation was calculated for each detrended time series.
Using multiple linear regression, ring-width index of each time series was predicted

as a function of total cool season precipitation (previous November to current year
March), mean maximum temperatures in fall of the previous year (August to
October), and summer of the current year (May to July) to obtain estimates of the
sensitivity of relative growth to these three climate variables (i.e., regression slopes,
β’s), which are well-established as variables influencing tree growth in the
southwestern United States5,10,13. Each regression was associated with a coefficient
of determination (R2), another metric of the strength of the relationship between
climate and tree growth.

We compared these statistics—standard deviation, regression slopes, and
coefficient of determination—by contrasting the median value of each across all
ITRDB time series at a given sampling site against the median value across all FIA
time series within a radius of 100 km of the focal ITRDB site (ITRDB minus FIA).
Thus, the comparison is geographically local. Significance of these contrasts was
tested using a bootstrapped two-sided Wilcoxon test (1000 iterations) to control for
differences in the number of time series between the ITRDB vs. FIA collections. We
discarded those ITRDB locations with less than ten FIA samples of the same
species within a radius of 100 km. Using climatic water balance (precipitation
minus potential evapotranspiration) instead of precipitation and water vapor
pressure deficit instead of mean maximum temperature on a subset of the data did
not alter the conclusions presented herein.

We conducted an additional analysis that evaluated possible drivers of growth
variability per species across the full dataset (i.e. not a local comparison). We used a
linear mixed-effects regression approach that modeled variation in the SD of
detrended ring-width time series as a function of age (mean cumulative ring count
during the 1930–1995 period), database (i.e. ITRDB vs. FIA), and geographic as
well as climatic parameters:

SD � databaseþ lnðageÞ þ latitudeþ longitude þ elevationþ
mean cool season precipitationþmean dry season mean maximum temperature

:

ð3Þ

The mean climate parameters cool season precipitation (previous November to
current year March), and dry season mean maximum temperatures (mean of
previous year (August to October), and summer of the current year (May to July))
were calculated over the 1930–1995 period. The model included all possible two-
way interactions and accounted for repeated values per site via site random effects
(modifying the intercept). Model comparison and selection was performed using
the dredge function in the R package MuMIn44. We selected the best model based
on the Akaike Information Criterion (AIC). If multiple models were within two
units of AIC, we chose the model with the lowest number of parameters. This
analysis was repeated using a negative exponential, a 30-year spline, and a 100-year
spline to detrend the time series—each with and without prewhitening—to test
whether differences in detrending method or temporal autocorrelation influenced
the results of the analysis. We also analyzed variation in the three partial regression
slopes (β’s) and explained variance (R2) of the regressions predicting relative tree
growth as a function of climate, using the same model shown in Eq. 1
(Supplementary Figure 3). We report results from this analysis only based on time
series detrended with a negative exponential curve, as there was no notable effect of
the choice of detrending on predicting SD. All statistical analysis was carried out in
R using the packages dplR45 and lme4 46.

U.S. Southwest aggregation. For the projection of future growth across the U.S.
Southwest, we included ITRDB and FIA tree-ring time series south of 38°N,
mirroring the study area of Williams et al.5, after discarding the ITRDB locations
with less than 10 FIA samples of the same species within a radius of 100 km. We
then averaged all ITRDB time series into a regional chronology by applying a
geographically weighted mean, which takes into account the mean distance of each
site to all other sites, giving more weight to samples from areas with few chron-
ologies. Geographic weighting was calculated and applied in each year to account
for varying site replication over time, and the resulting regional chronology was
variance-stabilized47. FIA time series, 2923 of which (out of a total of 2926) fall
within at least one 100 km radius around an ITRDB site, were treated following the
same procedure. The variance of regional-scale average climate time series was not
adjusted. To ensure sufficient sample replication in the most recent years, the
analysis included the 1902–2008 period. Specifically, the regional aggregations were
based on 208 ITRDB sites (8305 samples) with 40 sites (1282 samples) present in
the year 2008, and 1247 FIA sites (2926 samples) with 86 sites (1025 samples)
present in 2008.

We then used the following multiple linear regression to predict tree growth
variation in the two regional chronologies as a function of precipitation,
temperature, and database (ITRDB vs. FIA):

ring width indext ¼ ln precipð Þt ´ databaseþ tmaxt ´ database; ð4Þ

where t is the year, tmax is the average of the two dry season temperature time
series, and “database” is either the factor FIA or ITRDB. Randomly subsampling
the time series data underlying the ITRDB regional chronology to equal the FIA
sample size of 2926 time series (100 times) resulted in explained variance and
regression slopes that were essentially unchanged (SD of 0.005 (R2) and 0.002
(regression slopes) among the 100 replicates).
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Data availability
The International Tree-Ring Data Bank is located at: “ITRDB (https://www.ncdc.
noaa.gov/paleo-search/)” (11/03/2017). All other data can be made available upon
request. Contact R.J.D. for the FIA, C.D.O. for the Pinaleño Mountains, and C.H.G.
for the Navajo Nation tree-ring data. A reporting summary for this article is
available as a Supplementary Information file.
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