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Abstract
Increasing the evolutionary potential of restored populations has become a viable ob-
jective of restoration activities. Choosing plant materials genetically adapted to the 
restoration environment is critical for success, and phenotypic plasticity may also con-
tribute to establishment and persistence in disturbed environments. To select seed 
sources for restoration informed by plasticity, we must answer the question: Do some 
source environments produce more plastic genotypes than others? Using a dataset of 
maternal families from 130 western US source populations of the perennial bunch-
grass Poa secunda, we used variance components to determine the contribution of 
source population to phenotypic plasticity in two common gardens over two growing 
seasons. Compared with the genetic contribution to phenotypes, plasticity explained 
a large fraction of phenotypic variation and was particularly strong for phenology (tim-
ing of reproductive events) traits. Plasticity values among phenology traits were also 
highly correlated. For the morphological traits (panicle length, leaf size) and survival, 
the genetic contribution to the phenotype was greater than the plastic contribution, 
but plasticity values among these traits were not highly correlated. Seeds collected 
from warm and dry locations produced plants with more plasticity in phenology, pani-
cle number, and biomass; cool and wet locations were associated with more plasticity 
in leaf size, panicle length, plant habit (prostrate or erect), and survival. Plasticity may 
complement genetic variation for adaptation in restoration materials in some traits.

K E Y W O R D S

adaptive plasticity, genecology, intraspecific variation, phenotypic integration, Sandberg 
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1  | INTRODUCTION

Plants have the capacity to sense and respond to their environment. 
Plasticity, or the gene-by-environment interaction, is a deviation of 
the expression of a genotype (i.e. phenotype) from the mean pheno-
type across all environments (Bradshaw, 1965; Scheiner & Goodnight, 
1984) and is an important component of evolutionary potential: phe-
notypic variation linked to fitness variation describes the opportunity 

for selection at the population level (e.g. Espeland & Rice, 2012). In 
addition to choosing adapted restoration materials, evolutionary po-
tential of restored populations is becoming increasingly important for 
creating resilient populations in the context of climate change, other 
anthropogenic disturbances, and continual introductions of inva-
sive species (e.g. Jump & Penuelas, 2005; Sgro, Lowe, & Hoffmann, 
2011). Studies showing that plasticity is favored under climate change 
scenarios are accumulating (reviewed in Franks, Weber, & Aitken, 
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2013; Nicotra et al., 2010; Matesanz, Gianoli, & Valladares, 2010). 
Also, plant populations with greater plasticity have higher population 
growth rates (Davidson & Nicotra, 2012; Lavergne & Molofsky, 2007; 
Leffler, Monaco, & James, 2011; Muth & Pigliucci, 2007; Skalova, 
Havlickova, & Pysek, 2012; but see Peperkorn, Werner, & Beyschlag, 
2005). Understanding the contribution of plasticity to plant traits re-
sponsible for establishment and persistence (Albert, Grassein, Schurr, 
Vielledent, & Voille, 2011) benefits strategic choices of seed sources 
for restoration. Seed source choices are becoming more sophisticated 
with the application of seed zones and other climate model-driven 
approaches (e.g. Bower, St. Clair, & Erickson, 2014; Espeland & Rice, 
2012; Johnson, Horning, Espeland, & Vance-Borland, 2015; Kramer, 
Larkin, & Fant, 2015) and projected future climate scenarios (e.g. Vitt, 
Havens, Kramer, Sollenberger, & Yates, 2010). In these cases, care is 
taken to choose seed source populations that are pre-adapted to the 
restoration site (but see Jones, 2013).

Fitness variation (i.e. opportunity for selection), mean fitness, ge-
netic variation, and heritability of traits are all important contributors 
to evolutionary potential (e.g. Broadhurst et al., 2008; Ghalambor, 
McKay, Carroll, & Reznick, 2007; Kettenring, Mercer, Reinhardt Adams, 
& Hines, 2014; Sgro et al., 2011). Plasticity influences the mean and 
variation in fitness. In some cases, plasticity may be functionally her-
itable via genetics (e.g. Schlichting, 2008), epigenetics (Nicotra et al., 
2010), and/or a high correlation between the environments of par-
ent and progeny (as in Espeland & Rice, 2012). Genetic assimilation 
of plasticity can occur when selection reinforces reductions in fitness 
variation (Eshel & Metessi, 1998; Pal & Miklos, 1999). Plasticity may 
increase evolutionary rates and promote adaptation in changing envi-
ronments (Bonduriansky, Crean, & Day, 2012; Eshel & Metessi, 1998; 
Laland, Sterelny, Odling-Smee, Hoppitt, & Uller, 2011; Pal & Miklos, 
1999; ). The clear advantage of increasing evolutionary potential to 
overcome maladaptation to new environments has been shown in nu-
merous studies on genetic diversity (e.g. Lavergne & Molofsky, 2007; 
Matyas, 1996) and effective population size (e.g. Ellstrand & Elam, 
1993; Willi & Hoffmann, 2009).

We know little about the genotypes that do well in restoration of 
disturbed sites; in contrast to the large literature affirming local ad-
aptation (Hereford, 2009; Joshi et al., 2001; Leimu & Fischer, 2008; 
Linhart & Grant, 1996), other studies show that local collections 
perform suboptimally when transplanted to nearby locations (e.g. 
Bischoff, Steinger, & Muller-Sharer, 2010; Grady et al., 2011; Rehfeldt, 
Ying, Spittlehouse, & Hamilton, 1999; but see Bucharova et al., 2016). 
Plant seed used for restoration is often chosen from local populations 
(Broadhurst et al., 2008; USDI & USDA 2002; Vander Mijnsbrugge, 
Bischoff, & Smith, 2010), assuming widespread local adaptation in 
plants (Hereford, 2009; Joshi et al., 2001; Leimu & Fischer, 2008; but 
see Gibson, Wagner, Espeland, & Nelson, 2016). Seed zone research 
for restoration links genetic adaptation to climate (e.g. Bower et al., 
2014; Johnson et al., 2015; Kramer et al., 2015), and in these cases, a 
nearby, natural population is likely to contain genotypes adapted to the 
climate of the restoration site. However, restoration sites may not be 
ecologically similar to nearby, natural populations (e.g. Bischoff et al., 
2006; Jones, 2013; Lesica & Allendorf, 1999; Montalvo & Ellstrand, 

2000), with disturbance levels, light availability, and temperature ex-
tremes higher within restoration sites (e.g. Kettenring & Galatowitsch, 
2011). In absence of reliable information on the genetic variation re-
quired for successful establishment within restoration projects and 
for future resilience of restored populations, maximizing evolutionary 
capacity with plasticity and increased genetic diversity within adaptive 
zones may be the most risk-averse approach to choosing seed sources 
for restoration.

The adaptive advantage of any factor, including plasticity, can be 
difficult to support experimentally because some traits may only be 
adaptive under specific circumstances (e.g. Espeland & Rice, 2007). 
Some environments are more likely to promote the evolution of plas-
ticity than others. Plasticity is favored in unpredictable and stressful 
environments (Cowling, Ojeda, Lamont, Rundel, & Lechmere-Oertel, 
2005; Dyer, Hardison, & Rice, 2012; Pichancourt & Van Klinken, 2012; 
Scheiner, 1993). Consequently, we expect to see greater plasticity in 
those unpredictable and stressful environments, but plasticity may not 
always be adaptive (Nicotra et al., 2010). For example, stress can re-
duce phenotypic variation because limited resources reduce variance 
in growth (e.g. Waller, Dole, & Bersch, 2008).

Here, we use a genecology dataset to understand the generation 
and maintenance of phenotypic plasticity within populations of a 
commonly used restoration species. Genecology studies identify the 
degree of phenotypic variability among plants from different source 
populations. Plants are grown from seeds of known origin (character-
ized by available climate data in conjunction with latitude, longitude, 
and elevation) and evaluated in common gardens. Aspects of their 
phenology, morphology, and production are tracked over time and 
in differing environments represented by different sites and years. 
When phenotypes of the plants in the common gardens group within 
climatic conditions of the seed source environments, local adapta-
tion is inferred and seed transfer zones are recommended within the 
boundaries of these climatic conditions. Genecology studies are com-
mon in forestry research (Rehfeldt & Jaquish, 2010) and are becoming 
more common for herbaceous rangeland species (Bower et al., 2014; 
Kramer et al., 2015). Genecology studies offer a survey of the pheno-
typic variability within a species and provide a methodology for exam-
ining interactions among traits at different garden sites. The inferred 
link between phenotypic groupings within common gardens to the 
scale of local adaptation illustrates the climate factors that are most 
likely to drive plasticity and local adaptation across a wide number of 
species.

Within a species, source populations may vary in their plasticity 
(Droste, Flory, & Clay, 2010; Dyer et al., 2010; Hyldgaard, Sorrell, 
Olesen, Riis, & Brix, 2012). Genecology studies may use hundreds of 
populations planted in a single common garden, but several common 
gardens situated in different climates must be used to apply their 
results over a species range (Clausen, Keck, & Hiesey, 1948; Gibson 
et al., 2016; Núñez-Farfán & Schlichting, 2001) because trait expres-
sion is usually modified by the environment (Edwards & Weinig, 2011) 
that can also change among years. Given the emphasis on local seed 
collections and local adaptation in plants used for restoration, we hy-
pothesized that phenotypic variation across common gardens would 
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be largely explained by genetics (e.g. Johnson et al., 2015), but that 
plasticity is also important. We also hypothesized that populations 
in abiotically stressful locations would contain more plasticity (Dyer 
et al., 2010) than populations in nonstressful locations. We tested 
these hypotheses using a genecology dataset collected over 2 years in 
two common gardens placed in different environments.

2  | MATERIALS AND METHODS

Poa secunda J. Presl (Poaceae) is a cool-season perennial bunchgrass 
native to the western portion of North America. Its identity has been 
plagued by taxonomic ambiguity and revision (Majerus, Holzworth, 
Tilley, Ogle, & Stannard, 2009). Kellogg (1985) concluded that among 
various forms, only Poa curtifolia Scribner represented a separate 
evolutionary lineage. In this study, P. secunda germplasm collections 
corresponded to Poa sandbergii from Cronquist, Holmgren, Holmgren, 
Reveal, and Holmgren (1977) as given by Majerus et al. (2009). As in 
Johnson et al. (2015), our study excludes the taller and later summer 
flowering variants Big bluegrass, Canby’s bluegrass, Pacific bluegrass, 
Nevada bluegrass, and Alkali bluegrass (Majerus et al., 2009). These 
variants are extremely uncommon in our collection area and were not 
encountered during collection trips (Figure 1).

Poa secunda is a facultative apomictic with seeds predominantly 
formed asexually as clones (Kellogg, 1987). Here, we examine plasticity 

at the level of maternal family (as in Dyer et al., 2010). Because apo-
mixis usually predominates in this species, resulting in minimal out-
crossing, we expect low genetic variation within most maternal 
families. Indeed, genetic variation within seed source families in this 
experiment did vary but was usually very small (Johnson et al., 2015, 
this study).

Wild-collected seeds were maintained by their maternal family 
identity throughout this study (e.g. seeds from each maternal plant 
in the field were collected and stored individually), and field collec-
tions were made from two maternal plants from each of 130 source 
populations in the spring of 2007 (Figure 1). Specific locations and 
detailed methods can be found in Johnson et al. (2015). Seeds were 
germinated in boxes in winter at room temperature and then planted 
into 5 × 5 × 5 cm containers, grown in a greenhouse, watered to keep 
pots moist, and periodically fertilized. Seedlings were placed in a lath 
house the following spring (March 2008), 2 weeks before they were 
planted in common gardens (Figure 1).

The common gardens were located at Central Ferry WA and 
Powell Butte OR. Central Ferry is a low elevation (209 m), warm site 
in the Snake River Canyon within the Columbia Plateau ecoregion and 
Powell Butte a cooler, higher elevation (941 m) site in the high desert 
of central Oregon in the Blue Mountain ecoregion (Omernik, 1987). 
The 30-year (1981–2010) mean annual temperature at Central Ferry is 
12.0°C and is 9.2°C at Powell Butte. The 30-year averages (or, normals 
over the reference period 1980–2010, Wang, Hamann, Spittlehouse, 
& Murdock, 2012) for precipitation are 352 and 269 mm, respectively. 
The two common gardens do not span the environmental variation 
for P. secunda, because there are twelve recommended seed zones for 
this species across the eight ecoregions where source collections were 
made (Figure 1, Johnson et al., 2015). Therefore, our measurements of 
plasticity are likely less than the full capacity of the species.

Two maternal plants from each source population were repre-
sented in six blocks at the two sites. Thus, six plants from each mater-
nal family and 12 from each population source were grown for a total 
of 1,560 plants at each site. We measured phenology and growth traits 
in the first and second full-growing seasons after transplantation. 
There were fifteen measured variables: six phenological traits (head-
ing date, bloom date, maturation date, days from heading to bloom, 
days from heading to maturation, days from bloom to maturation) and 
nine morphology, or growth, traits: plant habit (erect to prostrate), 
culm length, panicle length, number of panicles, leaf size, leaf shape 
(length-to-width ratio), survivorship, basal diameter, and aboveground 
biomass. Trait means are reported in Johnson et al. (2015); in that 
study, over two-thirds of the phenotypic variation observed within the 
common gardens was attributed to source population climates.

2.1 | Data analysis

Variance components were estimated using PROC MIXED (SAS v9.2, 
SAS Institute, Cary, NC USA) with all experimental factors treated 
as random. Then, plastic and genetic components were computed 
for each plant trait, as outlined by Scheiner and Goodnight (1984). 
We made two sets of estimates. In one set, variance components 

F IGURE  1 Ecoregions (Omernik, 1987) from which 130 source 
populations were collected (4—Cascades, 9—Eastern Cascades Slopes 
and Foothills, 10—Columbia Plateau, 11—Blue Mountains, 12—Snake 
River Plain, 13—Central Basin and Range, 78—Klamath Mountains/
California High North Coast Range, 80—Northern Basin and Range); 
common garden locations are indicated with stars
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among plants over all source populations were estimated to obtain 
an overall assessment of plastic and genetic components. Families 
were nested within populations over all 129 sources with surviv-
ing plants; genetic components were source population and family 
within source population. The plastic components were the growth 
environments (planting sites and years) and interactions with growth 
environments, resulting in the model,

where the variance for each factor was defined as, p for total pheno-
typic, s for site (or common garden location, N = 2), l for source popula-
tion (N = 129), f(l) for maternal family within source population (N = 2), 
y for year (N = 2), and r for replications (blocks within sites, N = 6) and 
the residual error.

A second set of plastic and genetic estimates were made inde-
pendently for each of the 129 source populations as

For each set of estimates, plasticity was estimated as the ratio 
of the sum of plastic variation to total phenotypic variation, and ge-
netic variation was the ratio of the sum of genetic variation to total 
phenotypic variation (Scheiner & Goodnight, 1984). For Equation 1, 
the genetic component was represented by sources and families; for 
Equation 2, the genetic component was represented by families only. 
We determined the relationship between genetic and plastic compo-
nents and relationships among genetic traits and plastic traits using 
Pearson linear correlations.

For each source population (Equation 2), a matrix of plastic and 
genetic variation estimates for each of the fifteen measured de-
pendent variables were developed and related to climate variables 
(see below) from each source population using Pearson linear cor-
relations. With 24 climate variables and 15 measured traits, we ex-
amined 360 responses. Because this is exploratory research, we set 
the false discovery rate (FDR) for all correlations at 10% (Benjamini 
& Hochberg, 1995), accepting that 10% of the instances where we 
reject the null hypothesis, the null hypothesis is actually true. For 
this procedure, p-values of all tests are ranked, where the smallest 
p-value has a rank (i) =1. Q is calculated for each test by dividing i by 
the number of tests and then multiplying by the FDR. When p < Q, 
the null hypothesis is rejected. We report Q in the text and report 
raw p values in tables.

For each source population, climate averages were extracted from 
ClimateWNA climate data rasters (Wang et al., 2012; http://www.
genetics.forestry.ubc.ca/cfcg/ClimateWNA/ClimateWNA.html) for 
the time period spanning 1981–2010. We used 21 climate variables 
designated by Wang et al. (2012) as “annual variables” including di-
rectly calculated means for annual temperature, warmest and coldest 
months, continentality, annual and summer precipitation, and annual 
and summer heat to moisture indices. Additional derived variables in-
cluded average degree days, frost-free days, day ending the frost-free 
period, precipitation as snow, 30-year minimum and maximum tem-
perature extremes, and evaporative demand indices.

3  | RESULTS

With source locations included in the model across sites and years, 
plasticity contributes more to phenotypic variation than genetics 
(Table 1): exceptions were panicle length, leaf size, and survival. There 
was an inverse relationship between genetic variation and plastic-
ity (r = −.66, p = .01). Most of the genetic variation was associated 
with source populations which strongly differed for phenotypic traits 
(Johnson et al., 2015). Within maternal family, we found relatively lit-
tle genetic variation, with most well below 5%. Among the traits listed 
in Table 1, between 56 and 80 source populations exhibited geneti-
cally based phenotypic variation within families. This supports our as-
sumption of relatedness among plants from a given source, consistent 
with a relatively large degree of apomixis.

Correlations between plasticity and geographic-climate variables 
for 129 source populations were not significant for basal diameter, 
heading to bloom date, leaf shape, and number of panicles. Table 2 
shows significant relationships (Q < 0.0061) between climate variables 
and plastic traits that have more than one significant correlation. We 
found one singular correlation between culm length plasticity and el-
evation (0.25). Significant correlations (Table 2) between phenology 
plasticity and longitude, mean annual temperature, mean warmest 
month temperature, continentality, annual heat moisture index, sum-
mer heat moisture index, number of degree days above 5°C, number of 
degree days above 18°C, extreme maximum temperature, Hargreaves 

(1)
σ
2p=σ2s+σ

2l+σ
2f(l)+σ

2s∗ l+σ
2s∗ f(l)+σ

2y+σ
2s∗y+σ

2l∗y

+σ
2y∗ f(l)+σ

2s∗ l∗y+σ
2s∗y∗ f(l)+σ

2r

(2)σ
2p=σ

2s+σ
2f+σ

2s∗ f+σ
2y+σ

2s∗y+σ
2f∗y+σ

2s∗ f∗y+σ
2r.

TABLE  1 Plastic and genetic percentages of total phenotypic 
variation over 129 locations from the intermountain West grown in 
common gardens at two sites over 2 years

Trait % Plastic % Genetic
% Source 
population % Family

Head date 72.8 15.8 13.7 2.1

Bloom date 80.5 10.9 9.9 1.0

Maturity date 49.8 9.0 8.4 0.6

Days head to 
bloom

53.7 11.9 8.2 3.7

Days head to 
maturity

80.6 5.0 3.7 1.3

Days bloom to 
maturity

82.7 4.2 3.4 0.8

Habit 35.9 16.2 9.8 6.4

Culm length 46.1 13.8 10.1 3.7

Panicle length 12.1 43.8 35.9 7.9

# Panicles 40.2 4.6 3.1 1.6

Leaf size 16.4 42.5 38.5 4.0

Survival 10.4 14.0 10.1 3.9

Basal diameter 46.4 6.1 4.7 1.4

Biomass 66.2 8.6 7.6 1.0

“Population” reflects the genetic component of seed collection source 
population. “Family” reflects the genetic component of maternal families. 
Traits where genetic contribution to phenotypic variation is greater than 
the plasticity contribution are italicized.

http://www.genetics.forestry.ubc.ca/cfcg/ClimateWNA/ClimateWNA.html
http://www.genetics.forestry.ubc.ca/cfcg/ClimateWNA/ClimateWNA.html
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reference evaporation, and Hargreaves climatic moisture deficit were 
positive (0.22–0.34). Significant correlations between phenology plas-
ticity and mean annual precipitation, mean summer precipitation, and 
precipitation as snow were negative (−0.24–0.40). With the excep-
tion of biomass, significant correlations between morphology plas-
ticity and elevation, mean coldest month temperature, mean annual 
precipitation, mean summer precipitation, and precipitation as snow 
were positive (0.22–0.30) while correlations with latitude, longitude, 
mean warmest month temperature, continentality, number of degree 
days above 5°C, and extreme maximum temperature were negative 
(−0.23–0.29). Slopes of biomass plasticity grouped with morphology.

Most of the correlations we report in Table 2 had opposing slopes 
for morphology traits (except biomass) compared to phenology traits, 
supporting the possibility of different influences on plasticity (Table 2). 
In contrast to all other morphology traits (habit, panicle length, and 
leaf size), plasticity in biomass always had the same slope direction 
as plasticity in phenology. Survival had the same slope direction as 
morphology. It appeared that, warmer and drier environments, charac-
terized by higher annual (AHM) and summer (SHM) heat moisture indi-
ces, may promote plasticity in phenology and biomass (positive slopes) 
and decrease plasticity in survival and morphology (negative slopes). 
Cooler and wetter environments, then, could be associated with in-
creased plasticity in survival and morphology and decreased plasticity 

in phenology and biomass accumulation. Correlations were low, indi-
cating a great deal of plasticity is unexplained by source environment.

There were far fewer significant associations among genetic traits 
(each family within the source populations) than among trait plasticity 
(Table 3). All significant correlations among genetic traits (Q < 0.028) 
were positive, and mostly involved morphology traits. Most signif-
icant correlations (Q < 0.004) among traits for plasticity were posi-
tive except for the association between survival and maturity date. 
Correlation coefficients were largely in the same range within plastic 
and genetic traits.

4  | DISCUSSION

Multiple, recent publications have cited the importance of under-
standing how plant traits predict success in restoration environments 
(Chivers, Jones, Broadhurst, Mott, & Larson, 2016; Espeland et al., 
2017; Jones, 2013; Leger & Baughman, 2015). Understanding source 
population effects on mean trait expression (such as in genecology 
experiments) and on variation in trait expression (this study) will help 
practitioners select materials that are adapted to disturbed sites and 
that contain enough plasticity to ensure adaptive capacity through en-
vironmental change.

TABLE  2 Pearson correlation coefficients between plasticity of plant traits measured in common gardens and environmental variables from 
129 source populations that had more than one significant correlation (climate variables are 30-year averages from 1980 to 2010)

Climate¶

Phenology Morphology

Bloom Maturity Bloom to maturity Head to maturity Habit Panicle length Survival Biomass Leaf size

Latitude −0.32***

Longitude 0.26** −0.27** −0.27**

Elevation 0.22*

MAT 0.22*

MWMT 0.24** 0.22* −0.24**

MCMT 0.23* 0.22*

TD 0.33**** 0.27** −0.32*** 0.24**

MAP −0.40**** −0.28** 0.30*** −0.28**

MSP −0.26** −0.25** 0.31*** 0.25**

AHM 0.24** 0.25** 0.34**** 0.22* −0.29*** 0.27**

SHM 0.24** 0.26** 0.24** −0.23** −0.24**

DD5 0.25** −0.23**

DD18 0.27**

PAS −0.24** 0.28**

EXT 0.25** 0.23** −0.23**

Eref 0.31*** 0.24**

CMD 0.31*** 0.28** 0.28**

Only significant correlations are shown, and p values are untransformed.
¶Definitions for climate abbreviations (Wang et al., 2012): MAT, mean annual temperature; MWMT, mean warmest month temperature; MCMT, mean 
coldest month temperature; TD, continentality; MAP, mean annual precipitation; MSP, mean summer precipitation; AHM, annual heat moisture index; 
SHM, summer heat moisture index; DD5, number of degree days above 5°C; DD18, number of degree days above 18°C; PAS, precipitation as snow; EXT, 
extreme maximum temperature; Eref, Hargreaves reference evaporation; CMD, Hargreaves climatic moisture deficit.
*p < .05, **p < .01, ***p < .001, ****p < .0001.
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The generally small genetic contribution of maternal family to phe-
notypic variation means that families within most populations were 
only slightly different from each other. Although facultative to some 
degree, we expected strong apomixis in P. secunda to result in small 
differences in genetic variation within families collected at the same 
source population. Most of the genetic variation was found among the 
source populations rather than within, however, the small number of 
families per population (N = 2) means that our interpretation of these 
results is limited for a given source population. We previously reported 
that genetic variation in P. secunda (Johnson et al., 2015) indicated 
that 77% of phenotypic variation was attributable to source collection 
location (i.e. genetically based) within gardens and years. In this study, 
we examined the variation in phenotypes (plasticity) across gardens 
and years, encompassing spatial and temporal variation, and, in this 
case, plasticity represents the majority of variation when compared 
with the genetic contribution, especially for phenology traits. Thus, 
our hypothesis that genetics would represent the largest part of phe-
notypic variation was not supported in this study. Indeed, the opposite 
was true in the majority of cases.

Here, we show that seed sources from warm and dry climates were 
associated with plasticity in phenology (bloom to maturity) while cool 
and wet seed source locations were associated with plasticity in pan-
icle length and survival in P. secunda. Therefore, we found qualified 
support for our second hypothesis: collections from more extreme, 
or stressful, climates (higher heat: moisture indices) tended to be 
more plastic for phenology. However, we also found more plasticity 
for morphology and more plasticity in survival in nonstressful (wetter, 
cooler) environments. A trade-off between phenology and morphol-
ogy traits is well characterized for trees (e.g. Gömöry & Paule, 2011; 
Matyas, 1996). In herbaceous species, opposing patterns of plasticity 
for growth and phenology has been observed in a clonal aquatic 
plant species (Dorken & Barrett, 2004) and an invasive perennial forb 
(Colautti, Eckert, & Barrett, 2010), but positive correlations between 
growth and phenology have also been found (Edwards & Weinig, 
2011; Sun & Frelich, 2011). Given the demonstrated benefit of phe-
nological plasticity to persistence during climate change (Franks et al., 

2013; Matesanz et al., 2010), selecting more plastic seed sources for 
these traits may be appropriate for restoration. However, plasticity in 
both morphology and phenology has been suggested to be beneficial 
under climate change scenarios (Nicotra et al., 2010); therefore, the 
balance between the two may warrant further investigation.

Many of studies of plasticity are performed by examining the slope 
or direction of the change in trait means in two environments, but we 
analyzed four study environments (two gardens in 2 years) giving a 
broader perspective. Because plasticity in aboveground biomass may 
be positively correlated with plasticity in phenology of P. secunda, com-
parisons to other work are complicated. Positive associations among 
traits for plasticity may be due to correlated selection for plasticity or 
because of developmental constraints (e.g. Pigliucci, 2003, 2005).

Plasticity in phenology imparts persistence with climate change 
patterns (reviewed in Matesanz et al., 2010; Nicotra et al., 2010; and 
Pau et al., 2011). It is likely that there is less competition for light in 
plant communities in warmer parts of the P. secunda range that en-
compass the arid and semi-arid portions of the Great Basin (Figure 1), 
but there may be more competition for light in the cooler and wetter 
portions of its range where denser vegetation could be supported. 
Therefore, plasticity for habit, leaf size, and panicle length may be 
adaptive in cool/wet environments where species cover, and therefore 
competition, tends to be greater. Plasticity in habit, panicle length, and 
leaf size is adaptive in environments where light is a limiting resource 
(Schmitt, Dudley, & Pigliucci, 1999). In our study, plasticity in panicle 
length, habit, leaf size, and survivorship was significantly correlated 
with climate conditions at source populations. Plasticity in panicle 
length, survivorship, and biomass accumulation has been shown to be 
important for fitness in degraded landscapes (Matesanz et al., 2010).

Of the 46 significant relationships among climate variables and 
measured traits, we expect 4.6 to be false discoveries. The clear sep-
aration in the direction of multiple relationships between phenology 
and morphology is striking and remains robust when controlling Type I 
error. Because our common gardens did not represent extremes within 
the species range (Figure 1), we have likely underestimated the degree 
of plasticity in this species (e.g. Valladares, Gianoli, & Gómez, 2007).

TABLE  3 Pearson correlation coefficients among plasticity of plant traits measured in common gardens that correlated with climate 
variables (bold, lower half) and among genetic contributions to the same plant traits for comparison (upper half)

Bloom Maturity Bloom to maturity Head to maturity Biomass Habit Panicle length Survival Leaf size

Bloom 1 0.24**

Maturity 0.33*** 1 0.42****

Bloom to maturity 0.40**** 1 0.41****

Head to maturity 0.26** 0.20* 0.75**** 1 0.20* 0.47****

Biomass 0.42**** 0.38**** 1 0.40* 0.27**

Habit 0.22* −0.20* 1

Panicle length 1 0.40****

Survival −0.25** −0.19* 1

Leaf size 0.18* 0.19* 0.27** 1

Only significant relationships are shown, and untransformed p values are indicated.
*p < .05, **p < .01, ***p < .001, ****p < .0001.
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Because we relate plasticity in common gardens to maternal en-
vironments in this study, we are in effect reporting on effects of the 
maternal environment, or, transgenerational plasticity (e.g. Dyer et al., 
2010) that may or may not be genetically determined (e.g. Van Kleunen 
& Fischer, 2005). The degree to which the plasticity we found would 
be maintained in subsequent generations is unknown and will depend 
on the amount of plasticity that is genetically based.

Natural selection acts on fitness variation linked to phenotypic 
variation. Even when phenotypic expression is driven by plasticity, se-
lection can reinforce adaptive phenotypes that are driven by plasticity 
and lead to genetic assimilation (Eshel & Metessi, 1998; Laland et al., 
2011; Pal & Miklos, 1999). Thus, for highly plastic traits like phenol-
ogy, we could assume that plasticity has the potential to contribute 
as much or more to adaptation in restoration than genetic variation.

The ploidy level, mating system, genetic diversity, and generation 
time of a plant species will affect the likelihood of adaptive plasticity as 
well as its importance in promoting population maintenance. It is rea-
sonable to expect that clonality leads to greater plasticity than sexual 
reproduction (e.g. Schlichting, 1986), but there has been little research 
on this topic (Van Kleunen & Fischer, 2005). Greater ploidy levels offer 
more opportunities for epigenetic interactions that influence plasticity 
(Chen, 2007). Most of the research performed on population-level 
plasticity in plants has focused on weeds and annuals (Dyer et al., 
2010; Van Kleunen & Fischer, 2005; but see Espeland & Hammond, 
2013; Espeland, Perkins, Johnson, & Horning, 2016), and while weeds 
might require plasticity to maintain their success in ruderal environ-
ments (e.g. Schlichting, 1986), outcrossing, short-lived species may 
require less plasticity for persistence than long-lived self-fertilizing pe-
rennials (e.g. Van Kleunen & Fischer, 2005). Plasticity in traits import-
ant for restoration success has been found for self-fertilizing cultivars 
of perennial grasses, but not for an outcrossing, genetically diverse, 
prevariety germplasm (Espeland et al., 2016). Our study illustrates 
the importance of plasticity to persistence and evolution of local seed 
sources in restoration environments and propagule increase fields 
(Dyer, Knapp, & Rice, 2016; Espeland et al., 2017; Nevill et al., 2016); 
other research has shown the importance of plasticity to large-scale 
restoration seeding with cultivars (Espeland et al., 2016).

There are a large number of number of genecology datasets that 
have accumulated over the decades, and some fraction of these 
studies have been conducted in more than one common garden lo-
cation. At least ten datasets with more than one common garden 
location for herbaceous species in the western United States are 
available (http://www.fs.fed.us/wwetac/threat_map/SeedZones_
Intro.html) and can be investigated for the contribution of source 
climate to plasticity when family structure is included. Often, plas-
ticity is indicated in the results of genecological studies (Johnson & 
Vance-Borland, 2016; Johnson et al., 2015), but the phenomenon 
has not been explored in detail. The generality of trade-offs that 
we found between phenology and morphology can be ascertained 
by exploring these available datasets and could have important 
ramifications for evolutionary mechanics across plant species as 
a whole (e.g. Gibson et al., 2016). Genecology datasets have also 
been underutilized for their potential to illustrate correlations 

among functional traits and to predict adaptation to climate change 
(Aspinwall et al., 2013). Our results show that, for P. secunda, we 
cannot choose sources that supply plasticity to restoration popula-
tions without choosing the type of plasticity most appropriate for 
persistence in the restoration environment. This research under-
scores the importance of understanding the relationship of seed 
source populations to plant traits when strategically selecting seed 
to increase restoration success.
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