
    Fishes of the genus Lepidomeda (family
Cyprinidae) are patchily distributed through-
out warm- and cold-desert streams of the
Bonneville, Colorado River, and Snake River
basins (UDWR 2009, Blakney et al. 2014).
This group has been the subject of some taxo-
nomic revision. Until 2004, the leatherside
chub (Snyderichthys copei or Gila copei;
Johnson et al. 2004) was considered a broadly
distributed taxon of the intermountain western
United States. Considering genetic, morpho-
logical, and ecological evidence, however, John-
son et al. (2004) split this taxon into 2 species
and placed them in the genus Lepidomeda:
the southern leatherside chub (L. aliciae) in
the southern Bonneville basin and the north-
ern leatherside chub (L. copei) in the northern

Bonneville and Snake River basins. They also
concluded that northern leatherside chub is
not the sister taxon to southern leatherside
chub, but is more closely related to Virgin
spinedace (L. mollispinis) and White River
spinedace (L. albivallis) ( Johnson et al. 2004).
    Due to this taxonomic revision and the
understanding of the northern leatherside’s
taxonomic uniqueness, there has been greater
interest in the evaluation of its current distri-
bution. While some populations that were
regarded as introduced (UDWR 2009) were
actually likely to be indigenous (Blakney et al.
2014), suggesting a wider range than previ-
ously thought, there is a broad consensus that
the northern leatherside chub has declined
across its range and has been extirpated from
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      ABSTRACT.—The northern leatherside chub (Lepidomeda copei) is a cyprinid fish native to the Snake River, Green
River, and Bonneville basins of the western United States. Population declines prompted the development of a multi-
state conservation agreement and strategy, which emphasized the need to reliably delineate its current distribution and
monitor its status. To facilitate species monitoring, we developed a quantitative PCR assay to detect northern leatherside
chub DNA in environmental samples. The assay consistently detected northern leatherside chub DNA in concentra-
tions as low as 2 copies per reaction and did not amplify DNA of potentially sympatric fish species. The assay amplified
a synthetic DNA template representing 3 congeneric species: White River spinedace (L. albivallis), Virgin spinedace,
(L. mollispinis mollispinis), and Big Spring spinedace, (L. m. pratensis); however, none of these are sympatric with northern
leatherside chub. Field tests of the assay accurately reproduced expected patterns of species occupancy.

      RESUMEN.—La especie Lepidomeda copei es un pez ciprínido nativo de las cuencas del Río Snake, Río Green y del
Lago Bonneville del oeste de los Estados Unidos. La disminución de su población impulsó el desarrollo de un acuerdo
de conservación multi-estado, que enfatiza la necesidad de delinear con precisión su distribución actual y de monitorear
su estado. Para facilitar el monitoreo de las especies, aplicamos la técnica cuantitativa de Reacción en Cadena de la
Polimerasa (PCR, por sus siglas en inglés) que permitió detectar ADN de L. copei en muestras ambientales. La técnica
detectó de manera consistente ADN de L. copei en concentraciones menores a 2 copias por reacción, sin amplificar
ADN de otras especies de peces potencialmente simpátricas. La técnica amplificó un templado de ADN sintético que
representa tres especies congenéres: L. albivallis, L. mollispinis mollispinis, y L. m. pratensis. Sin embargo, ninguna de
estas especies es simpátrica con L. copei. Los muestreos de campo reprodujeron con precisión los patrones previstos en
cuanto a la ocupación de las especies.

*Corresponding author: jdysthe@fs.fed.us

92

JCD  orcid.org/ 0000-0002-6790-7841 KJC  orcid.org/ 0000-0002-9622-9146 MKY  orcid.org/ 0000-0002-0191-6112



several basins (Belk and Johnson 2006, UDWR
2009). To mitigate further range contractions,
this taxon was petitioned for listing under the
U.S. Endangered Species Act (USFWS 2011)
and was designated as a species of conserva-
tion concern throughout its range (UDWR
2009). Conservation efforts have emphasized
the need to assess the distribution of northern
leatherside chub (Blakney et al. 2014, Schultz
et al. 2016), but its patchy occurrence and low
relative abundance (UDWR 2009, Dauwalter
et al. 2014) have sometimes made this task
challenging. Thus, developing a rapid and
reliable method for assessing presence and
distribution would be useful for evaluating
species status and prioritizing conservation
efforts for this species.
    Environmental DNA (eDNA) sampling has
proven to be an efficient and reliable method
for delineating distributions of rare species
(McKelvey et al. 2016) and detecting sensitive
species (Thomsen et al. 2012, Sigsgaard et al.
2015, Spear et al. 2015) or species difficult to
sample using traditional approaches (Taberlet
et al. 2012). Furthermore, analysis of eDNA via
quantitative PCR (qPCR) is more sensitive and
effective in detecting low DNA concentrations
than traditional PCR methods (Wilcox et al.
2013, 2016). Accordingly, we developed a
qPCR assay for northern leatherside chub for
eDNA-based detection throughout its range.
    To develop an eDNA assay for northern
leatherside chub, we examined 54 GenBank
sequences of the cytochrome b (cytb) mito-
chondrial region of northern leatherside
chub and 14 sympatric or closely related non -
target species (Table 1). We screened these
sequences in MEGA 6 (Tamura et al. 2013)
and identified candidate primer sites that
would amplify an 80-nucleotide fragment
unique to northern leatherside chub (Table 2).
Within this fragment, we designed a FAM-
labeled, minor-groove-binding, nonfluorescent
quencher (MGB-NFQ) probe (Table 2). We
maximized within-primer and within-probe
nucleotide mismatches with nontarget species
to avoid instances of primer competition and
cross-amplification of the probe (Wilcox et al.
2013). We adjusted primer and probe lengths to
optimize annealing temperatures in Primer
Express 3.0.1 (Life Technologies), and screened
them for secondary structures using IDT
OligoAnalyzer (https://www.idtdna.com/calc/
analyzer). Using the NCBI nucleotide BLAST

tool, we further examined the specificity of
each component of the assay in silico to deter-
mine potential sources of non target detection.
    We then compared the candidate assay
with all northern leatherside chub cytb
sequences (n = 47) available on GenBank
(AF270885–AF270893, Johnson and Jordan
2000; AF452086–AF452087, Dowling et al.
2002; AY825431–AY825445, Johnson et al.
2004; JX443059, Schonhuth et al. 2012; and
KJ175008–KJ175027, Blakney et al. 2014).
These sequences were obtained from fish
collected in 24 streams throughout the Bear
River, Green River, and Snake River water-
sheds in Idaho, Nevada, Utah, and Wyoming.
We found that one of the 47 sequences (acces-
sion: KJ175010; Blakney et al. 2014), which
was not evaluated in the initial in silico step,
contained a single nucleotide polymorphism
(SNP) in which guanine replaced adenine 10
bases from the 3� end of the probe. This fish
originated in Muddy Creek within the Bear
River basin in Wyoming, and was the only
fish with this SNP in 225 sequences exam-
ined by Blakney et al. (2014), which included
other northern leatherside chubs collected
from Muddy Creek (Ernest Keeley, Idaho
State University, personal communication). To
ensure detection of this rare haplotype, we
developed an additional probe incorporating
this SNP; the assay is a mixture of both
probes (Table 2).
    We tested the specificity of the assay in
vitro using a StepOne Plus Real-time PCR
Instrument (Life Technologies) in 15-mL reac-
tions containing 7.5 mL of Environmental
Master Mix 2.0 (Life Technologies), 900 nM
each of forward and reverse primer, 125 nM of
each probe, 4 mL DNA template (~0.4 ng),
and the remaining volume with PCR-grade
water. Thermocycler conditions were 95 °C for
10 min followed by 45 cycles of denaturation
at 95 °C for 15 s and annealing and extension at
60 °C for 1 min. We screened DNA extracted
from 17 northern leatherside chub tissues
from 3 locations and from 22 additional
species (Table 3). DNA used in this study was
obtained from archival samples, or from fin
clips collected from fish that were immedi-
ately released at the point of capture. Fin
clips were stored in ≥95% ethanol until
DNA was extracted using the DNeasy Tissue
and Blood Kit (Qiagen, Inc) according to the
manufacturer’s instructions.
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    We were not able to obtain tissue from
several important species, specifically the
rare haplotype of northern leatherside chub
and 3 congeneric taxa of spinedace (White
River spinedace L. albivallis; Virgin spine -
dace, L. mollispinis mollispinis; and Big Spring
spinedace, L. m. pratensis). To test the ability
of the assay to detect these specimens, we
developed and screened 2 synthetic plasmid
DNA fragments encompassing the assay’s
amplicon in the cytb region (Carim et al.
2016a). The plasmids were synthesized by
inserting a 90-nucleotide fragment contain-
ing the DNA sequence of the rare haplotype
of northern leatherside chub (accession:
KJ175010.1) and of the White River spine -
dace (accession: AF452089.1), respectively,
into ampicillin vectors containing PvuI cut
sites (pIDTSMART-AMP; Integrated DNA
Technologies). The White River spinedace se -
quence was used to represent the Big Spring
(accession: AF452091.1) and Virgin spine -
daces (accession: AF452092.1) as all 3 species
differed by only a single base across the 90-
nucleotide fragment. Furthermore, all 3 spine -
dace sequences contained mismatches in 3
locations with the assay; 2 bases from the 3�
end of the forward primer, 15 bases from the
3� end of the reverse primer, and 5 bases from
the 3� end of the probe. The sequence for
each plasmid construct was verified on both
strands via Sanger sequencing by the sup-
plier, Integrated DNA Technologies, using
M13 primers (Integrated DNA Technolo-
gies). We linearized the plasmids with PvuI
(Invitrogen catalog # 25420-118) according
to the manufacturer’s protocol, purified the
products using the GeneJET PCR Purifica-
tion Kit (ThermoFisher Scientific), quanti-
fied DNA concentrations with a Qubit 2.0
fluorometer (ThermoFisher Scientific), and
diluted samples to 0.1 ng/mL in sterile TE
prior to analysis.
    We optimized primer concentrations by
varying the amount of both primers between
100, 300, 600, and 900 nM for a total of 16
different combinations (Wilcox et al. 2015).
For subsequent analyses, we selected the
lowest primer concentrations that displayed a
high end-point fluorescence relative to the
highest (900 nM for each primer) concentra-
tions tested and that resulted in the lowest Ct
value (the earliest cycle at which the amplifi-
cation curve crossed the threshold). Using the
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optimal concentrations of 300 nM of forward
primer and 900 nM of reverse primer and the
same PCR recipe and thermal profile above,
we tested assay sensitivity by analyzing sepa-
rate 7-level standard curves created from tar-
get qPCR product and from the linearized
synthetic plasmid DNA of the rare haplotype.
The qPCR product and linear plasmid DNA
were purified using PureLink™ PCR Micro
Kit (Invitrogen), quantified on a Qubit 2.0
fluorometer, and serially diluted in sterile
TE to 31,250, 6250, 1250, 250, 50, 10, and 2
copies per 4 mL. Both standard curves were
analyzed across 6 replicates at each level on
the same 96-well plate. In addition, because
synthetic plasmid DNA of the White River
spinedace was detected with the assay, we
created and analyzed a 7-level standard curve
using the methods described above.
    Finally, we validated the assay in vivo by
screening eDNA samples collected from 4
streams in the western United States with
known patterns of occupancy by northern
leatherside chub (Table 4). In 2 of the streams
where northern leatherside chubs were ini-
tially absent (Jensen and Trout Creeks), eDNA
samples were collected for a separate study at

known distances downstream of caged north-
ern leatherside chubs. Northern leatherside
chubs were placed into each stream in a cage
(similar to Jane et al. 2015), and eDNA sam-
ples were collected before the cages were
placed into the streams. Then, 2 days later
eDNA samples were taken at 50, 100, 200,
300, 400, 500, and 1000 m downstream in
each creek. This sampling design was repli-
cated in 2 other reaches of each creek on dif-
ferent days using different specimens. Because
the purpose, in this context, was to affirm the
ability of the assay to detect northern leather-
side when eDNA was present, we selected
samples collected at 100, 200, 300, and 400 m
from one reach of each creek. Here, 7 northern
leatherside chubs (84 to 118 mm in length and
weighing 5.5 to 15 g in Jensen Creek; 95 to
112 mm in length and weighing 8 to 12 g in
Trout Creek) were placed into each stream
in a cage before eDNA samples were col-
lected. Previous studies using similar caged
fish experiments detected eDNA perfectly at
distances up to 250 m downstream from the
cages (Jane et al. 2015) including during a flood
event, indicating that 250 m was a conserva-
tive detection distance. However, the ability

    TABLE 3. Species used for in vitro testing of the northern leatherside chub eDNA assay. For samples of the northern
leatherside chub, origin refers to the Idaho waterbody where the samples were collected. For samples of all other
species, origin is listed as U.S. state, Canadian province, or synthetic plasmid.

Family name             Species name                                    Common name                        Sample size              Origin

Cyprinidae                Lepidomeda copei                             Northern leatherside chub               4             Goose Creek, ID
                                                                                                                                                      2             Squaw Creek, ID
                                                                                                                                                    11            Tin Cup Creek, ID
Cyprinidae                Agosia chrysogaster                          Longfin dace                                     1                        NM
Cyprinidae                Cyprinella lutrensis                          Redside shiner                                  1                         UT
Cyprinidae                Cyprinus carpio                                Common carp                                   1                        MT
Cyprinidae                Gila atraria                                       Utah chub                                         1                         ID
Cyprinidae                Hybognathus argyritis                      Western silvery minnow                   1                        MT
Cyprinidae                Lepidomeda albivallis                       White River spinedace                     1             Synthetic plasmid
Cyprinidae                Lepidomeda aliciae                           Southern leatherside chub               2                         UT
Cyprinidae                Macrhybopsis gelida                         Sturgeon chub                                  1                        MT
Cyprinidae                Macrhybopsis meeki                         Sicklefin chub                                   1                        MT
Cyprinidae                Meda fulgida                                     Spikedace                                          2                     AZ, NM
Cyprinidae                Pimephales promelas                        Fathead minnow                               1                        NM
Cyprinidae                Platygobio gracilis                            Flathead chub                                   1                        MT
Cyprinidae                Ptychocheilus lucius                         Colorado pikeminnow                      1                        WY
Cyprinidae                Rhinichthys cataractae                     Longnose dace                                  2                     MT, UT
Cyprinidae                Rhinichthys cobitis                           Loach minnow                                  1                        NM
Cyprinidae                Rhinichthys osculus                          Speckled dace                                   4                 AZ, NM, UT
Catostomidae           Catostomus catostomus                    Longnose sucker                               1                        MT
Ictaluridae                Ictalurus punctatus                           Channel catfish                                 1                        MT
Salmonidae               Oncorhynchus clarkii bouvieri          Yellowstone cutthroat trout              1                         ID
Salmonidae               Oncorhynchus clarkii utah                Bonneville cutthroat trout                1                         ID
Salmonidae               Oncorhynchus mykiss                       Rainbow trout                                   1                         ID
Salmonidae               Salmo trutta                                      Brown trout                                       1                         CO
Salmonidae               Salvelinus fontinalis                          Brook trout                                        1                     Quebec



to detect eDNA at greater downstream dis-
tances is unknown. eDNA samples were also
collected from 2 other streams; one where
northern leatherside chub has been observed
during historical surveys (Tincup Creek; Table
4), and one where northern leatherside chub
has never been observed (Rattlesnake Creek;
Table 4). The eDNA samples were collected
by filtering 5 L of water using methods out-
lined in Carim et al. (2016c). DNA was ex -
tracted from the filters with the DNeasy Tis-
sue and Blood Kit (Qiagen, Inc) following a
modified protocol (Carim et al. 2016b). The
extracts were then analyzed using the opti-
mized PCR conditions described above with a
TaqMan Exogenous Internal Positive Control
(1.5 mL of 10X IPC assay and 0.15 mL of 50X
IPC DNA per reaction; Life Technologies) used
in place of some of the water to screen for PCR
inhibition. All eDNA analyses were performed
across 3 replicates for each eDNA extract and
included a PCR no-template control substi-
tuting distilled water for DNA template.
    The assay detected DNA in vitro from all
northern leatherside chub samples, including
the plasmid DNA of the rare haplotype. The
assay also detected DNA of the plasmid rep-
resenting the Big Spring, Virgin, and White
River spinedaces. The assay did not detect
DNA from any of the other nontarget species
or in the no-template controls. The standard
curve for the common haplotype resulted in an
efficiency of 100.8% (r2 = 0.996, y-intercept
= 38.8, slope = −3.3) and a limit of detection
(defined as the lowest concentration with
>95% amplification success; Bustin et al.
2009) at 2 copies per reaction. The standard

curve for the rare haplotype resulted in an
efficiency of 102.6% (r2 = 0.995, y-intercept
= 38.8, slope = −3.3) and a limit of detection
at 2 copies per reaction. The DNA of the
common and rare haplotypes was detected in
all 6 replicates at concentrations averaging 2
copies per reaction. Technically, an assay can-
not achieve an efficiency greater than 100%,
as that would indicate a more than doubling of
the target amplicon during each cycle. How-
ever, the reported efficiency value is calcu-
lated based on the slope of a linear regression
which, due to associated error, can result in an
estimated efficiency of >100%. Assays should
have an efficiency as close to 100% as possi-
ble; however, an efficiency between 90% and
110% is generally acceptable (Thermofisher
Scientific 2016), and the calculated efficiency
should be reported even if that value exceeds
100%. The standard curve for the plasmid
DNA representing the 3 spinedace taxa was
also efficient (98.9%, r2 = 0.984, y-intercept =
40.2, slope = −3.3), and DNA was detected in
4 of 6 replicates at concentrations averaging
2 copies per reaction. Northern leatherside
chub DNA was not detected in any environ-
mental samples taken where the species was
expected to be absent. Furthermore, the assay
detected northern leatherside DNA in all
samples where the species was expected or
known to be present, including at 100, 200,
300, and 400 m downstream from caged fish
in Jensen and Trout Creeks (Table 4).
    The ability of the qPCR assay to consis-
tently and reliably detect low concentrations
of northern leatherside chub DNA, as indi-
cated by the in vitro standard curve analysis,
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   TABLE 4. Collection information for eDNA samples used for in vivo validation of the northern leatherside chub
eDNA assay.

Waterbody (state)                                      Latitude                             Longitude                      Expecteda              Dectecteda

Jenson Creek (ID)                                   43.184053                         −111.165938                          Nb                                N
                                                                 43.176676                         −111.153279                          Nb                                N
                                                                 43.200062                         −111.190858                          Y                             Y
                                                                 43.199314                         −111.190092                          Y                             Y
                                                                 43.198735                         −111.189428                          Y                             Y
                                                                 43.198109                         −111.188915                          Y                             Y
Trout Creek (ID)                                     43.158117                         −111.071187                          Nb                                N
                                                                 43.142916                         −111.080279                          Y                             Y
                                                                 43.143605                         −111.079783                          Y                             Y
                                                                 43.144306                         −111.079307                          Y                             Y
                                                                 43.144902                         −111.078632                          Y                             Y
Rattlesnake Creek (MT)                         46.945720                         −113.945220                          N                           N
Tincup Creek (ID)                                  42.980710                         −111.281300                          Y                             Y
aN (no) and Y (yes) refer to occupancy of northern leatherside chub based on traditional surveys and eDNA-based detection.
bSamples were taken prior to placement of northern leatherside chub into the stream.



provides support for its application as a sensi-
tive survey tool. Furthermore, the assay did
not detect the DNA of potentially sympatric
nontarget fish species, or of southern leather-
side chub, the taxon from which it was split
during previous genetic analyses (Johnson et
al. 2004). On the other hand, it did detect a
DNA fragment representing 3 congeneric
spine dace species: Big Spring, Virgin, and
White River spinedaces. This is not surpris-
ing given how closely related these species
are to the northern leatherside chub (Johnson
et al. 2004), resulting in few mismatches be -
tween the assay and the spinedace sequences
screened (Table 1). However, we do not rec-
ommend this eDNA assay for the detection of
spinedace because the nucleotide mismatches
may lead to reduced detection rates in field
applications, especially if PCR inhibitors are
present ( Jane et al. 2015). Importantly, there
are no instances of range overlap between
these spinedace species and northern leather-
side chub ( Jezorek and Connolly 2013), so
false positive results (de tection of northern
leatherside DNA where the species is absent)
would be unlikely across the northern leather-
side range.
    As long as robust eDNA sampling protocols
(such as Carim et al. 2016c, McKelvey et al.
2016) are paired with field surveys that
address the ecological characteristics influenc-
ing the distribution of this species (Dauwalter
et al. 2014, Schultz et al. 2016), the assay will
be effective at detecting target DNA in low
concentrations, as demonstrated by eDNA
assays designed for other taxa (Wilcox et al.
2013, 2015). Results from such surveys could
be instrumental in helping biologists and man-
agers target conservation efforts and evaluate
the success of northern leatherside reintro-
duction efforts and other management activi-
ties (UDWR 2009). The presence of a rare
haplotype from Muddy Creek provides a cau-
tionary note. These rare haplotypes do occur
in many species (see Wilcox et al. 2015) and
will lead to false negative results if the haplo-
types are unknown and fixed within a local
population. Therefore, when entering a new
area, we suggest either testing the assay by
first collecting samples in areas where the tar-
get species is known to be present or by
sequencing the primer/probe region from
locally derived tissue samples prior to relying
on assay results for management.
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