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A B S T R A C T

Monitoring and classifying forest disturbance using Landsat time series has improved greatly over the past
decade, with many new algorithms taking advantage of the high-quality, cost free data in the archive. Much of
the innovation has been focused on use of sophisticated workflows that consist of a logical sequence of processes
and rules, multiple statistical functions, and parameter sets that must be calibrated to accurately classify dis-
turbance. For many algorithms, calibration has been local to areas of interest and the algorithm's classification
performance has been good under those circumstances. When applied elsewhere, however, algorithm perfor-
mance has suffered. An alternative strategy for calibration may be to use the locally tested parameter values in
conjunction with a statistical approach (e.g., Random Forests; RF) to align algorithm classification with a re-
ference disturbance dataset, a process we call secondary classification. We tested that strategy here using RF
with LandTrendr, an algorithm that runs on one spectral band or index. Disturbance detection using secondary
classification was spectral band- or index-dependent, with each spectral dimension providing some unique de-
tections and different error rates. Using secondary classification, we tested whether an integrated multispectral
LandTrendr ensemble, with various combinations of the six basic Landsat reflectance bands and seven common
spectral indices, improves algorithm performance. Results indicated a substantial reduction in errors relative to
secondary classification based on single bands/indices, revealing the importance of a multispectral approach to
forest disturbance detection. To explain the importance of specific bands and spectral indices in the multispectral
ensemble, we developed a disturbance signal-to-noise metric that clearly highlighted the value of shortwave-
infrared reflectance, especially when paired with near-infrared reflectance.

1. Introduction

Employing Landsat time series for the characterization and mapping
of forest disturbance has received considerable attention over the past
decade (Hansen et al., 2013; Kim et al., 2014), since the opening of the
image archive when data became freely available in a highly-calibrated
format (Roy et al., 2014). Many newer algorithms have used all cloud-
free observations, either directly or after data reduction to derive an-
nual composites, before subjecting the time series of data to various
sophisticated algorithm functions designed to detect disturbances
(Hermosilla et al., 2015). For example, Brooks et al. (2014) identified
abrupt disturbances with all available data using residuals from har-
monic regression and statistical quality control charts, DeVries et al.
(2015) used harmonic regression with a breakpoint seeking method
called “moving sums”, Kennedy et al. (2010) subjected annual

composite time series to temporal segmentation with the goal of map-
ping both abrupt and gradual change, and Huang et al. (2010) high-
lighted spectral anomalies in moving multi-year windows to char-
acterize disturbances. Prior to this new era of freely available, well-
calibrated data, most applications of Landsat time series to map forest
disturbance were limited to less dense time series (Cohen et al., 2002;
Masek et al., 2008). These applications commonly relied on traditional
statistical methods, such as post-classification map comparison, bi-
temporal differencing, principal components analysis, and supervised
classification (Coppin et al., 2004; Healey et al., 2005).

Denser time series data and more sophisticated approaches facilitate
detection of subtler disturbance signals, which has led to a move away
from an almost exclusive characterization of stand replacement dis-
turbances (Healey et al., 2008; Wulder et al., 2004) towards the ex-
ploration of partial (i.e., non-stand replacement) disturbances
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associated with forest thinning, degradation, and insect and disease
activity that unfolds over multiple years (Meigs et al., 2011; Meddens
and Hicke, 2014; Cohen et al., 2016; Hughes et al., 2017). Exploring
subtler signals within time series data has an attendant risk of false
detection of change associated with noise, as indicated by time series
studies from other disciplines (Trenberth, 1984; Pohmann et al., 2016).
However, as forest management policy has shifted away from stand
replacement harvests towards maintenance of healthy forest systems
(Moeur et al., 2011), international agreements on forest monitoring
have begun to include forest degradation along with deforestation
(Kissinger et al., 2012), and recognition that climate change is making
forests more vulnerable to mortality associated with increasing phy-
siological stress (Allen et al., 2015; Mildrexler et al., 2016), there are
now greater demands on remote sensing to provide a full range of de-
tection capabilities from subtle to dramatic forest disturbance
(McDowell et al., 2015).

When attempting to detect low magnitude disturbances with
Landsat time series, the signal associated with spectral change due to
disturbance may be masked by noise associated with normal temporal
variation from imperfect atmospheric and geometric corrections, ve-
getation phenology, sun angle variations, and sensor degradation. In
this regard, Kennedy et al. (2010) found that different spectral indices
had varying abilities for accurate detection of subtler disturbance sig-
nals in western Oregon, with the normalized difference vegetation
index (NDVI) performing less effectively than the normalized burn ratio
(NBR) or Tasseled Cap Wetness (TCW). Because many of the newer
algorithms employ a limited set of spectral bands or indices to detect
disturbance, such as the NBR (Kennedy et al., 2012), Forestness Index
(Huang et al., 2010), NDVI and SWIR-NIR (shortwave-infrared, near-
infrared) ratio (Vogelmann et al., 2012), or Tasseled Cap Angle (TCA,
Brooks et al., 2014), careful consideration of the comparative signal-to-
noise (SNR) strengths among spectral indices is important. To address
this need, we formalized the derivation of a disturbance SNR (DSNR)
metric and used that to test the effectiveness of the six primary Landsat
reflectance bands (i.e., TM/ETM+ bands 1–5, 7) and a host of common
spectral indices for detecting forest disturbance across a wide variety of
forest types in the US.

Application of any given algorithm or approach for detecting dis-
turbance requires one or more thresholds and calibration steps to se-
parate disturbance signal from temporal noise. These are usually de-
rived using statistical procedures, but also involve a great degree of
heuristics. For example, Huang et al. (2010), Kennedy et al. (2010),
Brooks et al. (2014), and Hughes et al. (2017) all describe the com-
plexity of their unique Landsat-based forest disturbance detection al-
gorithms, the in-depth rigorous steps involved in calibration for local
conditions, and the hands-on assessments and related cautions re-
garding potential limits of the calibrated parameters in new forested
systems. Given the effort involved to recalibrate complicated, but ef-
fective algorithms for new forest systems and conditions, a reasonable
question to ask is: Could these algorithms be applied in new forest types
or locations using well-tuned parameter sets from a limited set of lo-
calized applications, with an additional, bulk statistical calibration from
a reference dataset and a secondary statistical classification approach
such as Random Forest (RF, Breiman, 2001)? We test this idea of sec-
ondary classification here using the LandTrendr (Landsat-based detec-
tion of Trends in Disturbance and Recovery) algorithm (Kennedy et al.,
2010).

LandTrendr runs on a single band or spectral index (Kennedy et al.,
2012), which may unnecessarily limit its value as a forest disturbance
detection algorithm. In a recent study (Cohen et al., 2017), multiple
algorithms were run on a common Landsat dataset across six diverse
forested areas in the US, with each algorithm using different spectral
bands and indices. When the maps from those algorithms were com-
pared against each other they were found to be quite different, sug-
gesting that, at least in part, spectral bands/indices used was a factor in
the differences among maps. If calibration of LandTrendr through a

secondary classification model is effective, there would also be the
opportunity to run the algorithm multiple times, each time using a
different band or spectral index, before integrating the results from all
runs as a multispectral ensemble using the secondary classification
model.

The ensemble integration of maps from a variety of algorithms using
RF was recently tested by Healey et al. (in press). In that study, em-
pirical weights among an ensemble of map products were generated
through a process called stacking (stacked generalization), in conjunc-
tion with reference data acquired through visual interpretation of
Landsat time series data using a tool called TimeSync (Cohen et al.,
2010). Disturbance mapping errors from the ensemble, relative to the
individual maps from each algorithm, were greatly reduced when
compared to the reference data. Healey et al. (in press) showed that
adding informative, non-overlapping predictor information from dif-
ferent algorithms improved ensemble change detection performance. In
this study, we tested the idea that valuable, non-overlapping informa-
tion can be generated from a single algorithm operating on different
parts of the electromagnetic spectrum. Specifically, we tested the
stacking ensemble approach using LandTrendr and a combination of the
six primary Landsat reflectance bands plus seven commonly used ve-
getation indices. This is similar to an approach used by Schultz et al.
(2016), where maps from different indices derived from the BFAST
Monitor algorithm (DeVries et al., 2015) were fused to create a single,
improved map of deforestation in the tropics.

Three main objectives were addressed in this study:

• Quantify distributions of forest DSNR values for the original Landsat
spectral bands and selected spectral indices, and the relationship
between DSNR and disturbance detection error rates;

• Test secondary classification of LandTrendr when run on a single
band/index using RF, and determine if there is a relationship be-
tween classification error rates and DSNR values; and

• Combine single band/index outputs of LandTrendr in a RF stacking
ensemble to understand the power of secondary classification in a
multispectral context, and evaluate the complementarity among
bands/indices for forest disturbance detection.

2. Methods

2.1. The disturbance signal-to-noise ratio (DSNR) metric

To calculate the DSNR we used a TimeSync (Cohen et al., 2010)
reference dataset that was collected from 1800 single pixel-sized plots
(300 randomly selected per scene) over six, largely forested Landsat
scenes widely dispersed across the conterminous US (Cohen et al.,
2017). The forests consisted largely of a variety of needleleaf evergreen
and broadleaf deciduous tree species commonly found across the dif-
ferent forested regions of the US (see Table 2, Cohen et al., 2017 for
details). Of the 1800 plots, 1303 were forested, as determined by visual
interpretation of high spatial resolution images in Google Earth. The
Landsat time series data for each plot was temporally segmented by
human interpretation using the TimeSync tool, which integrates si-
multaneous viewing of an annual series of full resolution Landsat image
chips, temporal trajectories for each plot in a variety of spectral bands
and indices, and the high-resolution images within Google Earth cen-
tered on the plot. To temporally segment the time series from 1984 to
2013 for a given plot, multiple spectral bands and indices (along with
other tools) and breaks in the trends of spectral values were evaluated
and identified (see Fig. 3 in both Cohen et al., 2010 and Kennedy et al.,
2010). Using TimeSync, each segment was assigned a label represented
by three types of observed forest processes – disturbance, growth, and
stable – based on expert opinion. By definition, each segment was at
least one year in length and bounded by two break points (start vertex
and end vertex). For single segment plots the start vertex was 1984 and
end vertex was 2013, whereas for multiple segment plots there were
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multiple start and end vertices. The large majority of observed growth
and stable segments were more than one year in length and thus had
more than two data points (i.e., start and end vertices plus data points
in between). Many disturbances (some harvest and most forest health
decline events) took multiple years to occur and thus also had more
than one year between vertices; however, abrupt disturbances (those
associated with fires, wind events, and most harvest events) had only
start and end vertices.

Of the 1303 forested plots, 754 had experienced a disturbance and
these were used to calculate the DSNR. All disturbed plots had multiple
segments (some combination of the disturbance, growth, and stable
labels) across the full time-series length, and the spectral values for
each segment were fitted with an ordinary least squares regression line
where spectral values were fit as a function of time. To assure con-
tinuity of fitted segments, they were fitted in successive order, starting
with the first segment. To fit the second segment, the fitted value from
the end vertex of the first segment was used, and so on for all observed
segments. For abrupt disturbance segments no fitting was possible (or
necessary), but the fitted end vertex from the previous segment was
used in place of the observed spectral value for that segment's start
vertex. The fitting was done independently for each spectral band and
vegetation index evaluated (Table 1).

The total number of disturbance segments across the 754 disturbed
plots was 999 (an average of 1.3 disturbances per disturbed plot). For
any given band or index, the DSNR was calculated for each disturbance
segment in the whole time-series of observations from 1984 to 2013 at
the plot (i.e., pixel) scale. The signal was the spectral band/index dif-
ference between the start and end vertices (i.e., the difference across the
full segment length of one or more years) of each disturbance segment.
Noise was calculated as the root mean square error (RMSE) from the
collection of multi-segment regression residuals across the full time-

series, as


=
∑ −=RMSE y y

n
( )i

n
i i1

2
, where y = the predicted spectral value

and y= the observed spectral value for all fitted points from 1 − n. The
DSNR for a disturbance segment was derived simply by dividing the
calculated disturbance signal by the calculated plot-level noise. If there
was more than one disturbance segment for a given plot, multiple DSNR
values were calculated for that plot.

To evaluate the relative strengths of the bands/indices examined,
the distribution of DSNR values across the 999 disturbance segments
was displayed for each band/index as a box plot. The signs of the sig-
nals were predominantly negative (NIR, TCG, TCW, TCA, NDVI NBR,
and NDMI) or positive (Blue, Green, Red, SWIR1, SWIR2, TCB) de-
pending on the band/index evaluated, with some small proportion of
each having signals with the opposite sign than normal. To enable di-
rect visual comparison of DSNR distributions using box plots it was
desirable that the median box plot value for each band/index utilized
be positive. Thus, prior to graphing the distributions for negative-
dominant bands/indices, those distributions were inverted and each
signal value multiplied by −1. This also facilitated the relative rank-
ings among bands/indices in terms of absolute median DSNR values,
which are hereafter referred to as median DSNR values without an
absolute value qualifier.

2.2. Single band/index LandTrendr disturbance detection with and without
secondary classification

When no mapping is involved, as in this study, applications of
LandTrendr have two main steps: segmentation and filtering (Kennedy
et al., 2010). Temporal segmentation is conceptually similar to that
described above for TimeSync but is algorithmically complicated, re-
quiring a series of tests to find an optimum value set for a host of
parameters for any given band/index and forested area. Filtering is
designed to separate signal from noise, by subjecting each segment to a
thresholding rule based on percent vegetation cover change predicted
from a spectral change model, which also has an optimum parameter
set that must be determined. To test the efficacy of secondary classifi-
cation, as applied here, LandTrendr temporal segmentation was ac-
complished by running the algorithm with a fixed set of segmentation
parameter values (see Table 2 of Kennedy et al., 2012), regardless of
band/index used. These values were derived after thorough testing with
NBR by Kennedy et al. (2010) in western Oregon, and subsequently
used for mapping there with NBR (Kennedy et al., 2012). Also, rather
than using a threshold filter, for any band/index we simply labeled as
disturbance any segment with a non-zero slope in the direction of dis-
turbance, and all other segments as no disturbance. This was expected
to reduce disturbance omissions and increase disturbance commissions
relative to a reference dataset, which we expected the secondary clas-
sification to correct for.

Random Forest was used for secondary classification of LandTrendr,
where the goal was to predict a binary classification label (disturbed or
not disturbed, as classified in the reference dataset) independently for
every year from 1984 to 2013, for each of the 1303 forested plots (a
total of 39,090 annual predictions and/or data records). Of the total
number of records in the TimeSync reference dataset, only 1965 (an-
nual disturbance observations from across the 999 disturbance seg-
ments) were labeled as disturbance. Because RF should not be trained
with a highly imbalanced classification dataset, we therefore could not
include all 39,090 reference data records in the training dataset.
Instead, we used only the 1965 records of disturbance from the

Table 1
Spectral indices used in this study.

Index Formulation Reference

TCB 0.2043 ∗ Blue + 0.4158 ∗ Green + 0.5524 ∗ Red + 0.5741 ∗ NIR + 0.3124 ∗ SWIR1 + 0.2303 ∗ SWIR2 Crist (1985)
TCG −0.1603 ∗ Blue +−0.2819 ∗ Green + −0.4934 ∗ Red + 0.7940 ∗ NIR + −0.0002 ∗ SWIR1 +−0.1446 ∗ SWIR2 Crist (1985)
TCW 0.0315 ∗ Blue + 0.2021 ∗ Green + 0.3102 ∗ Red + 0.1594 ∗ NIR + −0.6806 ∗ SWIR1 + −0.6109 ∗ SWIR2 Crist (1985)
TCA Arctan (TCG/TCB) Powell et al. (2010)
NDVI (NIR − Red) / (NIR + Red) Rouse et al. (1974)
NBR (NIR − SWIR2)/(NIR + SWIR2) Key and Benson (2005)
NDMI (NIR − SWIR1)/(NIR + SWIR1) Wilson and Sader (2002)

Table 2
Unique combinations of bands/indices as a function of number of bands/indices used for
LandTrendr training, and the median balanced error rates among combinations (Fig. 4).

Number of bands/indices Combinations Median error

1 13 0.637
2 78 0.431
3 286 0.388
4 715 0.362
5 1287 0.346
6 1716 0.336
7 1716 0.327
8 1287 0.321
9 715 0.316
10 286 0.311
11 78 0.308
12 13 0.304
13 1 0.296
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reference dataset and augmented that with records of false positive
disturbances from the LandTrendr classification for the given band/
index under consideration. Because we did not use a threshold filter
with the LandTrendr segmentations, we expected a significant number
of records to be falsely predicted by LandTrendr as disturbed (de-
termined by comparison to the reference dataset across all records).
This enabled us to use the LandTrendr predictions to augment the se-
lection of the reduced training dataset (1965 records), and thereby
better achieve a balance of disturbance and no disturbance labels for
training. This had the additional advantage of adding more challenging
records to the overall training dataset, thereby enhancing the algor-
ithm's potential to properly classify more difficult cases. We labeled the
combined TImeSync disturbance records with the records having false
positive disturbance labels from LandTrendr as the union 1 training
dataset. Among the bands/indices, the number of false positives (as
well as the years and plots for which they were predicted), and hence
the sizes of union 1 training dataset, were variable.

For application of the RF model for any band or index, probability of
being disturbed for any given year (t), as declared by TimeSync, was
predicted using LandTrendr derived information: spectral value from
year t, the spectral difference between t and t − 1 year, and segment
duration for any data record in union 1. RF was run at the annual time-
step on all training dataset observations (union 1) with 500 trees and
out-of-bag (OOB) errors for the training dataset were reported as a
function of RF probability threshold (using default parameters from
randomForest version 4.6–12 in R). Changing the threshold shifted the
training dataset records among the four cells of the disturbance-no
disturbance error matrix, and thus the balance of omission and com-
mission.

Our goal for this study was to report balanced disturbance omission
and commission rates (i.e., where omission and commission are equal),
for which we could have simply selected a probability threshold that
balanced OOB errors. However, those OOB errors were only relevant to
the training dataset records. Thus, to obtain an error matrix that in-
cluded all 39,090 records, the remaining data records (39,090 minus
union 1) needed to be added back in. These were the large majority of
records that consisted of the union of reference data and LandTrendr
predictions where both labels were no disturbance (union 2). Adding
these union 2 records in without adjusting the probability threshold
would have resulted in an imbalance of omission and commission.
Hence, we adjusted the RF probability threshold from union set 1 to one
that would achieve balance for the combined union 1 and union 2 re-
cords. For visual assessment, we created a box plot to display the dis-
tribution of error balance points among bands/indices. From this, we
identified the model having the least amount of error from among the
13 bands/indices tested.

2.3. Multispectral LandTrendr disturbance detection with secondary
classification

For the multispectral LandTrendr stacking ensemble we used all
possible combinations of various bands and indices, 2–13 at a time
(Table 2; the 13 individual bands/indices were included for complete-
ness). The classification process described above for the single band/
index executions of LandTrendr was repeated using a band/index
combination-specific training dataset derived from a new union 1 rule
that included any annual time-step observation where either TimeSync
or LandTrendr (in any of the bands or indices used, from 2 to 13) de-
clared a disturbance. Likewise, for the multispectral application of the
RF model, probability of being disturbed for any given year (as declared
by TimeSync) was predicted using the multiple band/index-specific
LandTrendr-derived spectral and spectral change values and segment
durations. As before, RF was run at the annual time-step on all multi-
spectral (i.e., new) union 1 training dataset observations with 500 trees.
Similarly, to achieve a balanced omission-commission error matrix for
each combination, new combination-specific union 2 records were
added back in and the probability thresholds adjusted accordingly. Box
plots were created for the balanced error rates from all band/index
combinations of each set from 2 to 13. From the box plots, we identified
the model having the least amount of error for each of the sets.

3. Results

3.1. DSNR distributions among bands and indices

DSNR distributions reveal meaningful patterns among bands and
indices tested (Fig. 1). The lowest distribution of values (i.e., those with
the lowest signal in relation to noise) was associated with the NIR band,
whereas the higher values were associated with SWIR bands and SWIR-
based indices (NBR, NDMI, and TCW). Among the visible bands, the red
band tended to have the highest distribution of DSNR values, but all
three visible bands had higher values than the NIR band. Among the
indices tested, TCB (Tasseled Cap brightness) and TCG (Tasseled Cap
greenness) had the lowest distributions of DSNR values. The NDVI had
higher values and, given the low DSNR of the NIR band, undoubtedly
indicated the contribution of the red band. TCA values tended to be
higher than the SWIR1 values, and were otherwise grouped more clo-
sely with SWIR2 and the SWIR-based indices. These observations are
supported by the ranking of the median distribution values among the
bands/indices, with the NBR having the highest median value and NIR
having the lowest (Table 3).

Because both signal and noise contribute equally to the calculation
of DSNR (data not shown), it was interesting to note that among the
non-SWIR bands, NIR actually had the highest distribution of signals.

Fig. 1. Distribution of DSNR values for each band/index
evaluated. The distributions for NIR, TCG, TCW, TCA,
NDVI, NBR, and NDMI were inverted and multiplied by−1
for display (see Section 2.1).
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But as it also had the highest distribution of noise values it was the
weakest performer among the non-SWIR bands. Similarly, the dis-
tribution of signals for NDVI was third highest, after only NBR and
NDMI (normalized difference moisture index); but given its high noise
distribution, NDVI ranked only 7th among the DSNR median values
(Table 3).

3.2. Single band/index LandTrendr disturbance classification

Without use of a LandTrendr threshold filter, the two SWIR bands
and all three SWIR-based indices had the lowest disturbance omission
rates, all below 0.4 (Fig. 2, upper left). The non-SWIR based bands and
indices all had omission error rates between ~0.45 (TCA) and ~0.60
(NIR). Commission rates for all bands/indices were quite high
(> 0.825), as expected given the lack of a threshold filter. Omission
and commission rates were clearly related to DSNR, in that those
bands/indices having the highest median DSNR values tended to ex-
hibit the lowest error rates (Fig. 2, lower left and right).

After secondary classification via RF and the training dataset, the
balanced omission-commission rates among the bands/indices clearly
highlighted the value of SWIR reflectance for forest disturbance de-
tection, with all SWIR bands and SWIR-based indices having the lowest
rates (0.469–0.531) and all non-SWIR bands/indices having values
between 0.555 and 0.758 (Table 4). In terms of the error balance point,
TCW was the best performer and NIR the worst. TCA was grouped more
closely with the SWIR-based than the non-SWIR-based data (Fig. 3).
The linear relationship between balanced error rates and median DSNR
was striking, having a correlation coefficient of 0.94.

3.3. Multispectral LandTrendr disturbance classification

Multispectral secondary classification of LandTrendr was quite ef-
fective at reducing error rates, with the median error balance point
among single bands/indices dropping from 0.637 to 0.296 when all 13
bands indices included (Table 2). Much of the improvement happens
when just 2 (0.431) or 3 (0.388) bands/indices are included in the

Table 3
Median DSNR values and rank for each band/index examined.

Band/index Median DSNR Rank

Blue 1.904 11
Green 2.329 10
Red 3.444 8
NIR 0.815 13
SWIR1 4.360 6
SWIR2 5.497 4
TCB 1.873 12
TCG 2.742 9
TCW 5.872 3
TCA 5.139 5
NDVI 4.167 7
NBR 6.581 1
NDMI 6.118 2

Fig. 2. (upper left) Omission and commission errors for the un-
filtered LandTrendr runs using the six original Landsat bands and
seven selected spectral indices. LandTrendr (lower left) omission and
(lower right) commission errors as a function of band- and index-
specific median DSNR values.

Table 4
Balanced error values and rank for each band index shown in Fig. 3.

Band/index Error balance Rank

Blue 0.690 11
Green 0.698 12
Red 0.666 10
NIR 0.758 13
SWIR1 0.515 4
SWIR2 0.502 3
TCB 0.639 8
TCG 0.649 9
TCW 0.469 1
TCA 0.555 6
NDVI 0.637 7
NBR 0.500 2
NDMI 0.531 5
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multispectral classification. The relationship between number of bands/
indices and balanced error rates is clearly asymptotic (Fig. 4), with a
slow reduction in rates past 4 (0.362) or 5 (0.346) bands/indices, after
the initial steeper drop from using a single predictor.

Although TCW exhibited the lowest error (i.e., was the best per-
forming) among the bands/indices used in single variable secondary
classification (error balance of 0.469, Table 4), that index was not in-
cluded again in the best performing set – i.e., those combinations
having the lowest error rates in Fig. 4, as number of bands/indices went
from 2 to 12 – until six bands/indices were included in the disturbance
predictor set (Table 5). The model set having 13 predictors included all
bands/indices and was only included in Table 5 for completeness. No-
teworthy is that TCW was included in all best performing predictor sets
including at least six predictors. The best two band/index predictor
model included SWIR1 and NBR, and these were included in every
subsequent best performing set from three to 12. TCG was added to the
best predictor set list at three predictors and remained in all subsequent
best predictor sets. Similarly, TCB was added as the fourth predictor
and then remained important for all subsequent sets. The red band was
added in the five-variable model, but then dropped in and out of im-
portance as other bands/indices were added. SWIR2 was the last band
to be added in any predictor set, not being included until 12 variables
were used.

Interestingly, the single best performing two-variable model, SWIR1
and NBR (0.376, Table 5; lowest error indicated on box plot for two
bands/indices in Fig. 4) had a lower error balance rate than the median
among three-variable models (0.388, Table 2). This pattern was con-
sistent with the addition of every additional predictor through a total of

12 band/index predictors (Fig. 4). After the best eight-variable pre-
dictor set, there is apparently little need to add other bands/indices to
that set, as there is minimal additional reduction in error balance.

Counting the number of times each band/index was included in the
best predictor set models and then ranking them (Table 6) highlights
the relative importance of each band/index in the presence of others for
forest disturbance detection. The model set having 13 predictors in-
cluded all bands/indices and was not included in Table 6. SWIR1 and
NBR were included in 11 of the 12 best models and were thus ranked
tied for 1st place, as most important bands/indices. SWIR2 was in-
cluded only in the 12-variable model, suggesting its near total re-
dundancy in the presence of other band/indices. This is very likely
because SWIR2 is included in the formulation of NBR. Noteworthy is
that although NIR had the lowest DSNR (Table 3), when used in com-
bination with SWIR2 (i.e., within the NBR, Table 1), it was equally as
important as SWIR1 when considering the best model sets (Tables 5,6).
As its 3rd rank status suggests, TCG was the next most important index
when examined in this context, being included in 10 of the 12 best
performing models among sets. TCG is essentially a linear contrast
between NIR and red (Table 1), like the NDVI, but is clearly more im-
portant than NDVI for disturbance detection in the presence of other
bands/indices (Table 6). Again, it appears that the NIR band is

Fig. 3. Omission-commission error balance rates (from the LandTrendr secondary clas-
sification) among bands and indices evaluated as a function of median DSNR values.

Fig. 4. Distributions of balanced omission and commission errors
among all combinations for each number of bands/indices used.

Table 5
Best performing models containing from 1 to 12 bands/indices, and their error balance
rates. The model including all 13 bands/indices was included for completeness.

Number of bands/
indices

Band/index set Error balance

1 TCW 0.469
2 SWIR1, NBR 0.376
3 SWIR1, TCG, NBR 0.345
4 SWIR1, TCB, TCG, NBR 0.325
5 Red, SWIR1, TCB, TCG, NBR 0.316
6 Green, SWIR1, TCB, TCG, TCW, NBR 0.309
7 Green, SWIR1, TCB, TCG, TCW, NBR,

NDMI
0.305

8 Green, NIR, SWIR1, TCB, TCG, TCW, NBR,
NDMI

0.300

9 NIR, SWIR1, TCB, TCG, TCW, TCA, NDVI,
NBR, NDMI

0.299

10 Green, Red, NIR, SWIR1, TCB, TCG, TCW,
NDVI, NBR, NDMI

0.298

11 Blue, Green, Red, NIR, SWIR1, TCB, TCG,
TCW, TCA, NDVI, NBR

0.297

12 Blue, Green, NIR, SWIR1, SWIR2, TCB,
TCG, TCW, TCA, NDVI, NBR, NDMI

0.299

13 Blue, Green, Red, NIR, SWIR1, SWIR2,
TCB, TCG, TCW, TCA, NDVI, NBR, NDMI

0.296
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important, but this time when in combination with red reflectance (and
small contributions from other bands (Table 1). Aside from SWIR2
when used in isolation, the Blue band had the distinction of also being
among the least important spectral regions for forest disturbance de-
tection, being included in only two models and thus ranked 12th among
all bands/indices (Table 6).

4. Discussion

In a recent study, Cohen et al. (2017) used seven of the newer
Landsat time series change detection algorithms to characterize forest
disturbance over six different forested systems widely distributed across
the US. The goal was to understand how different were the disturbance
maps derived from the seven algorithms using the same Landsat time
series stacks. All of the algorithms were previously calibrated for spe-
cific conditions (see Table 1 in Cohen et al., 2017), some more generally
calibrated than others, and all performed well where tested. None were
specifically calibrated for all of the local forest conditions over which
they were applied in Cohen et al. (2017). When comparing the dis-
turbance maps against reference data and themselves, it was learned
that not only where the maps less accurate than in the earlier studies for
which the algorithms were calibrated and tested, but also that the maps
were remarkably different from each other. The most interesting out-
come was that each map provided only part of the full array of dis-
turbance types and magnitudes contained in the reference data. This
raised several questions, including: (1) Can the maps be combined in a
way that takes advantage of the strengths and minimizes the weak-
nesses of each to provide an overall better, single annual disturbance
map series? (2) Because each algorithm used different dimensions of
Landsat spectral space to derive the maps (and most used only one
spectral index), could differences among the maps be, at least in part, a
function of how spectral space was exploited? (3) If the answers to (1)
and (2) are yes: (3) Could we be more strategic about combining maps
while, at the same time, more fully exploiting spectral space when
deriving the maps? (4) Given that the vast majority of omitted dis-
turbances from mapping algorithms are associated with low magnitude
disturbances (Cohen et al., 2017), how much would map accuracy
improve if low magnitude disturbances are removed from considera-
tion?

The basic answer to question 1, was provided by Healey et al. (in
press), where the seven map sets from Cohen et al. (2017), in addition
to others, were combined using RF and a training dataset based on
TimeSync. In that study, a stacking ensemble of the various map pro-
ducts reduced mapping errors by as much as 50% relative to the in-
dividual input maps. We now build upon the Healey et al. (in press)
study, as well as results from the objectives explored in this study, to
answer questions 2–4.

4.1. How different Landsat spectral bands/indices likely impact forest
disturbance detection

We developed the DSNR metric as a way to test the effectiveness of
different Landsat bands and selected spectral indices for detecting forest
disturbance. For that we used a dataset that represented many forest
types and disturbance regimes across the US. The primary lesson from
comparing band- and index-specific DSNR distributions among ob-
servations was the superior performance of SWIR reflectance (Table 3,
Fig. 1, and similar to the findings of Schultz et al., 2016). Interestingly,
it was not the original SWIR bands, but indices derived from them, that
indicated the most promise for accurate disturbance detection. In par-
ticular, NBR, NDMI, and TCW. What the first two have in common is
that they contrast SWIR against NIR reflectance, with the former relying
on SWIR2 and the latter on SWIR1 (Table 1). That NBR exhibited a
lower balanced error rate is most likely associated with the fact that
SWIR2 had a higher DSNR distribution than SWIR1 (Table 3). TCW
contrast both SWIR bands against, primarily, red and green reflectance,
with some contribution from the NIR band (Table 1). With respect to
the DSNR, the addition of the visible bands and the lesser importance of
the NIR band had the effect of somewhat reducing the DSNR perfor-
mance of TCW relative to the SWIR-based indices that avoided the
visible region. It is noteworthy that TCA, which, being a combination of
TCB and TCG mostly minimize the contribution of SWIR, but none-
theless performed better than SWIR1 using the DSNR metric. NDVI, by
far the most commonly used spectral index in terrestrial remote sensing,
was ranked only 7th (out of 13) with respect to DSNR performance.

Consistent with Schultz et al. (2016), we saw from the results of the
multispectral ensemble classification of LandTrendr that using more
than one spectral band/index can be quite advantageous for forest
disturbance detection. To gain additional insight into the likely com-
plementarity of multiple bands and indices when used together to de-
tect forest disturbance in an ensemble setting, it is useful to examine
band/index correlations for DSNR values among individual disturbance
observations (Fig. 5). NBR (rank 1) and NDMI (rank 2) had the highest
median DSNR ranks (Table 3) but, given the superiority of NBR, NDMI
was not needed in the best performing multispectral ensemble models
until seven variables were included (Table 5). This is likely because the
DSNR correlation between NRB and NDMI was quite high (0.81, Fig. 5).
TCW had the 3rd highest median DSNR rank and it was the most im-
portant index for single variable secondary classification of LandTrendr,
but it was not added to the best performing multispectral models until
six variables were utilized. Again, this is likely due to relatively high
DSNR correlation with NBR (0.70), but also with SWIR1 (−0.83), both
of which were included in the first several best performing multi-
spectral ensemble models. NBR and SWIR1 were included in all of the
best performing multispectral models in spite of the fact that their
DSNR values were moderately correlated (−0.52). Because NBR uses
SWIR2 and NIR reflectance, this suggests a strong complementary
power for forest disturbance detection among these two Landsat bands
and SWIR1. It was not until the three-variable model, and all sub-
sequent models using 4–12 variables, that a visible band became im-
portant with the inclusion of TCG, which contrasts NIR against red
reflectance. Although TCG was moderately correlated to NBR (0.55) it
had a low DSNR correlation with SWIR1 (−0.13). The red band had a
relatively low correlation with NBR (0.44) and moderate correlation
with SWIR1 (0.62), which may help explain its importance in this
context. TCB, TCG, and TCW all had low inter-index DSNR correlations
(absolute values between 0.10 and 0.44) suggesting good com-
plementarity among these three primary Tasseled Cap spectral vari-
ables for forest disturbance detection. Not surprisingly then, they were
added in succession with the three-, four-, and five-variable models and
remained important in all subsequent best performing multispectral
ensemble models.

In Cohen et al. (2017), of the seven map sets compared, five were
based on a single spectral dimension: NBR (LandTrendr), NDMI

Table 6
Number of times (from zero to N) that a given band/index was in the highest
performing model for each set that includes different numbers of bands and indices
from 1 to 12 (Set 13 excluded, as all bands were included in that set).

Band/Index N Rank

Blue 2 12
Green 6 6
Red 3 10
NIR 5 7
SWIR1 11 1
SWIR2 1 13
TCB 9 4
TCG 10 3
TCW 8 5
TCA 3 10
NDVI 4 9
NBR 11 1
NDMI 5 7
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(VeRDET, Vegetation Regeneration and Disturbance Estimates through
Time), NDVI (EWMA, Exponentially Weighted Moving Average and
ITRA, Image Trends From Regression Analysis), and Forestness (an
index unique to VCT, Vegetation Change Tracker). In light of the dif-
ferent performances among the bands and indices tested in this study,
both in terms of DSNR and single band/index LandTrendr secondary
classification errors, there can be little doubt that one of the important
reasons the maps were so different was that they each employed dif-
ferent spectral dimensions. Although the two other algorithms com-
pared (MIICA, Multi-index Integrated Change Analysis; CCDC, Con-
tinuous Change Detection and Classification) used multiple spectral
dimensions, they either used multispectral bands/indices in sequence to
identify disturbance (MIICA), or combined the results from multi-
spectral statistical tests prior to identifying disturbance (CCDC). Neither
of these, nor the single variable algorithms, used secondary classifica-
tion to improve model performance, which may be key to facilitating
cost-effective application of these algorithms in new forested locations.

4.2. Secondary classification as an effective way to exploit spectral space

Healey et al. (in press) demonstrated the value of secondary clas-
sification using multiple algorithm outputs with RF and a reference
training dataset. In that study, error rates were substantively reduced
relative to individual maps, with omission and commission errors ba-
lanced at 44% (see Fig. 4, BL outputs, Healey et al. in press). Schultz

et al. (2016) used a multispectral ensemble for secondary classification
of maps derived from BFAST Monitor and also realized reduced error
rates relative to single index algorithm outputs. In this study, we con-
firmed the value of a multispectral ensemble based on a single algo-
rithm. However, using the same study areas and reference dataset here
as that used by Healey et al. (in press), affords the opportunity to gain
insights into the comparative value of a multi-algorithm ensemble vs. a
multispectral ensemble for disturbance classification. Compared to the
44% balanced error rate from Healey et al. (in press) based on seven
algorithms, the median error balance from a two-band multispectral
ensemble with a single algorithm (i.e., LandTrendr) was 43% (Table 2),
and for the best performing two-band ensemble omission and com-
mission errors were 38% (Table 5). The addition of more bands/indices
to the multispectral ensemble further lowered error rates.

Many of the modern algorithms being developed for and/or applied
to the problem of forest disturbance mapping with Landsat time series
are complicated, consisting of a logical progression of many steps, each
often having a set of parameters that must be tuned to the forest con-
ditions the algorithm is being applied to. While one always has the
option of developing, parameterizing, and/or maintaining multiple al-
gorithms to employ within the context of ensemble stacking to improve
forest disturbance detections and mapping, that can be a labor-in-
tensive, largely heuristic endeavor for new forest application areas and/
or bands/indices utilized. As an alternative strategy, we demonstrated
here that an ensemble made up of the outputs of even a single algorithm

Fig. 5. Correlations of DSNR values among pairs of bands/indices.
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can produce large increases in accuracy if that algorithm is applied
efficiently across the Landsat reflectance spectrum. Given that it is ea-
sier to operate a single algorithm than many different algorithms, this
results points to a strategic approach to secondary classification that
should maximize the local calibration value of stacking while simpli-
fying operational processing.

4.3. Low magnitude disturbances

Given the effect on forests of a changing climate (Mildrexler et al.,
2016), a more modern focus on ecosystem management over stand
replacement harvests (Moeur et al., 2011), and international agree-
ments including forest degradation in addition to deforestation
(Kissinger et al., 2012), low magnitude disturbances are increasingly
important to detect with remote sensing (McDowell et al., 2015).
However, because these can be challenging to capture using an auto-
mated algorithm (Cohen et al., 2016), when targeting the full breadth
of disturbance types and magnitudes high omission rates can be ex-
pected (Cohen et al., 2017). Fortunately, secondary classification that
employs ensemble stacking of map output from numerous algorithms
appears to be an effective means of reducing omission errors (Healey
et al., in press). Moreover, this study has demonstrated that an efficient
multispectral ensemble using LandTrendr alone may provide compar-
able or even improved performance. Nonetheless, even in this study,
there remained a significant portion of low magnitude disturbances that
could not be accurately detected (~30% using 13 predictors, Table 2).

Because not all mapping applications require the full range of dis-
turbances to be detected, for those applications it is possible to trim the
low end of the magnitude range as a way to increase map accuracy. As a
simple demonstration of this, using the predictions from the 13 band/
index model, we progressively relabeled cases in both the TimeSync
and predicted LandTrendr datasets from disturbed to undisturbed based
on an incrementally higher change magnitude representing dis-
turbance, as measured by annual relative change in TCW. Using an
increasingly higher TCW magnitude threshold to successively remove
lower magnitude disturbances from consideration (including those that
exhibited TCW magnitudes in the “wrong” direction; i.e., those below
zero), errors of both omission and commission became lower, but by
differing amounts (Fig. 6). Errors of omission dropped to ~10% when
all disturbances below 0.2 relative TCW change magnitude threshold
were declared undisturbed. No longer balanced using this approach,
errors of commission were ~26% with the 0.2 TCW change threshold.
Using a 0.5 TCW change threshold (approximately equivalent to stand
replacement disturbance) errors were reduced to ~2% (omission) and
~12% (commission). It is important to note that lower magnitude
disturbances can be removed from any map using this same threshold

rule, so that there would be a disturbance map to match any degree of
magnitude trimming desired.

5. Summary and conclusions

This study focused on the use of a popular Landsat time series al-
gorithm, LandTrendr (Kennedy et al., 2010, to improve the potential for
accurate mapping of forest disturbance over six Landsat scenes widely
dispersed across the conterminous US. Like many newer Landsat dis-
turbance mapping algorithms, LandTrendr specifies a workflow de-
signed to run using a single spectral band or index, while incorporating
numerous logical decision sequences and statistical tests to detect dis-
turbance. Moreover, LandTrendr requires statistical calibration of basic
parameter sets to function properly over targeted conditions. Although
this requirement ensures good performance over the conditions for
which LandTrendr is calibrated, the quality of mapping results was
significantly lessened when it was applied in new areas without in-
depth recalibration (Cohen et al., 2017).

As demonstrated by Healey et al. (in press), secondary classification
using a stacking ensemble as a means to align a reference disturbance
dataset with multiple disturbance map datasets from different algo-
rithms can be a powerful way to improve disturbance mapping. In this
study, we demonstrated that use of a single algorithm may be a more
economical approach to employing ensemble stacking for improved
disturbance mapping. This was accomplished by fuller exploitation of
spectral dimensionality, running LandTrendr several times, each time
using a different spectral band or index and then aligning the derived
multispectral output with a disturbance reference dataset using RF.

As part of this study, we developed a disturbance signal-to-noise
ratio (DSNR) metric that appears to be a good proxy for disturbance
detection error. The DSNR explained the relative performance of
LandTrendr run on individual bands/indices and illustrated that using
SWIR reflectance or a SWIR-based index was the most important con-
sideration when using a single spectral dimension for forest disturbance
detection across the forests of the US. For a two-dimensional
LandTrendr multispectral ensemble, we also demonstrated that NIR
reflectance is the single most important complementary spectral band,
in spite of its tendency to exhibit low DSNR values. Adding additional
spectral bands/indices improved detection results, but the relationship
between reduced errors and number of bands/indices was asymptotic,
with most of the improvement happening with the use of 4–7 spectral
dimensions.

Although omission and commission errors remained close to 30%
using all 13 bands/indices integrated into the secondary classification,
most of those errors were associated with low magnitude spectral
change. As not all mapping applications require the full range of dis-
turbance magnitudes to be represented, we demonstrated a means for
determining the reduction in error by trimming the target magnitude
range. For example, by eliminating the lowest 20% of spectral change
from consideration, errors were reduced to ~10% (omission) and 25%
(commission). A disturbance map set can be created to match any level
of desired trimming, thereby tailoring the map to the required appli-
cation.
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