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ABSTRACT

As innovative harvest systems are developed, the extent to which they can be utilized on the landscape
based on machine capabilities is often unclear to forest managers. Spatial decision support models may
aid contractors and forest planners in choosing appropriate logging systems based on topography and
stand characteristics. Lidar and inventory data from 91 sample plots were used to model site character-
istics for 2627 stands in the Slate Creek drainage on the Nez Perce Clearwater National Forest in north-
central Idaho, USA, and were integrated into a decision support model to compare harvest system
selection using five harvest systems and three scenarios. In two of the scenarios, shovel harvester-based
logging systems, which are not common in the area, were included to determine potential sites where
integration of these systems is possible based on landscape and stand conditions. Lidar-derived
predictions for volume and trees per hectare were determined with model accuracies of 76.4% and
70.3%, and together with topographic characteristics it was determined that shovel harvester-based
options were feasible across a significant portion of the study area (31% and 34% in the two scenarios).
Additionally, increasing operable slope for ground-based systems by 10% increased the area in harvest-
able classification by 21%. Harvest system classification using lidar-derived products and known system
capabilities allows contractors and managers to better evaluate alternative harvest system options on
landscape scales and may encourage the utilization of innovative machinery not currently integrated
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into most logging operations.

Introduction

Harvesting system selection in forest operations is an
integral component of applied forest management. Forest
stands vary greatly in tree height, diameter, volume and
topographic characteristics, resulting in a need for forest
managers to effectively and efficiently select harvest sys-
tems best equipped to handle these varying conditions
(Wang et al. 1998; Adams et al. 2003). Decades of forest
operations research and industrial timber harvesting
experience has led to general understanding of capabilities
and operational thresholds of existing logging systems and
their effective deployment. However, as technology
advances and equipment evolves over time, the toolbox
of available harvest systems from which to choose con-
tinues to grow, making it necessary for managers and
contractors to stay informed about innovation in harvest
systems (Kuhmaier & Stampfer 2010) and to better under-
stand trade-offs among conventional and emerging
options. It is also important to identify both specific
stands and the potential total area for which newer
options may be preferable. This is necessary because the
choice of harvesting system has large impacts on costs,
and machine and workforce capacity (Matthews 1942;
Kithmaier & Stampfer 2010; Bell et al. 2017), especially
in difficult terrain and marginal stand conditions.

Broken or irregular topography creates unique challenges in
harvest system selection and planning that are largely driven by
fine-resolution spatial patterns (Saralecos et al. 2014; Saralecos
et al. 2015; Bell et al. 2017). These factors make operations in
sensitive and steep terrain more complex than gentle terrain
operations (Abbas et al. 2018) and these challenges are often
associated with worker safety and logging production
(Amishev & Evanson 2010). Ground-based systems are gener-
ally associated with higher production and lower costs, as
compared to cable systems (Andersson & Young 1998;
Strandgard et al. 2014). This makes innovative, ground-
based, steep slope harvesting systems an appealing alternative
to cable systems within feasible operational thresholds. Self-
leveling chassis of harvesting machines increase safety, comfort
of operation, and sustained high efficiencies on steep terrain
when compared to fixed cab ground-based machines
(Gellerstedt 1998; MacDonald 1999; Acuna et al. 2011). One
such machine gaining popularity in logging operations is the
self-leveling shovel harvester. These machines both fell and
forward trees to the roadside, fulfiling harvest tasks typically
completed by two separate machines.

Along with increased use of self-leveling shovel logging
units in the Inland Northwest, contractors have also started
incorporating tethered harvest systems into steep slope opera-
tions. With early work exploring tethered systems beginning

CONTACT Ryer M. Becker @ rbecker@uidaho.edu e Forest Operations Research Lab, University of Idaho, Moscow, Idaho, USA

This work was authored as part of the Contributor’s official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance

with 17 USC. 105, no copyright


http://orcid.org/0000-0003-1903-3833
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/14942119.2018.1497255&domain=pdf

180 (&) R.M.BECKER ET AL.

in the early 1970s, tethered forestry equipment has since
become commercially available in the United States (US)
and has been so in Europe for over 15 years (McKenzie &
Richardson 1978; Visser & Stampfer 2015; Sessions et al.
2017). Over the past 10 years, New Zealand has seen a
significant increase in the use of winch-assist technology,
with over 50 units actively operating (Abbas et al. 2018).
There are now over 45 winch-assisted machines operating
in North America as well; 23 of which are in the Pacific
Northwest (Amishev 2017). These include systems incorpor-
ating either a dedicated cable-assist machine or an integrated
winch mechanism on the harvester (Amishev & Evanson
2010; Visser & Stampfer 2015; Sessions et al. 2017). As use
of tethered logging systems increases, so does the importance
of efficiently and effectively characterizing the feasibility of
logging system alternatives at harvest unit and landscape
scales.

In the Inland Northwest US (eastern Washington, north-
ern Idaho and western Montana), ash-capped soils are parti-
cularly susceptible to compaction and disturbance, increasing
the demand for harvest practices that ensure their protection
and meet sustainability certification standards (Page-
Dumroese 1993; Johnson et al. 2005; Laukkanen et al. 2005).
In response, the US Forest Service (USES) restricts skidding
on ground exceeding 35% slope, with other landowners
across Idaho and the US employing similar restrictions
(Greulich et al. 2001; Hollenkamp, personal communication,
2014; Barkley et al. 2015). However, low-impact, self-leveling
machines may result in exceptions to existing restrictions if
they are shown to operate below established thresholds for
soil disturbance criteria. Additionally, tethered harvest sys-
tems may reduce soil disturbance by reducing track slippage,
though few studies have quantified the actual impacts of these
systems on previously undisturbed ground (Visser &
Stampfer 2015).

In the context of precision forestry, incorporating new
harvest system information into site-specific management
and operations decision-making provides a valuable resource
for long-term sustainability, improved logging production
and better environmental quality protection (Eker & Ozer
2015). Precision forestry is a forest management technique
that emphasizes data-intensive and innovative practices, tech-
nologies and processes to increase productivity, reduce costs,
and reduce negative site impacts (Taylor et al. 2002;
Kovacsova & Antalova 2010). However, the promise of pre-
cision forestry must be facilitated by decision support that is
both accessible and appropriate for practitioners in the field.

Decision support systems are defined as any means or
tools used to aid in decision-making processes (Acosta &
Corral 2017). In forest operations research, decision support
is often developed to define machine activity and harvest
system classification. Past research has resulted in the devel-
opment of various decision support systems for logging sys-
tem selection based on terrain and site characteristics
(Reisinger & Davis 1986; Davis & Reisinger 1990; Hartsough
et al. 2001; Suvien 2006; Kithmaier & Stampfer 2010). In the
context of steep, mountainous operations, various tools have
been developed and have been applied operationally for vary-
ing harvest systems (Heinimann 1998; Stampfer et al. 2001;

Chung et al. 2004; Largo et al. 2004; Acuna et al. 2011; Bell &
Keefe 2014; Keefe 2014; Barger et al. 2015; Bell et al. 2017).
Development of a harvest system selection and decision sup-
port model that effectively facilitates alternative logging sys-
tem analysis on broken topography of the Inland Northwest
region is challenging (Moye et al. 1988). However, increased
application of self-leveling shovel systems and tether-matched
harvest systems creates the need for a new descriptive har-
vesting classification and associated decision support.
Quantifying topographic and forest metrics for management
areas at high resolution is an important first step in this
process.

Remotely sensed data, including light detection and ran-
ging (lidar), has been used widely in forest management and
research (Lefsky et al. 2002; Akay et al. 2009: Wulder et al.
2012). Advancements in the three-dimensional mapping of
topography and forest characteristics using lidar has provided
opportunities to further develop decision support tools utiliz-
ing these high resolution spatial data (Wulder et al. 2012; Eitel
et al. 2016). Stand metrics and topographic products derived
from lidar also facilitate extrapolation of such models to a
landscape scale (Reutebuch et al. 2005). Inventoried forest
plots and subsequent development of predictive models
using random forest classification and regression methods
with lidar data allow stand metrics such as stand density,
merchantable volume and basal area to be processed for
landscape scale analyses (Breiman 2001; Rodriguez-Galiano
et al. 2012; Gan et al. 2015; Hudak et al. 2016). These topo-
graphic and site variables can be predicted and processed at
resolutions as fine as 1 meter (Reutebuch et al. 2005).

While lidar has been widely used in forest inventory ana-
lysis, utilization of these data in the context of forest opera-
tions has not been widely explored. In forest operations,
research using lidar has focused primarily on developing
high resolution digital elevation models (DEMs) for forest
road layout (Akay et al. 2004, 2009; Akay & Sessions 2005;
Aruga et al. 2005; Alam et al. 2013). In one of the few
examples focused on equipment operability, Alam et al.
(2013) incorporated lidar-derived slope data for a simulation
model of a self-leveling feller-buncher.

Our goal in this study was to develop an accurate decision
support model using lidar-derived forest and topographic
metrics for generalized harvest system selection at the land-
scape scale, and use it to determine where innovative, alter-
native harvest systems such as self-leveling shovel logging and
tether-matched steep slope harvest systems are feasible alter-
natives to conventional logging systems for all 2627 stands in
the Slate Creek management area of the Nez Perce-Clearwater
National Forest. We also quantified the potential impact that
introducing shovel logging and tether-matched systems had
on the use of conventional systems (ground-based and cable
operations), which may be displaced by the new systems.
Giving classification priority to the shovel harvester provides
insight into areas where this system can be deployed as an
alternative to other, more widely used systems and areas
where any possible benefits of shovel harvesting have the
potential to be captured. High production and cost effective-
ness of shovel logging increases its feasibility, even in moun-
tainous terrain (Fisher 1999). Site impacts caused by shovel



logging are inherently less than other ground-based systems,
making shovel logging a favorable alternative for sensitive
sites (Fisher 1999; Egan et al. 2002; Sessions & Boston
2006). Self-leveling capabilities of new shovels increase safe,
effective operating capabilities of the machines, making the
use of shovel logging more feasible across a wider range of
sites, especially in the Inland Northwest.

We hypothesized that the area of land classified as most
appropriate for conventional feller-buncher and skidder
operations would change when introducing ground-based sho-
vel harvesting as an alternative logging system. We also
hypothesized that introducing a tethered shovel system
would impact the proportion of land previously classified as
excaliner and hand felling in our harvest system classification
for the study area. We expected lidar-derived products could
provide the needed forest and topographic metrics to perform
landscape-scale harvest system classification and thereby yield
foundational data necessary for subsequent production and
cost analyses, and forest planning, in subsequent analysis. If
successful, having the ability to define trade-offs among rele-
vant logging systems spatially using lidar could be very helpful
for advancing sustainable forest management in ways that both
improve efficiency and reduce adverse environmental impacts.

Materials and methods
Methods overview and study site

We developed a process for harvest system site classification
based upon forest and topographic characteristics for five
harvest systems within three varying scenarios of regional
logging system capacity. This approach provides an opportu-
nity for operations managers and harvest planners to perform
direct comparisons between harvest systems to aid in the
selection of feasible systems based on stand characteristics,
terrain and machine parameters. The model classifies stands
within the management area based on forest and topographic
characteristics including stand stocking, merchantable
volume, slope, aspect, and harvest unit dimensions. The
study area is northeast of Riggins, Idaho, in the Nez Perce
Clearwater National Forest and consists of over 30,000 hec-
tares (74,000 acres) with 2627 delineated stands of mixed-
conifer overstory. Mountain pine beetle (Dendroctonus pon-
derosae) and recent wildfires have impacted the region and
influenced management strategies including, but not limited
to, timber harvests, salvage harvests, and fuel reduction treat-
ments. Clearcutting with reserves was the primary silvicul-
tural prescription applied. Stands were previously delineated
by the Nez-Perce Clearwater National Forest and spatial data
were provided by the National Forest to use in the analysis.
Stands are approximately 12 hectares (29.7 acres) in area, on
average. Non-SI units have been converted to SI units where
necessary throughout the analysis.

Lidar-derived stand metrics

To quickly generate stand stocking reports for the study area,
traditional inventory methods for collecting stand data were
augmented with analysis using lidar data. Data from 91 field
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inventory plots, each 20 x 20-meter (1/10 acre), were input
into the USFS Forest Vegetation Simulator (FVS) (Dixon
2002) to summarize stand composition and structure. Plot
data were collected previously by researchers with the USFS
Rocky Mountain Research Station Forestry Sciences
Laboratory, Moscow, ID, and are described by Vogeler et al.
(2014). These inventory plots were collected in 2008 by the
USFS. Only trees greater than and equal to the 15.24 cm
diameter class (6-inch) were considered for further use in
data processing to represent only potentially merchantable
trees. Lidar metrics encompassing the same extent as inven-
tory plots were also acquired. Lidar data were acquired
through Idaho Lidar Consortium and represented point
cloud files from a single 2006 lidar flight acquisition. Lidar
was flown and initially post-processed by Watershed Sciences
Inc. (2006) with an average native density of > 4 points per
m’. These data allowed the development of random forest
models aimed at determining the relationship between the
inventory metrics in question (trees per hectare, basal area,
and merchantable volume) and corresponding lidar metrics
for the plots.

A random forest is an ensemble learning technique com-
bining multiple decision trees into an overall ensemble. This
process is comparable to a form of nearest neighbor approx-
imation, which incorporates a bootstrapping algorithm with
decision trees. While predictions from a random forest are
limited to the range of training data used, they are run
quickly and are capable of dealing with unbalanced and
missing data (Breiman 2001). Rapid processing capabilities
and robustness of the ensemble learning method, even with
missing values, were primary factors in choosing to use the
random forest approach. Three separate random forest mod-
els to estimate field plot-derived stand density, merchantable
volume and basal area from lidar metrics were built using the
randomForest package (Liaw & Wiener 2002) in the statistical
programming environment, R version 3.3.3 (R Core Team
2016). Additionally, the rfUtilities package (Evans & Murphy
2017) was used to optimize predictor variable selection dur-
ing model development.

After random forest models were developed, they were
then applied to the Slate Creek study area, which is 30,042
hectares. Files were processed using the U.S. Department of
Agriculture (USDA) lidar processing software, FUSION ver-
sion 3.60. An identical lidar post-processed data structure to
those of 91 existing training plots was developed using
FUSION to allow the random forest models built from the
2/3 training data and later validated using the remaining 1/3
test data set to be applied directly to the entire study area.
Raster layers of predicted basal area, merchantable volume
and stand density at 20 x 20-meter (1/10 acre) resolution
were developed.

Shapefiles representing delineated stands for the entire
study area were used to create boundaries for application of
the harvest system selection model. Raster files for the com-
plete study area where then split and delineated to the extent
of each of the 2627 stand shapefiles populated in a single
feature class. Average values for stand slope, trees per hectare,
basal area (m*ha™'), and merchantable volume (m’ha™") were
determined for each of the 2627 stands using the lidar-
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derived stand and slope metrics. Stand-level averages for
forest and site metrics (merchantable volume, stocking den-
sity, basal area, slope, and aspect) were then determined
across the study area. All lidar-derived and additional spatial
data sources incorporated into the study analysis and inter-
pretation are shown in Figure 1.

Harvest system classifications and forest and
topographic metric classifications

Three landscape scale harvest system scenarios were
addressed through the analysis process, representing imple-
mentation of five varying harvest systems across the Slate
Creek study area in different combinations (Figure 2).
Performing landscape scale queries of stand and site charac-
teristics for various combinations of harvest equipment pro-
vided insight into the way in which new harvest system
introduction across the landscape impacted distribution and
area of feasible harvestable land for each system described.
Three harvest systems remained constant in the three scenar-
ios: feller-buncher with wheeled skidder; hand felling with
excaliner skid; and hand felling with swing yarder skid. In the
second scenario, a shovel harvester system, which includes
felling and forwarding with a single machine, was included in
the analysis. Operational threshold of the shovel harvester
overlapped with that of the feller-buncher and wheeled

Stand Stratified
Topo/Forest
~ JWr = Metrics

A .

2’ Lidar Derived
Forest Metrics

Workflow

Lidar Derived
Topo Metrics

Lidar Point
Cloud

Figure 1. Multi-input spatial data sources for harvest system selection model.

skidder system. However, the shovel harvester was the pre-
ferred system when performing harvest system selection
query across the 2627-study area stands to show the feasible
extent of the innovative shovel system, though not necessarily
the optimal system distribution.

In the third scenario, four harvest systems previously
referenced in the second scenario were incorporated. A teth-
ered shovel harvester system was added to the analysis. Any
instances where the operational threshold of the tethered
shovel harvester system overlapped with existing harvest sys-
tem thresholds, the tethered system was used as the preferred
system. Again, this classification priority given to the tethered
shovel was used to determine areas where the tethered shovel
is a feasible alternative to the excaliner and where incorpor-
ating the ground-based system may yield potential benefits.
Higher production and lower costs of ground-based harvest-
ing systems as opposed to cable counterparts (Fisher 1999) is
the justification behind this approach.

Analyzing harvest systems and identifying their limit-
ing parameters has been successfully described by decision
support models using systems analysis (Talbot et al. 2003).
To delineate stands in each scenario by each harvest
system, operational thresholds were defined for each of
the systems and were the foundation of the classification
process. Operational thresholds for slope, forwarding/skid
distance and minimum merchantable volume were
defined for all systems (Table 1). The shovel harvester
harvest system, independent of other machinery, was lim-
ited to forwarding distances not exceeding 180 meters
(Krume, personal communication 2015; Fisher 1999).
Forwarding distance for manual felling with excaliner
yarding systems was restricted to distances not exceeding
250 meters. Any stand with a slope exceeding 35% and a
forwarding distance exceeding 250 meters in variant A
was consistently classified across all three scenarios as
hand fell and swing yarder skid. This slope was increased
to 45% in variant B. In all three scenarios, stands not
exceeding 35% slope and exceeding 180-meter forward-
ing/skidding distance were classified as feller-buncher and
wheeled skidder in variant A. This lower slope limit was
increased to 45% in variant B. This was also the case in
scenario 1 for stands below 180-meter forwarding/skid-
ding distance.

The tethered shovel harvester system was bound by the
same operational thresholds as the untethered shovel har-
vester apart from allowable operable slope. In this
instance, operable slope began at 35% in variant A and
45% in variant B and was restricted to a maximum of 80%
(Cavalli 2015). For each of the previously described

Figure 2. Harvest system options for stand classification (left to right): feller-buncher/grapple skidder; shovel harvester; tethered shovel harvester; excaliner/hand

fell; swing yarder/hand fell.



Table 1. Harvest system scenarios for varying management situations. 29 m>ha
considered harvestable.
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was the minimum allowable stand merchantable volume for any unit to be

Harvest System Variant Operable Slope Forwarding/Skidding Distance
Scenario 1
Buncher/Skidder A 0 - 35% </> 180 m
B 0 - 45% </>180m
Excaliner/Hand Fell A > 35% <250 m
B > 45% <250 m
Swing Yarder/Hand Fell A > 35% > 250 m
B > 45% > 250 m
Scenario 2
Buncher/Skidder A 0-35% > 180 m
B 0 - 45% > 180 m
Shovel Harvester A 0 - 35% <180 m
B 0 - 45% <180 m
Excaliner/Hand Fell A > 35% <250 m
B > 45% <250 m
Swing Yarder/Hand Fell A > 35% >250 m
B > 45% > 250 m
Scenario 3
Buncher/Skidder A 0 - 35% > 180 m
B 0 - 45% > 180 m
Shovel Harvester A 0 - 35% <180 m
B 0 - 45% <180 m
Tethered Shovel A 35 - 80% <180 m
B 45 - 80% <180 m
Excaliner/Hand Fell A > 35% <250 m
B > 45% <250 m
Swing Yarder/Hand Fell A > 35% >250 m
B > 45% > 250 m

harvest system scenarios, operational thresholds for slope
and maximum skidding/forwarding distance are shown in
Table 1. In all instances, minimum merchantable volume
for classified stands was 29 m’ha™' (5000 BF/acre). Any
stand with mean volume below this minimum bound was
excluded from harvest system classification due to the
infeasibility of performing a harvest in a stand with such
low merchantable volume. In practice, these operational
thresholds are flexible and can be tailored to the specific
situation. Other limiting parameters can be substituted
into the analysis, depending on agency best management
practices, management objectives or other factors, and the
method allows for customization of the harvest system
capabilities and resulting classification.

For the purposes of this study, it was assumed that all
skidding and forwarding for all harvest systems would occur
directly parallel to the average azimuth aspect of the stand.
Therefore, all skidding and forwarding occurred either
directly up or downslope. To facilitate rapid and efficient
measurements of all stands, an R script was developed that
calculated all maximum forwarding or skidding distances. All
code development was completed in the statistical program-
ming environment R. With the aspect of each stand known,
the script performed a sweep perpendicular to the aspect at 50
points along the width of the stand polygon measuring dis-
tance. Maximum forwarding or skidding distance within the
polygon shapefile was then determined. With all necessary
forest and site metric data available for the harvest system
classification for the three scenarios, classification queries
were developed and executed in ESRI (Redlands, CA)
ArcMap version 10.3.1 Maps and resulting attributes were
collected from the analysis providing both visual and tabular
results from the harvest system classifications.

A sensitivity analysis was performed to determine the
impact varying slope predictions had on the harvest system
classification process. The stand level, average slope predic-
tions were adjusted £ 15% at 2.5% intervals for scenarios 1
through 3 for variant A and harvest system classification was
assessed again for each of the adjusted slope predictions.

It was understood that when applying this methodology
for harvest system classification the large number of ground
plots used to train and test random forest models for forest
metrics in our study may not be available. To address this
concern, we used simulation to evaluate the effect of sampling
intensity on random forest model accuracy and strength.
Models were developed for stand density, basal area and
merchantable volume following the same methodology pre-
viously used. Sample sizes for these simulations ranged from
10 to 90 plots in increments of 2. For each sample size,
random forest models were fitted for 1000 iterations to obtain
mean values and 95% bootstrap-based confidence intervals
for RMSE, R-squared, accuracy and mean estimate.

Results

Stand-level predictions across the 2627 stands for density,
basal area and merchantable volume are shown in Figure 3.
These stand level estimates were calculated from the random
forest model predictions in 20 x 20-meter resolution raster
datasets for each of the forest metrics and for the average
slope topographic metric. Table 2 shows quality estimates for
the random forest models developed for density, basal area,
and merchantable volume in terms of the mean estimate
value, root mean square error (RMSE), R-squared and
model accuracy. For all random forest models, the RMSE
was less than 50% of the prediction means for forest metrics,
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Figure 3. Stand-level averages for lidar-derived forest and topographic metrics
for Slate Creek study area. See Table 2 for accuracy assessment of lidar-derived
metrics.

Table 2. Random forest model quality assessment.

Random Forest Prediction mean RMSE R-squared Accuracy (%)
Stand density 405.57 tph 200.08 0.54 70.3
Basal area 36.57 m*ha™' 12.71 0.65 793
Merchantable volume 180.69 m>ha™" 7866  0.56 76.4

which is within the range considered acceptable for our
analysis. Random forest models developed to predict forest
metrics across the study area returned accuracies exceeding
70%. These accuracies are comparable to those achieved in
lidar-based random forest models developed by Falkowski
et al. (2010) and Hudak et al. (2016). Model accuracies were
70.3%, 79.3% and 76.4% for stand density, basal area, and
merchantable volume forests, respectively.

Spatial analysis and querying of forest and topographic
metrics derived from lidar analysis produced maps of the
three harvest system scenarios (Figure 4). From the maps,
it is clear that introduction of additional harvest systems
in Scenario 2 and Scenario 3 results in a recognizable
difference in classification of harvest systems across the
30,042-hectare (74,232 acre) study area in both variant
situations (Figure 4). Overall, introduction of the shovel
harvester system in Scenario 2 resulted in a change of
areas classified as feller-buncher and skidder of -31%
and -46% of the overall area for variants A and B,
respectively. For both variants, area reclassified from the

feller-buncher and skidder system was alternatively reclas-
sified to the shovel harvester system (Table 3).

Between Scenario 2 and Scenario 3, the tethered shovel
system was introduced as an alternative to the excaliner and
hand fell system, resulting in a decrease of area classified as
excaliner and hand fell system of —34% and -19% of the
overall study area for variants A and B, respectively
(Table 3). A change of classification of 10,260 hectares
(25,359 acres) for variant A and 5830 hectares (14,405
acres) for variant B from excaliner/hand-fell to tethered sho-
vel is shown.

In all instances, the swing yarder and hand-fell system
remained constant for stand and area classification because
the swing yarder and hand-fell system is used in stands that
exceed the maximum forwarding distance for all other har-
vest systems in this study, resulting in no feasible alternative.
In addition, the number of stands and resultant hectares
classified as “no harvest” also remained constant through all
scenarios.

Adding 10% slope to the operable slope limit in variant B
resulted in an increase of land classified as ground-based log-
ging systems (feller-buncher/skidder) of 6132 hectares (15,144
acres) or 21% for Scenario 1. In Scenario 2, there were an
additional 4334 hectares (10,703 acres) classified as shovel
harvester in variant B than in variant A. In Scenario 3, there
were an additional 4430 hectares (10,954 acres) classified as
tethered shovel in variant A than in variant B due to higher
area initially characterized as steep slope, cable ground.

Variant A resulted in an initial ground-based harvest sys-
tem classification of 42% of the overall study area, with 54%
classified as cable harvest and the remaining 4% defined as no
harvest. These percentages remained consistent through all
three scenarios when comparing ground-based and cable or
cable-assisted systems. In variant B harvest system classifica-
tion, the additional 10% slope added to the upper bounds of
operable slope of the ground-based systems and resulted in an
overall classification of 63% for ground-based system and
33% for cable system classification.

Results from the additional random forest model quality
assessments are shown in Figure 5 for the stand density
random forest model, Figure 6 for the merchantable volume
random forest model, and Figure 7 for the basal area random
forest model. From Figures 5, 6 and 7, it is evident that RMSE
decreases and R-squared values increase for all three models,
which is indicative of improving model prediction accuracy.
In several instances, R-squared is a negative value at low
sample sizes and represents very poor model fit. As the
number of sample plots increased, variation between predic-
tion means for all forest metrics between subsequent plots
became more consistent. With a larger number of sample
plots, the overall variability of the study area was better
represented and random samples of predominantly high or
low values were less likely to skew the data. Accuracies of the
models stayed relatively consistent for all sample sizes, though
less variability was found between subsequent numbers of
sample plots once sample sizes increased. This indicates that
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Figure 4. Harvest system selection maps for two variations of three harvest scenarios.

larger sample sizes produce more consistent random forest
models for forest metric predictions. For all forest metrics
and accuracy assessment metrics, it appears values became
more consistent and improved when the sample plot number
exceeded approximately 35 plots.

The sensitivity analysis results for the lidar-derived slope
predictions are found in Figure 8. In general, the area and
number of stands assigned to different harvesting systems was
quite sensitive to the slope determination, with dramatic
trade-offs between alternative systems in some cases. These
results are a clear indication of the impact inaccurate slope
predictions can have on the harvest system classifications and
indicate the importance of accurate initial slope predictions.

Fortunately, accurate elevation
one of the strengths of lidar.

and slope determination is

Discussion

Our method of using lidar to characterize stand characteris-
tics and select logging systems, as well as compare alternative
harvest options prior to field layout and implementation,
proved effective. In variant A of the harvest system classifica-
tion analysis, we found ground-based shovel logging was a
feasible alternative to the feller-buncher system in 1062
stands. Comparatively, ground-based shovel logging systems
provided a viable alternative to the feller-buncher and grapple
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Table 3. Harvest system classification summary table for two variants of three scenarios.

Harvest system Stands Hectares (acres) Area proportion
Scenario 1
Variant A B A B A B
No Harvest 91 91 1109 (2740) 1109 (2740) 0.04 0.04
Feller-Buncher/Skidder 1201 1,726 12,811 (31,657) 18,940 (46,801) 0.42 0.63
Excaliner/Hand Fell 1278 767 14,049 (34,716) 8,422 (20,810) 047 0.28
Swing Yarder/Hand Fell 57 43 2073 (5119) 1571 (3881) 0.07 0.05
2627 2627 30,042 (74,232) 30,042 (74,232) 1.00 1.00
Scenario 2
Variant A B A B A B
No Harvest 91 91 1109 (2740) 1109 (2740) 0.04 0.04
Feller-Buncher/Skidder 139 218 3425 (8463) 5222 (12,904) 0.1 0.17
Shovel Harvester 1,062 1,508 9386 (23,194) 13,718 (33,897) 0.31 0.46
Excaliner/Hand Fell 1,278 767 14,049 (34,716) 8422 (20,810) 047 0.28
Swing Yarder/Hand Fell 57 43 2073 (5119) 1571 (3881) 0.07 0.05
2627 2627 30,042 (74,232) 30,042 (74,232) 1.00 1.00
Scenario 3
Variant A B A B A B
No Harvest 91 91 1109 (2740) 1109 (2740) 0.04 0.04
Feller-Buncher/Skidder 139 218 3425 (8463) 5222 (12,904) 0.11 0.17
Shovel Harvester 1,062 1,508 9386 (23,194) 13,718 (33,897) 0.31 0.46
Tethered Shovel 1,064 618 10,262 (25,359) 5830 (14,405) 0.34 0.19
Excaliner/Hand Fell 214 149 3787 (9357) 2592 (6405) 0.13 0.09
Swing Yarder/Hand Fell 57 43 2073 (5119) 1571 (3881) 0.07 0.05
2627 2627 30,042 (74,232) 30,042 (74,232) 1.00 1.00
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Figure 5. Root mean squared error (RMSE), R-squared, accuracy and prediction mean plots for mean stand density (trees per hectare) random forest model
representing sample plots of 10 up to 90 increasing by 2. Horizontal line represents values for model using all 91 plots. Confidence intervals (95%) are shown using

black bars at each sample size.

skidder in variant B in 1508 stands. Similarly, the tethered
shovel harvester system was found to be a viable alternative to
the excaliner in 1064 stands for variant A and 618 stands for

variant B.
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From an operational standpoint, potential implementation
of the shovel harvester as an alternative to the feller-buncher
and grapple skidder system means one machine could be used
to harvest these stands rather than two. This may lead to



INTERNATIONAL JOURNAL OF FOREST ENGINEERING . 187

Mean Merchantable Volume (m°ha™")

160 -

120 -

80~ - YN- L 1 =

RMSE (m*ha™")

10 20 30 40 50 60 70 80 90
Number of sample plots

0.90-
0.85-

0.80-

0.75- ~
0.70- H
0.65-
0.60-
0.55-
0.50-
0.45-
0.40-

Accuracy (%)

10 20 30 40 50 60 70 80 90
Number of sample plots

0.75-
050-

0.25-

R-squared

0.00-

-0.25-

10 20 30 40 50 60 70 80 90
Number of sample plots

225~
200~

175-

150 -

125-

Mean Merch. Volume (m*ha™")

10 20 30 40 50 60 70 80 90
Number of sample plots

Figure 6. Root mean squared error (RMSE), R-squared, accuracy and prediction mean plots for mean merchantable volume (mha™") random forest model
representing sample plots of 10 up to 90 increasing by 2. Horizontal line represents values for model using all 91 plots. Confidence intervals (95%) are shown using

black bars at each sample size.

lower fuel, labor and maintenance costs, potentially resulting
in lower total logging costs, depending on system productiv-
ity. For example, based on information provided by logging
contractors, Fisher (1999) determined that shovel logging
reduced unit costs by 40% compared to some cable alterna-
tives, including a slackline tower and swing yarder. More
generally, having the ability to match an appropriate harvest
system with operability constraints of forest and topographic
conditions is the first step in increasing productivity and
reducing costs. However, stand-level logging costs for the
two systems should be estimated and compared prior to
decision-making about optimal or preferred options.
Without performing production and cost estimation, the
classifications in this study are aimed at describing the extent
of feasible stands for the innovative, ground-based harvest
systems based on operable thresholds and not necessarily the
optimal system for each stand.

Increasing the slopes on which ground-based harvest
machinery is allowed to operate, especially within the US
National Forest System, is an important consideration when
attempting to maximize timber production in treated stands
under conditions that are safe for modern equipment.
Increasing the upper bounds of operable slope for the
ground-based systems by 10% slope resulted in an increase
in overall operable ground of 21% of our study area. This

equated to over 6300 ha. Increased safety associated with
mechanized felling using tethered and untethered shovel har-
vesters, in comparison to hand felling, which is less safe, is an
important benefit when considering increasing allowable
slopes of ground-based systems (Kim et al. 2017). This is
especially relevant in the context of the Slate Creek study
area, where beetle killed stands present hazardous working
conditions for ground workers, especially from falling wood
and breakage during felling. Classifying feasible stands to
incorporate these alternative harvest systems means fewer
workers outside the protection of enclosed machine cabs.

Ground-based shovel harvester systems, both tethered and
untethered, are gaining traction as popular harvest methods
in the Inland Northwest. Delineating areas where specific
harvest systems can be used appropriately may in turn pro-
mote effective forest management by creating safer working
conditions, reducing costs and increasing logging productiv-
ity. This is done by providing tools to facilitate efficient and
effective decisions that consider forest characteristics and
topographic features, as well as innovative technologies and
processes, when managing individual stands and larger
landscapes.

The accuracy with which forest and topographic
metrics can be derived and predicted from lidar data for
use in resource management is increasing (Reutebuch
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et al. 2005). Development of automated algorithms for
detecting and delineating individual tree crowns has
made the application of these data in precision forestry
more feasible (Zhen et al. 2016). Furthermore, research
delineating individual tree locations and individual tree
volume estimation continues to advance our understand-
ing and utilization of lidar data and other remotely sensed
information and provides opportunities to advance preci-
sion forestry in innovative ways (Falkowski et al. 2006;
Chen et al. 2007; Akay et al. 2009; Gupta et al. 2013; Zhen
et al. 2016; Barnes et al. 2017). Methods to improve the
accuracy of these predictions, however, still need to be
developed and commercial applications are limited. We
have shown that lidar provides a valuable tool for predic-
tions and depictions of stand scale and landscape scale
harvest system classification. However, to fully take
advantage of emerging high-resolution lidar characteriza-
tion of forest products, subsequent research should focus
on simulating logging at the individual-tree level in ways
that can provide meaningful analysis and information to
inform equipment operators. Additionally, the impact of
micro-site variability was not assessed in our analysis, but
should be addressed to improve the effectiveness of the
harvest classification model.

The random forest model assessment performed provides
the basis for the assumption that comparable random forest
models and resulting prediction accuracies can be achieved
with access to fewer training and testing plots than used in
this study. However, accuracies of model predictions may be
adversely impacted once the number of sample plots drops
below a certain threshold, as shown in our analysis. It is
unclear from our analysis what stand or geographic factors
may affect this threshold.

As seen from the sensitivity analysis performed for pre-
dicted slope, taking steps to ensure accurate classification
metric predictions is important in assuring an overall accu-
rate assessment of harvest system classification using this
approach. The impact of error and uncertainty in predicting
slope is dramatic (Figure 8), especially in the context of cable-
versus ground-based harvest systems. Accessing updated and
recent lidar acquisitions help ensure high density returns and
better resultant predictions, as does the development of effec-
tive random forest models.

Efficiently performing harvest system classifications at the
landscape scale using lidar-derived metrics will lead to con-
tinuing work further utilizing these data in an operational
context (Figure 9). Combining these classifications with
stand-level logging cost estimates in future work will provide
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the basis for determining the optimal harvest system at the
stand-level in subsequent analyses. To increase the usefulness
of this approach, stand-level production and logging cost
estimates can provide the foundation for performing estate-
level harvest scheduling analysis with stand-specific logging
cost estimates, rather than assumed values.

Lidar-derived harvest system classifications can also be
integrated with individual tree-level harvest simulation and
real-time decision support, further building on the founda-
tional work developed in this study. Keefe et al. (2014) out-
lined the use of geographic navigation satellite system with
radio frequency communication (GNSS-RF) as a method to
support real-time analysis and model-based decision support
in forest operations. Becker et al. (2017), Wempe & Keefe
(2017), Grayson et al. (2016), Zimbelman et al. (2017) and
Zimbelman and Keefe (2018) have contributed to the devel-
opment of new applications of GNSS-RF technologies in
operational forestry and logging safety. Use of lidar-derived
forest and topographic metrics for harvest system selection

described in this study and the subsequent development of
individual tree level, within-stand simulation of logging sys-
tems derived from LiDAR, will further advance precision
forest operations as LiDAR-based stand characteristics and
real-time analytic models are merged.

In conclusion, as technologies and equipment continue
to advance, foresters, engineers, loggers, and forest plan-
ners can increasingly utilize and incorporate lidar analysis
and lidar-derived products into current practices to
increase harvest productivity, minimize costs, and encou-
rage long-term sustainable forest management practices.
Our results showed significant potential for characterizing
the appropriateness of sites for new logging systems at the
stand and landscape scales, and should be further devel-
oped in future studies. A clear understanding of not only
the capabilities of remotely sensed data, but ways to effec-
tively incorporate these into operational forestry is critical
for capturing the potential benefits these data sources
provide. Precision forestry has long been a motivating
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concept that has lagged in application and execution in
practice. However, methods and products developed in
this study combine remotely sensed data capabilities to
address management challenges and actualize the concept
of precision forestry in forest operations.
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