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Assessing Transboundary Wildfire Exposure in the
Southwestern United States

Alan A. Ager,1,∗ Palaiologos Palaiologou,2 Cody R. Evers,3 Michelle A. Day,4

and Ana M. G. Barros5

We assessed transboundary wildfire exposure among federal, state, and private lands and
447 communities in the state of Arizona, southwestern United States. The study quantified
the relative magnitude of transboundary (incoming, outgoing) versus nontransboundary (i.e.,
self-burning) wildfire exposure based on land tenure or community of the simulated ignition
and the resulting fire perimeter. We developed and described several new metrics to quan-
tify and map transboundary exposure. We found that incoming transboundary fire accounted
for 37% of the total area burned on large parcels of federal and state lands, whereas 63%
of the area burned was burned by ignitions within the parcel. However, substantial parcel to
parcel variation was observed for all land tenures for all metrics. We found that incoming
transboundary fire accounted for 66% of the total area burned within communities versus
34% of the area burned by self-burning ignitions. Of the total area burned within commu-
nities, private lands contributed the largest proportion (36.7%), followed by national forests
(19.5%), and state lands (15.4%). On average seven land tenures contributed wildfire to indi-
vidual communities. Annual wildfire exposure to structures was highest for wildfires ignited
on state and national forest land, followed by tribal, private, and BLM. We mapped commu-
nity firesheds, that is, the area where ignitions can spawn fires that can burn into communities,
and estimated that they covered 7.7 million ha, or 26% of the state of Arizona. Our methods
address gaps in existing wildfire risk assessments, and their implementation can help reduce
fragmentation in governance systems and inefficiencies in risk planning.
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1. INTRODUCTION

Wildfire impacts to developed areas continue to
escalate on a global basis, in particular in temperate
ecosystems (Moritz et al., 2014). Numerous and
well-known drivers of wildfire losses to social and
ecological values have been widely discussed, includ-
ing increasing development pressure in wildlands
(Radeloff et al., 2005, Stewart, Radeloff, Hammer,
& Hawbaker, 2007), climate anomalies (Jolly et al.,
2015; Trigo et al., 2006), rural abandonment (Be-
nayas, Martins, Nicolau, & Schulz, 2007; MacDonald
et al., 2000), removal of fire from fire-prone sys-
tems (Collins, Stephens, Moghaddas, & Battles,
2010; North, Collins, & Stephens, 2012), and poor

2105 0272-4332/18/0100-2105$22.00/1
Published 2018. This article is a U.S. government work and is in the public domain in the USA.



2106 Ager et al.

community response to wildfire events (Calkin,
Thompson, & Finney, 2015; Williams, 2013). Fram-
ing the problem in a broader socioecological systems
framework is argued as a way to leverage risk
governance to develop cohesive transboundary (i.e.,
“all lands”) wildland fire management strategies to
address drivers that perpetuate wildfire problems
(Fischer et al., 2016; Steelman, 2016; USDA Forest
Service, 2014). Risk governance concepts (Renn,
Klinke, & van Asselt, 2011; van Asselt & Renn, 2011)
were originally stimulated by transboundary risk
issues (Lidskog, Soneryd, & Uggla, 2010, Lidskog,
Uggla, & Soneryd, 2011, USDA Forest Service,
2001), including floods (Van Eerd MC & Dieperink,
2015), pollution, other environmental hazards (Lid-
skog et al., 2011), and disease (van Zwanenberg
& Millstone, 2005), but only recently have been
discussed in the context of wildfires (UNECE/FAO,
2013; Zaimes et al., 2016). For example, Steelman
(2016) argues that current wildfire risk governance
is highly fragmented and poorly designed to respond
specifically to transboundary wildfire risk. Fragmen-
tation in wildfire risk governance likely contributes
to scale mismatches (Cumming, Cumming, & Red-
man, 2006) and inefficient planning (Ager, Kline,
& Fischer, 2015). Lidskog et al. (2010) argue that in
general, multiple sources of complexity need to be
addressed to render transboundary risk issues gov-
ernable. Still others argue that the two-dimensional
definition of risk itself (probability and consequence)
is not sufficient to evaluate transboundary risk, since
identical risks in these two dimensions could require
different treatment (van Asselt & Renn, 2011) due to
the cause of the process by which they were created
or sustained. Gardoni and Murphy (2014) proposed
a third dimension of risk that should be factored into
risk evaluation, the source or cause of risk.

Transboundary wildfire risk results from frag-
mented landscapes and is amplified by heterogeneity
in the drivers of wildfire spread (Finney, 2005) at
the scale of a patch, parcel, ownership, or any other
defined spatial unit. The process is highly relevant
to understand and foster risk governance systems
to achieve various goals of U.S. federal wildland
fire policy, including fire-adapted landscapes, safe
response, and fire-resilient communities (USDA
Forest Service, 2014). At the scale of public land
parcels in the United States, transboundary risk is
primarily an artifact of landscape fragmentation
with respect to ownership and administrative fire
management jurisdictional boundaries (Ager et al.,

2017). Parcel geometry and relative size of different
ownerships set the stage for fire transmission across
boundaries (Ager, Day, Finney, Vance-Borland, &
Vaillant, 2014). The problem manifests itself when
landowners and institutions have inconsistent atti-
tudes and objectives about fire’s role in fire-adapted
ecosystems. For instance, public managers are man-
dated to restore natural fire regimes in fire-adapted
forests, and adjacent private landowners are primar-
ily interested in protecting their property, and, in
the case of private industrial landowners, generating
economic outputs from forest management (Charn-
ley et al., 2015). The transboundary problem is a
particular issue in the interface between communi-
ties and large tracts of public and private wildlands
(Haas, Calkin, & Thompson, 2015) where natural
fire regimes are often in conflict with socioeconomic
values and land management goals at the parcel
scale (Charnley et al., 2015; Fischer & Charnley,
2012; Steelman, 2016). Transboundary risk issues
are highly relevant to other fire management issues,
including recent initiatives to expand the use of both
prescribed fire and natural ignitions to reduce fuels
and future suppression costs, and restore low sever-
ity wildfire in fire-adapted forests (North et al., 2015;
Prichard, Stevens-Rumann, & Hessburg, 2017). Nu-
merous prescribed fires, as well as natural ignitions
managed for restoration objectives, have escaped
and resulted in substantial damages (Dether, 2005).

A step towards better understanding trans-
boundary wildfire issues is leveraging a growing
body of knowledge and technology for large wildfire
risk assessment (Ager, Finney, Kalabokidis, &
Moore, 2017; Miller & Ager, 2013). In the United
States, risk assessment technologies have been stim-
ulated by multiple reports from oversight agencies
that concluded risk metrics need to be used to prior-
itize investments in fuel management (OIG, 2016).
However, existing risk assessment protocols do not
explicitly quantify transboundary risk and the impli-
cations in terms of risk mitigation and governance. A
good example is the risk assessment process used by
state agencies in the United States (Wolf & Buckley,
2010). This assessment has been initially completed
for the western U.S. states and is now being refined
on a state-by-state basis and implemented in Wildfire
Risk Assessment Portals (WRAPs) for each of the
17 western states for use by the public and profes-
sionals (WWWRA, 2013b). These risk assessments
are based on pixel-level indices that identify com-
munities that need to engage in community wildfire



Transboundary Wildfire Exposure in the Southwestern United States 2107

protection planning (CWPP) (Ellison et al., 2015).
Similar methods have been developed for fine-scale
community wildfire risk planning (Headwaters Eco-
nomics, 2016). Both systems use pixel-scale estimates
of fire behavior rather than simulations of large fire
events, and thus the potential impacts from large
fires on risk are not fully exposed. Newer methods
developed by Forest Service researchers use large
fire simulation (Dillon, Menakis, & Fay, 2015; Scott,
Thompson, & Calkin, 2013) but lack frameworks to
consider transboundary wildfire transmission.

To advance current risk assessment methods
to recognize the complexities of transboundary risk
governance (USDA Forest Service, 2001; Zaimes
et al., 2016) and to specifically address implications
for “all lands” risk management (USDA Forest
Service, 2014), we describe a number of newer risk
assessment concepts based on the core principle that
transboundary risk has a spatial and functional scale
that is determined by a host of social, institutional,
biophysical, and ecological factors (Table I). We use
the state of Arizona in the southwest United States
as a case study to examine transboundary wildfire
exposure among land tenures and communities and
describe exposure profiles for each land tenure and
community. Arizona is prone to large wildfires,
and rapidly expanding exurban growth has created
conflicts between fire and people. We ask how the
geography of land tenures intersected on local fire
regimes in a typical fire-prone state in the western
United States sets the stage for fire transmission
across public-private boundaries, and what metrics
are useful to quantify the resulting exposure. We
do not explicitly consider risk to avoid issues with
tenure-specific values and their influence on risk, and
assume that most transboundary exposure carries
substantial risk in one form or another. We mapped
the spatial structure of wildfire risk to Arizona’s com-
munities in terms of the amount and number of con-
tributing land tenures and discuss the implications
for managing wildfire risk. Our results illustrate how
a transboundary assessment of wildfire risk can fa-
cilitate managing wildfire risk at a multijurisdictional
scale and facilitate dialogues between federal, state,
and private land management organizations and the
respective communities they potentially impact. Re-
sults from the study can be coupled with local infor-
mation on community protection activities to priori-
tize state and local funding. Expansion of our efforts
in other western U.S. states will lead to the character-
ization of complex wildfire networks that can inform

local and regional risk governance and planning pro-
cesses to factor wildfire connectivity into state-scale
risk assessments (WWWRA, 2013b), and lead to
the development of community protection activities
individualized by the source of wildfire and fire
management objectives on the source land tenures.

2. MATERIALS AND METHODS

2.1. Study Area

The study area was the state of Arizona, cover-
ing approximately 300,000 km2. The state contains
447 communities and cities with a total population
of 6,392,017 residents (2010 census), 65% of which
live in Maricopa County (surrounding Phoenix). The
remaining 35% of Arizona’s population is scattered
among the other 14 counties in 403 communities.
Federally managed land accounts for 41% of the
study area and is distributed among five federal
agencies: Forest Service (FS), National Park Service
(NPS), Bureau of Land Management (BLM), mili-
tary and energy infrastructure lands (DOD/DOE),
and the U.S. Fish & Wildlife Service (FWS) (Fig.
1a and Table II). Arizona has extensive national
forests, including the Apache-Sitgreaves, Coconino,
Kaibab, Prescott, and Tonto. Native American tribal
lands occupy over a quarter of Arizona, including
the Navajo Nation, the Hopi Tribe, the Havasupai
Tribe, the Gila River Indian Community, the To-
hono O’odham Nation, the White Mountain Apache
Tribe, and the San Carlos Apache Tribe. Private and
state lands account for 12.3% and 11.9% of Arizona,
respectively.

Seven distinct ecoregions characterize the
state’s landscape, that is, the Arizona/New Mexico
Mountains, extending from central Arizona to the
northern boundary covering 21.6% of Arizona;
the Chihuahuan Deserts in the southeast (0.9%),
interspersed with Madrean Archipelago; Madrean
Archipelago (12%) in the southeast; the easternmost
extension of the Sonoran Desert in the southwest
(Sonoran Basin and Range; 30.4%); the Mojave
Basin and Range in the northwest (5.2%); the Ari-
zona/New Mexico Plateau to the north (26.3%); and
the Colorado Plateaus along the northern border of
the state (3.6%) (Omernik & Griffith, 2014). Vegeta-
tion zones include alpine tundra on the San Francisco
Peaks above timberline at elevations exceeding 3,340
m, spruce-alpine fir forests on and around the sum-
mits of the highest mountains, and montane conifer
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Table I. Key Concepts and Metrics for Assessment and Mitigation of Transboundary Wildfire Issues on Multiple Tenure Landscapes

Concept Explanation Metrics Example

Transboundary risk Conditions and events on one parcel
affect risk and exposure on another

Incoming fire, outgoing fire,
nontransmitted fire
(self-burning)

Fig. 2

Scale of risk Wildfire spread between ignitions and
impacted features

Distance to ignition from affected
parcel, average fire size burning
a particular feature, fireshed
area relative to populated place

Ager et al., 2015;
Fig. 12

Wildfire networks Wildfire connectivity and
interdependence among land tenures

Network density, node degree,
directed node degree, centrality,
betweenness

Figs. 4, 5, and 9

Community firesheds The spatial scale of risk to communities Zone around communities that
includes all areas that
potentially transmit fire into a
community

Figs. 11, 12e

Scale mismatches Difference between spatial scale of risk
and planning boundaries

Fireshed area relative to
community wildfire protection
planning boundary

Ager et al., 2015

Community wildfire
characterization

Fire metrics that describe wildfire
exposure on the affected part of
communities and associated wildland
urban interface (WUI), calculated at
the WUI-polygon scale

Expected area burned per year,
flame length, fuel models,
farmland, etc.

Ager et al., 2017

Transboundary risk
governance

Institutions, rules conventions, processes,
and mechanisms by which
transboundary risk is managed

Socioeconomic and ecological
costs caused by wildfire
disasters

Lidskog et al.,
2010

forests that grow along the southern rim of the Col-
orado Plateau. Pinyon-juniper woodland is mostly
found in the northern half of Arizona and encinal
and Mexican oak-pine woodlands in the southeast
(evergreen oaks or mixtures of oak, juniper, and
Mexican pinyon). The interior chaparral type ex-
tends in a discontinuous band running southeast from
Kingman, through Prescott and Payson, continuing
to the southeast below the Mogollon Rim. Arizona’s
interior chaparral differs significantly from that of
California in terms of prevailing climate (receiving
less annual precipitation), growth patterns, average
height and species of shrubs, and the composition of
understory grasses and forbs (Schalau & Twaronite,
2010). Grasslands are divided into three different
types: mountain meadow, plains, and desert. Table
III shows the proportion of the different fuel types
and nonburnable area in each ecoregion.

Natural (lightning) and human-caused large fires
within the study area have burned 2.5 million ha
during the 1984–2015 period (8.1% of total Arizona’s
area) (MTBS Data Access, 2017). This translates to
0.28% of the burnable land per year. Based on the
Short (2014) database (1992–2011), natural ignitions
accounted for 47.4% of area burned and human igni-
tions accounted for 52.6% (1.1 million ha). Between

1976 and 2016, 22 large wildfires (>1,000 ha) were
recorded, burning approximately 800,000 ha of forest
and other lands. The Wallow Fire (2011) is the largest
recorded fire in the state and burned 220,000 ha, the
majority on the Apache-Sitgreaves National Forest
(93%), followed by tribal (4.2%), private (2%), and
state lands (0.8%). The Rodeo-Chediski Fire (2002)
burned 190,000 ha of ponderosa pine, pine-oak,
and juniper-pinyon forests on tribal (60.5%), FS
(37.9%), and private lands (1.6%), with more than
400 burned structures. The Cave Creek Complex
Fire (2005) burned 100,000 ha on FS (92.5%), state
(4.6%), private (1.6%), and BLM lands (1.2%), and
destroyed structures and natural monuments.

2.2. Spatial Data on Land Ownership and
Communities

We used polygon data from the U.S. Census
Bureau populated places (U.S. Census Bureau, 2016)
and the SILVIS wildland urban interface (WUI)
(Radeloff et al., 2005) databases to define commu-
nities within Arizona. The SILVIS WUI defines
WUI as the area where houses meet or intermingle
with undeveloped wildland vegetation, classified
according to structure density (one structure per
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Fig. 1. (a) Land tenure map for the state of Arizona with protected areas (dashed). Land tenures are combinations of ownership and pro-
tection status. Checkerboard effect appears between state and private land tenures east and west of Flagstaff. ARS, Agricultural Research
Service; BLM, Bureau of Land Management; BOR, Bureau of Reclamation; DOD, Department of Defense; DOE, Department of Energy;
FWS, U.S. Fish & Wildlife Service; FS, Forest Service; NPS, National Park Service. See Table II for land tenure details. (b) National forest
boundaries with ranger districts.

16 ha minimum) and distance to wilderness veg-
etation, with further classifications into intermix
(housing and vegetation intermingle) and interface
(housing in the vicinity of contiguous vegetation).
Populated places were identified from the census
populated places data and intersected WUI poly-
gons (U.S. Census Bureau, 2016). Final community
boundaries of the 447 communities were derived by
assigning each WUI polygon outside populated place
boundaries to its closest community (all polygons
within an estimated 45 minutes travel time).

The ownership and management capability
layer was compiled using the USGS Protected Area
Database (PAD) (USGS Protected Areas Database
of the United States (PAD-US), 2016) for the United
States, and the Integrated Landscape Assessment
Project (ILAP) (Gaines, Hemstrom, Kagan, & Sal-
wasser, 2013). Managed lands were identified using
the ILAP forest management categories (codes 4, 5,
and 6) to determine portions of land tenures where
mechanical fuel management activities could be
undertaken and potentially mitigate transboundary

fire events (Fig. 1). We use the term land tenure to
describe the combined classification of ownership
and management capability. Communities and
ownership-management layers were combined to
create a new layer with 13 land tenures. We then
further separated FS lands into ranger districts (RD)
(Fig. 1b).

2.3. Wildfire Simulation

We used wildfire simulation data reported by
Short, Finney, Scott, Gilbertson-Day, and Grenfell
(2016) that were generated using 2012 LANDFIRE
data (LANDFIRE, 2016) and the FSim model
(Finney, McHugh, Grenfell, Riley, & Short, 2011).
The data have been summarized in a number of
previous papers (Ager et al., 2014; Ager, Day, Short,
& Evers, 2016). The data consist of predicted wildfire
ignition locations and fire perimeters for the study
area. FSim uses the minimum travel time (MTT)
algorithm to calculate fire growth by Huygens’s
principle, where growth and behavior of the fire
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perimeter is modeled as a vector or wave front
(Finney, 2002; Richards, 1990). The simulations
were performed with a spatial stratification system
according to federal interagency fire planning units
(FPU). Models for each FPU were calibrated based
on spatiotemporal ignition patterns over the past
30 years (Short, 2014, 2016). Surface and canopy
fuel data for wildfire simulations were obtained from
the national LANDFIRE data set (Rollins, 2009),
consistent and widely used fuel data available for the
United States (Krasnow, Schoennagel, & Veblen,
2009, Rollins, 2009). Variables used in fire modeling
with FSim included elevation (m), slope (degrees),
aspect (azimuth), fuel model (Scott & Burgan, 2005),
canopy cover (%), canopy base height (m), canopy
height (m), and canopy bulk density (kg/m3) (Ryan
& Opperman, 2013).

Meteorological conditions for fire simulations
for each FPU were obtained from a Remote Au-
tomatic Weather Station (RAWS) (Zachariassen,
Zeller, Nikolov, & McClelland, 2003). Each station
was selected based on local FS fire staff recommen-
dations. Selected RAWS had a minimum of 20 years
of available weather records and reflect the local
weather conditions (i.e., wind velocity) associated
with the fire season for each FPU. Fire simulations
were performed at 270 × 270 m pixel resolution, a
scale that allowed for relatively fast computation
times while maintaining reasonable spatial resolution
in vegetation and topographic inputs.

The data set contained 1.1 million ignitions,
corresponding to 20,000 to 30,000 fire seasons (de-
pending on FPU) depicting the historical ignition
patterns of the study area. Simulation outputs
included fire perimeters, ignition locations, and
probability-intensity grids. Validation of FSim
simulation outputs was performed by comparison
of actual versus predicted fire perimeters and fire
size distributions (Finney et al., 2011, 2011). The
outputs used in this study were deemed adequate for
examining broad landscape patterns of fire exposure
within the study area.

2.4. Transmission Analysis

Analysis of wildfire transmission was conducted
at both the landowner and community scale, similar
to the methods described in Ager et al. (2017).
Fire perimeter outputs and ignition locations were
intersected with the polygon land tenures and
communities to quantify the area burned. For com-
munity polygons, the number of structures affected
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Table III. Fuel Model (Scott & Burgan, 2005) Composition of the Seven Ecoregions of Arizona (Omernik & Griffith, 2014)

Fuel Model Categories (%)a

NB GR GS SH TU TL Area (ha)

Arizona/New Mexico Mountains 3.5 30.7 37.6 8.5 3.2 16.5 6,383,831
Arizona/New Mexico Plateau 14.9 41.5 19.7 23.0 0.4 0.5 7,770,433
Chihuahuan Desert 13.3 18.0 53.8 14.6 0.2 0.1 257,009
Colorado Plateau 22.3 22.5 31.2 23.8 0.1 0.1 1,051,444
Madrean Archipelago 3.5 35.6 40.5 17.8 0.8 1.8 3,532,661
Mojave Basin and Range 18.6 14.9 54.5 10.8 1.1 0.1 1,541,704
Sonoran Basin and Range 11.0 5.6 60.4 22.8 0.1 0.1 8,975,885

aNB = nonburnable; GR = grass; GS = grass-shrub; SH = shrub; TU = timber understory; TL = timber litter.

by simulated fire perimeters was calculated using the
structure density of the polygon and the proportion
of the polygon burned (i.e., structures assumed
to be randomly located within each SILVIS WUI
polygon). Annualized values of area burned and
structures exposed were derived from the intersec-
tion of the polygon land tenure layers (ownership,
WUI, community) with simulated wildfire perime-
ters, adjusted by the number of fire season replicates
(20,000–30,000 depending on the analysis area in the
FSim simulation) (Short et al., 2016).

Information about area burned in each land
tenure/community and number of structures exposed
was then tagged to the original ignition location.
We summarized wildfire transmission by land tenure
and community by calculating transmitted fire (TF)
based on fire ignition location and spread. We then
partitioned TF into three categories: incoming fire
(TF-IN), outgoing fire (TF-OUT), and nontrans-
mitted (non-TF). The area of nontransmitted fire
per ignition measures the area burned by ignitions
within the land designation (i.e., self-burning). Using
the land tenure spatial data set we analyzed wildfire
transmission to understand three specific wildfire
transmission patterns: (1) from large land tenures to
communities, (2) among the large land tenures, and
(3) among the administrative subunits within federal
large land tenures (e.g., RDs) (Fig. 1b).

2.5. Networks

We used values of transmitted burned area
among major land tenures and communities to
create wildfire networks showing the connectivity
between land tenures. Wildfire networks are com-
prised of nodes corresponding to land tenures or
communities, and edges (connections) that represent
transmission between nodes, e.g., total fire trans-
mitted between public lands to state lands. Because

wildfire transmission was partitioned into incoming
and outgoing fire, network edges are directional, that
is, they distinguish the relative strength of wildfire
transmission from, to, and within each node. The
strength of the wildfire connection in terms of the
area burned can be represented by the width of
the edge in network diagrams. Node degree mea-
sures the number of linkages for each node and
is widely used in network analysis to indicate how
central a node is in the network, often interpreted as
an indicator of connectivity and influence (Borgatti,
Everett, & Johnson, 2013). The number of linkages
present in the network compared to the maximum
possible is the network density, which represents the
overall connectedness in the network. We used the
igraph network package (Csardi & Nepusz, 2006) in
R (R Core Team, 2014) to calculate whole network
and parcel-specific measures on the number and
strength of wildfire transmission linkages.

2.6. Firesheds

We used wildfire simulation results to identify
the area where large fires are likely to ignite and
affect structures in the WUI and populated places.
These “firesheds” define the biophysical risk con-
tainers in and around communities and the sources
of risk in terms of ownership, fire regime, and
management capability; thus we consider firesheds
to include the populated places and the WUI
around them (Ager, Bahro, & Barber, 2006; Scott,
Thompson, & Gilbertson-Day, 2015). By applying
the inverse distance weighting (IDW) method for
multivariate interpolation of ignition points, a con-
tinuous 1 km2 grid was generated using a 5 km fixed
search radius for the entire study area. To convert
the continuous surface to a discrete boundary (i.e.,
the fireshed), we used a threshold of 0.0005, meant
to capture ignition locations where there was at least
a nominal (1%) chance of exposure. Finally, fireshed
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polygons were intersected with the land tenure map
and the 2014 LANDFIRE 40 Scott and Burgan Fire
Behavior Fuel Models layer (Scott & Burgan, 2005)
to calculate the fireshed area by land tenure and fuel
model, respectively.

2.7. Spatial Scale of Exposure

We calculated and mapped six measures to
illustrate the spatial scale and complexity of wild-
fire exposure in relation to the geography of land
tenures. Each measure was calculated at 500 × 500 m
pixel resolution. Three of the metrics describe the
scale and composition of fire effects that ignite
elsewhere and arrive at a given pixel. The source
fire complexity index (SFCI) estimated the number
of unique land tenures (including communities) that
contributed fire to a given pixel. The fire size arrival
index (FSAI) measured the average fire size (ha)
that burned each pixel. The ignition distance index
(IDI) was calculated as the average distance (km)
between the fire ignition and the centroid of the
WUI polygon it affected, weighted by the number
of structures affected. Three additional metrics were
developed to characterize how fires that ignite in
a given pixel affect other locations. The fire size
potential index (FSPI) was the average fire size (ha)
that was generated by an ignition in each pixel. Here,
each simulated fire was attributed to the ignition
point and the points smoothed to create a continuous
raster coverage. The structure exposure index (SEI)
measured the number of structures per km2 per year
exposed from an ignition in a given pixel. SEI was
created by assigning each ignition point with the
number of structures affected by the fire generated
from that ignition, and smoothing the resulting point
map. The self-burning index (SBI) measured the
percentage of self-burning, that is, from an ignition
inside the land tenure parcel versus incoming fire
from a different land tenure, averaged across all fires.

3. RESULTS

3.1. Fire Transmission Among Land Tenures

Predicted annual area burned was highest on
managed national forests (FS-M) and BLM, with
more than ca. 24,500 ha of burned area per year.
Private, state, and tribal lands experienced slightly
less wildfire and altogether accounted for 85% of all
burned area (Fig. 2a and Table IV). Analysis of the

simulated ignitions layer revealed that the majority
of burned area resulted from ignitions initiated inside
FS managed areas (37%), followed by tribal (18%),
BLM (12%), and private lands (10%), with a small
number of fires ignited inside protected areas (12%).

We observed major differences among land
tenures in the amount of transmitted fire (Fig. 2).
Incoming fire averaged 28% of the total area burned
(range 13–43%) whereas outgoing fire averaged
31% among land tenures (range 15–51%) with 46%
of all fire activity nontransmitted. The majority
of land tenures had almost equal percentages of
incoming and outgoing fire. Land tenures such as
BOR, public, community, private, and state had the
smallest percentages of nontransmitted fire, with
almost equal proportions of incoming and outgoing
fire (Fig. 2b). The same tenures also had the smallest
parcel size (Fig. 2c), which explains the high trans-
mission of fire and the low amount of self-burning.
BOR, ARS, and public lands together accounted
for less than 0.5% of the state’s total area, yet had
a high percentage of annually burned area (>0.5%
each; Fig. 2d). Communities and public lands had the
largest proportion of incoming fires (>40%), with
similar proportions for outgoing fires (Fig. 2b).

FWS and DOD/DOE were similar in terms of
fire transmission and are located in the same region
within AZ. State and private tenures intermix across
the landscape, forming a checkerboard, and thus
increasing the relative amount of transmitted fire. In
contrast, the largest proportions of nontransmitted
fires can be found on land tenures with few and large
polygons (tribal, DOD/DOE, FWS, and NPS; Fig.
2b). Total fire transmitted and average parcel size
were correlated with outliers represented by those
land tenures with relatively high numbers of parcels
(Fig. 3). Large differences existed between managed
and protected FS lands, with the largest average par-
cel size and highest proportion of nontransmitting
fire for FS-M (Figs. 2a and 2c). The BLM is a major
landowner in the state (16.4%) but has a relatively
small average parcel size (Fig. 2c), with five very
large parcels and <1,000 smaller parcels in a checker-
board pattern. Tribal lands consist of few, very large
polygons with a very high average parcel size
(Fig. 2c), resulting in a high proportion of nontrans-
mitting fire but, overall, a small percentage of area
burned annually (0.16%). Tribal lands have a large
proportion of nonburnable fuels (14%), which ac-
counts for the low annual rate of burning (Table II).

The wildfire transmission network (Fig. 4)
provided a broad overview of fire exchange among
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Fig. 2. Relative amounts of incoming, outgoing, and nontransmitted wildfire for the major land tenures in Arizona by (a) total simulated
annual area burned and (b) percent within each land tenure. Panels on the right show the average parcel size (c) and the percent annual
area burned of the total land tenure size (d). See Table II for land tenure descriptions.

the land tenures and shows that fire was transmitted
between all 13 land tenures via 58 network edges
(i.e., directed edges), corresponding to a network
density of 0.37 (meaning that 37% of all possible
linkages between land tenures was present; edges
with transmission <60 ha/year and self-burning were
excluded). Connectivity of individual nodes in the
land tenure network, as measured by total node
degree (sum of in and out degree), varied from a
low of 1(BOR) to a high of 17 (BLM) for the filtered
network. Land tenures with lower node degree
received and transmitted fire to a lesser extent than
land tenures with higher node degree.

The transboundary wildfire transmission net-
work (Fig. 5) among major federal administrative
subunits showed that the average total node degree
(the number of incoming and outgoing, does not
include self-burning) was 3.84, with 39 nodes, 75
edges, and a network density of 0.05. The diagram
suggests a relatively high level of fire exchange
between private lands and national forests. State

lands exchanged fire mainly with the Coronado NF,
Tonto NF, and Apache-Sitgreaves NF, and received
substantial fire from BLM lands. Finally, tribal lands
exchanged fire with other BLM lands and with the
Tonto and Apache-Sitgreaves NFs.

3.2. Fire Transmitted into Communities

As described in the methods Section 2, our def-
inition of communities included the community or
city boundary as described in the U.S. Census Bureau
(U.S. Census Bureau, 2016) plus associated WUI
polygons. Communities received 7.1% of all trans-
mitted wildfire between land tenures (2,404 ha per
year), whereas nontransmitted fire for communities
accounted for 1.3% of the total (755 ha per year; Ta-
ble IV). Annual structure exposure to communities
from all other tenures was 2,675 housing units (not
considering transmission between communities).
State and FS-M lands were the major contributors of
wildfire exposure as measured by structures affected,
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Table IV. Transboundary Wildfire Transmission Among the Major Land Tenures in Arizona

Land Tenure

Total Area
Burned

(ha/year)
TF-IN

(ha/year)
Non-TF

(ha/year)
TF-OUT
(ha/year)

Transmitted Fire to
Communities (% of

total incoming)

Percent of Outgoing
Fire that Reaches

Communities

BLM 19,221 5,029
(26.2%)

14,192 5,353 9.6 4.32

FS-M 18,824 5,284
(28.1%)

13,540 5,866 19.5 7.98

State 13,136 7,020
(53.4%)

6,116 6,172 15.4 6.00

Tribal 14,035 2,338
(16.7%)

11,697 2,430 10.5 10.41

Private 13,582 8,000
(58.9%)

5,582 7,235 36.7 12.19

FS-P 5,083 2,178
(42.8%)

2,905 2,449 3.0 2.99

Community 3,159 2,404
(76.1%)

755 2,366 – –

NPS 1,480 523
(35.3%)

957 657 1.6 5.99

DOD/DOE 794 136
(17.1%)

658 223 0.1 1.08

FWS 740 127
(17.2%)

613 218 0.1 1.00

Public 550 412
(74.9%)

138 426 2.4 13.47

ARS 300 165
(55%)

135 170 1.0 13.76

BOR 160 119
(74.4%)

41 170 0.1 1.29

Notes: Total area burned includes TF-IN + non-TF. Non-TF = the annual area of nontransmitted fire (self-burning). TF-IN = the annual
area burned from incoming fires ignited on other land tenures. TF-OUT = the annual area burned on other land tenures by fires ignited
locally. Total incoming fire represents the same amount as total outgoing fire (�TF-IN = �TF-OUT = 33,735 ha). Numbers in parentheses
in TF-IN denote the percentage of TF-IN from the amount of total area burned. See Table II for land tenure descriptions.

followed by tribal, private, and BLM (Fig. 6), a trend
that mostly correlated with annual area of wildfire
transmitted to communities. Except for private lands,
where the ratio of structures affected to area burned
by fire transmitted to communities was below 1 (0.5),
all other land tenures had a ratio greater than 1, with
the highest value for public (2.7), DOD/DOE (2.6),
and tribal lands (Radeloff et al., 2005).

The 447 communities were ranked in order of
incoming fire exposure based on area burned (top
50; Fig. 7). The annual area burned within each com-
munity from fires ignited on adjacent land tenures
varied from a low of 0.1 ha (Buckshot, small com-
munity in the very southwest corner of the state) to
157 ha (Buckeye, west of Phoenix). The majority of
communities received fire from FS lands that can be
managed with mechanical treatments based on forest
plan guidelines (e.g., Sierra Vista, Mayer, Valle), al-
though a few received substantial fire from FS lands

that cannot be managed (FS-P, e.g., Sierra Vista
Southeast, Camp Verde). About five communities
had the majority of the annual area burned coming
from the BLM (Buckeye, Goodyear, Littlefield, Avra
Valley, Dolan Springs, and Picture Rocks), whereas
more than 10 communities had substantial fire com-
ing from state lands. Private lands contributed largely
to wildfire transmission to high population commu-
nities such as Buckeye, Tucson, and Sierra Vista.

The annual structures predicted to be exposed
to fire was 6,698 and varied by community (range
1,273 for Phoenix to nearly 0 for Hard Rock). In
total, 3,717 structures per year were affected by
incoming fires (all land tenures including transcom-
munity exposure) and 2,981 structures per year
from nontransmitting fires. The largest exposure
from incoming fires was estimated for Tucson (485),
followed by Phoenix (376) and Scottsdale (120), with
the remaining communities having exposure of less
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Fig. 3. Relationship between the total amount of trans-
boundary wildfire among large land tenures in Arizona
and average parcel size. Points are sized by the number
of parcels. See Table II for land tenure descriptions.

Fig. 4. Major transboundary wildfire transmis-
sion pathways among land tenures in Arizona.
Nontransmitted wildfire (self-burning) is not
shown. Arrow width represents the amount of
fire exchange at three scales (<500, 500–1,000,
>1,000 ha/year). Node size represents the sum
of incoming and outgoing fire at three scales
(<4,000, 4,000–10,000, >10,000 ha/year). Net-
work is filtered to show transmission of >60
ha/year. Orange nodes represent communities.
See Table II for land tenure descriptions.

than 100 structures per year (Fig. 8). The bulk of
exposure was created by other communities or state
lands, although high exposure from FS lands and the
BLM was estimated for a subset of communities.

The wildfire transmission network of major land
tenures and Arizona’s top 60 exposed communities
(Fig. 9) revealed that most communities were linked
to FS-M, BLM, tribal, and state lands. Protected

FS lands, NPS, DOD/DOE, and public lands had
low node degree and wildfire transmission to com-
munities. Note that the network is filtered to retain
only substantial wildfire transmission (edge strength
>15 ha per year). The average total degree for the
network was 5.31, with 70 nodes, 186 edges, and a
network density of 0.04 (4% of all possible linkages
between land tenures and individual communities
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Fig. 5. Transboundary wildfire transmission among major land tenures and national forest (NF) ranger districts and Bureau of Land Man-
agement (BLM) districts. Nontransmitted wildfire (self-burning) is not shown. Arrow width is colored by its source and represents the
amount of fire exchange at three scales (<500, 500–1,000, >1,000 ha/year). Network is filtered to show transmission of >80 ha/year. COR,
Coronado NF; PRE, Prescott NF; TON, Tonto NF; APS, Apache-Sitgreaves NF; COC, Coconino NF. See Table II for land tenure descrip-
tions.

was present). Connectivity of individual nodes in
the land tenure network varied from a low of 1 to a
high of 9. For instance, Alamo Lake and Meadview
had only one connection, whereas Three Points had
five and Tucson had nine. Of the major land tenures,
state had 47 connections, followed by FS-M (Scott
et al., 2013) and BLM (Miller & Ager, 2013).

Transmission of fire to communities varied in
terms of the amount and relative contribution of
the sources (Fig. 10). Communities receiving more
fire had higher node degree (more neighbors). At
the most, 31 different land tenures/communities
transmitted fire to communities such as Tucson or
Phoenix, whereas other communities had a single
contributor (e.g., Burnside or Shonto). The positive
relationship between total fire received and number
of land tenures was partly caused by the fact that
larger communities received more fire than smaller
communities as they have more neighbors. How-
ever, exceptions to the trend are evident, with some
communities having a high number of neighbors con-

tributing fire (e.g., San Tan Valley) for a low amount
of fire exposure. Thus, two communities with a given
amount of fire exposure may or may not require
collaborative planning to reduce wildfire risk.

3.3. Firesheds

We found that firesheds—i.e., lands likely to
contribute wildfire exposure to structures, including
populated places and WUI—constituted 7.7 million
ha, or 26% percent of the study area (Fig. 11; Table
V). Thus firesheds on average were about 3.2 times
larger than the communities as defined in the study
(populated place boundary plus surrounding WUI)
and 3.5 times larger than the populated places alone.
Excluding the communities, firesheds were com-
prised of FS-M (24%), private (19%), tribal (17%),
BLM (17%), and state lands (15%) (Table V). The
dominant fuel model types over the entire fireshed
were grass-shrub (GS1 and GS2), covering half of
the fireshed (50.6%), followed by grass (GR1 and
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Fig. 6. Total wildfire exposure to commu-
nities by land tenure measured as total
area burned and structures affected annu-
ally. “Other Fed.” refers to the sum of values
for the following federal landowners: ARS,
BOR, and FWS. See Table II for land tenure
descriptions.

GR2, 21.4%), shrub (SH1, SH7, and SH5, 12.5%),
and timber litter (TL8 and TL3, 5.4%). Communities
were comprised of grass-shrub, nonburnable, and
grass fuel models (Table V).

3.4. Scale and Composition of Wildfire Exposure

We quantified and mapped the scale of wildfire
exposure in the study area with six indices as de-
scribed in Section 2.7. The map of SFCI revealed
locations that were affected (received fire) by igni-
tions on a relatively large number of land tenures
(Fig. 12a). Areas affected by many land tenures
have a higher complexity in terms of collaborative
management of landscape fuels and suppression
strategies. The highest SFCI values were observed
around the Safford and Globe RDs and close to the
cities of Picture Rocks, Dudleyville, and Globe (Figs.
1b and 12a). Areas with highest complexity tended to
coincide with community fireshed boundaries located
outside of FS lands. The FSAI (Fig. 12b) indicated
the average size of the fire that burned each pixel,
with the highest values in central Arizona, inside the
Mogollon, Williams, Mormon Lake, Peaks, Lakeside
and Black Mesa RDs. Higher values of the IDI (Fig.
12c), which measured the average distance wildfire
spread to each SILVIS WUI polygon weighted by
the number of structures exposed, were located
on tribal lands south of Apach-Sitgreaves NF, and
the Juniper Mountains close to Flagstaff. The FSPI
(Fig. 12d) identified locations that generated the
largest fires, with the highest values observed for

FS RDs in central and northern Arizona. The SEI
estimated the annual number of structures exposed
per pixel from a given ignition source (Fig. 12e).
Values for SEI were highest for the communities
affected by the Apache-Sitgreaves NF in the central
eastern part of the state, including the communities
of Show Low, Pinetop Country Club, and Wagon
Wheel. High SEI values were also observed on
portions of the Prescott and Coconino NFs. The
SBI (Fig. 12f) showed the percentage of self-burning
versus incoming fire for each pixel. High values were
estimated for areas across the state, with national
forests containing areas with high values.

4. DISCUSSION

4.1. Comparison to Existing Risk Assessment
Methods

We introduce a number of newer risk concepts
and metrics related to large wildland fires that are
useful for “all lands” fire management on landscapes
that are highly fragmented with respect to land
tenures and fire ecology (Table I). Parcel geometry
and relative sizes of different ownerships set the
stage for fire transmission across boundaries (Ager
et al., 2017). Although we have focused on wildfire
exposure (SRA, 2013), all of the concepts and
metrics could be formulated as risk as well (Finney,
2005). However, estimating fire effects on structure
values is difficult with landscape scale fire modeling
(Alcasena, Salis, Ager, Castell, & Vega-Garcia,
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Fig. 7. Predicted annual area burned within communities from wildfires ignited elsewhere by source of ignition (a) and percent composition
(b) for each community. Graph was filtered to show the top 50 out of 447 communities identified in the study area.

2017). Incorporating the sources of transboundary
risk into risk assessments (Renn et al., 2011; van
Asselt & Renn, 2011) has been advocated in the
broader risk governance literature. Fine tuning risk
governance that specifically factors transboundary
risk requires explicit consideration of our concepts
and metrics to account for the scale at which wildfire
exposure is propagated among and within the land
parcels. The metrics we calculated address scale and
tenure composition of both incoming and outgoing
fires for a given location (Fig. 12). Our methods char-
acterize risk at the scale of fire events, rather than in
situ conditions on a given parcel, and provide quan-
titative information to engage and initiate dialogues
about transboundary wildfire risk governance.

Fire regimes and land development patterns
in Arizona are replicated in much of the western

United States, and thus our methods can be extrap-
olated to other states to address similar challenges
faced by agencies attempting to coordinate miti-
gation activities (Fernandes, Botelho, & Loureiro,
2002; NFPA, 2015). Existing risk assessment meth-
ods either do not consider risk from large fires,
and/or they fail to communicate risk as a disturbance
process that spans parcels of land owned or managed
by different public agencies and private entities.
This gap can contribute to poor risk perception
and reduced motivation to address wildfire issues
(Fischer, Kline, Ager, Charnley, & Olsen, 2014).
State land management agencies in the western
United States use WRAPS (Arizona State Forestry,
2016) to communicate wildfire risk information and
generate awareness about wildfire issues across the
state to support mitigation and prevention efforts.
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Fig. 8. Predicted structures affected annually by incoming fire by land tenure source (a) and percent of total exposure for each community
(b). Graph was filtered to show the top 50 communities out of 447 identified in the study area.

The system was chartered by the Council of Western
Foresters and the Western Forests Leadership Coali-
tion. The utility of the WRAPS portal in Arizona
(AZWRAPS) has been burdened by the complexity
of the inputs and composite indices (personal com-
munication, Arizona State Forester’s Office) and the
system does not use terminology consistent with that
established in the risk science community (SRA,
2013). The core geospatial data were developed as
part of the West Wide Wildfire Assessment covering
the 17 western states (WWWRA, 2013a). The un-
derlying modeling effort considered highly valued
resources and susceptibility, but relied on ignition
probability maps to predict fire occurrence and local
cell-based spread rates to evaluate fire propagation.
This approach underestimates the local impacts of
long-distance fire spread from large fires, as pointed
out in several prior studies (Miller & Ager, 2013).

Moreover, the use of empirical ignitions as a
proxy for burn probability has a number of limita-
tions. First, empirical ignition maps show where fires
have recently burned, and thus one might expect
lower risk in these areas depending on the fuels and
vegetation type and the fire intensity. None of these
factors is considered in the state risk assessment,
and ignition maps might actually show where risk
is lowest since frequent fires might well deplete
fuels. Second, ignition maps have little information
in terms of what was actually affected by the fire
compared to our transmission metrics (Fig. 12)
that measure the spatial scale of exposure from fire
events. Third, from the risk management standpoint,
it is important to partition human versus natural
ignitions as the source of exposure (Ager et al.,
2017) since managing these different ignition sources
involves vastly different risk problems. Partitioning
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Fig. 9. Network diagram showing transboundary wildfire transmission between major land tenures and communities. Nontransmitted wild-
fire (self-burning) is not shown. Arrow width represents the amount of fire exchange at three scales (<50, 50–100, >100 ha/year). Network
is filtered to show transmission of >15 ha/year. Orange nodes represent communities. See Table II for land tenure descriptions.

human versus natural ignitions was not possible in
the simulations, although we demonstrated the sig-
nificance of the different sources of ignitions on risk
transmission in prior work (Ager et al., 2017). Re-
gional differences in the proportion of human versus
natural ignitions is substantial in the western United
States (Balch et al., 2017; Parisien et al., 2016).

Finally, one could argue that there is higher risk
in areas with no ignitions since these areas have not
burned in recent times. WRAPS does use empirical
ignition maps in a GIS smoothing process to gen-
erate burn probability maps. These data include all
ignitions, the vast majority of which are small back-
yard fires that are immediately suppressed. From an
urban and county-level fire suppression standpoint,
risk maps based on ignition probability can be useful
for responding to human-caused fires and developing
prevention programs. However, the maps do not

contribute to understanding the likelihood of a pixel
burning from a large destructive wildfire that ignites
on some distant landscape, causing the majority of
private property damage. Moreover, analysis of igni-
tion probabilities precludes an analysis of who owns
the risk and who is transmitting it among landowner
parcels. For instance, designing mitigation strategies
requires that public land management agencies,
including the Forest Service, understand how alter-
native fuel management strategies can change WUI
exposure to wildfires. The core methods used in the
state WRAPS preclude these types of analyses since
wildfire paths cannot be traced to the origin (i.e., all
risk is driven by local estimates). Thus information
on the scale of risk cannot be derived from these
risk assessments since local pixel-based calculations
of spread rates do not connect ignition sources with
the final perimeter. Without adopting a completely
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Fig. 10. Relationship between the number of land tenures contributing wildfire to individual communities and the total area burned within
communities from fires ignited elsewhere.

different approach to estimating wildfire burn prob-
ability, the state assessments have little value as far
as informing where and how fuel treatments can
be used to reduce risk from large wildfires. Federal
land managers will have a difficult time using the
WRAPS to design and test landscape coordinated
fuel management strategies (Collins et al., 2010)
because the change in risk will only be observed
in the treated pixels in contrast to landscape-scale
reductions in fire spread and intensity. Another
limitation of the WRAPS in terms of a comprehen-
sive fire management strategy is that risk mapping
methods are needed to design and test landscape
fuel treatment strategies to complement managing
unplanned ignitions as part of a systematic policy
to reduce fuel loadings on fire excluded landscapes.
Developing these strategies is best informed by large
fire simulation methods that can be used to predict
large fire impacts.

4.2. Mitigating Transboundary Risk in Fuel
Management Programs

Efficient implementation of “all lands” wildfire
mitigation will require a clear understanding of who
owns wildfire risk and the relative risk interactions
among landowners. The challenge for land managers
is to organize landscape fuel treatments that cou-
ple the biophysical aspects of fire occurrence and
spread with the social component of landowners’
propensity to act to treat fuels (Fischer et al., 2014).
In this way, conflicts and opportunities to achieve
federal wildland fire policy, including fire-adapted
communities, fire-resilient landscapes, and wildfire
response (USDA-USDI, 2013), can be identified and
mapped to facilitate implementation of policies that
will inform risk governance at the proper scale.

In the specific case of fuel management on
western U.S. national forests, current programs are
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Fig. 11. Fireshed area by land tenure showing the relative contributions of different land tenures to community exposure. See Table II for
land tenure descriptions.

Table V. Fireshed Composition by Fire Behavior Fuel Model Type and Land Tenure

Area in Fireshed Fuel Model Type (%)

Land Tenure ha % Grass Grass–Shrub Shrub Timber Understory Timber Litter Nonburnable

Community 2,007,996 26.02 14 46 10 1 2 27
FS-M 1,370,415 17.76 35 40 8 2 14 1
Private 1,059,890 13.74 27 44 13 0 1 15
Tribal 976,700 12.66 11 65 11 2 6 5
BLM 969,821 12.57 11 72 14 0 0 3
State 904,603 11.72 21 60 15 0 0 4
FS-P 185,828 2.41 23 50 11 2 9 5
NPS 78,170 1.01 16 64 12 1 1 6
DOE 54,069 0.70 10 32 29 1 5 23
Public 45,380 0.59 4 89 5 0 0 2
FWS 32,689 0.42 8 80 9 1 0 2
ARS 21,411 0.28 10 74 16 0 0 0
BOR 9,409 0.12 8 36 40 0 0 16

Notes: See Table II for land tenure descriptions. Fuel models are based on Scott and Burgan (2005). Firesheds are defined as lands likely to
contribute wildfire exposure to structures, including populated places and the wildland urban interface.

highly motivated by transboundary issues, especially
wildfire transmission to the WUI (USDA-USDI,
2001). However, evaluation of fuel treatment strate-
gies for transboundary risk has been largely ignored
in several recent reviews (Kalies & Yocom Kent,
2016; Vaillant & Reinhardt, 2017). This gap is
significant because transboundary risk constrains fire
protection and restoration goals in areas fragmented

by jurisdictions, ownerships, and fire regimes. For
instance, fire-adapted lands near land tenure bound-
aries where transmission risk is generally high will
not be maintained with natural ignitions, and thus
mechanical treatments and prescribed fire must be
emphasized in these areas. Optimizing the combined
effect of mechanical forest fuel treatments and
restoration wildfires at the landscape scale to meet
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Fig. 12. Metrics to illustrate the spatial scale,
tenure composition, and structure exposure
of transmitted wildfire. (a) Source fire com-
plexity index (SFCI); (b) fire size arrival in-
dex (FSAI); (c) ignition distance index (IDI);
(d) fire size potential index (FSPI); (e) struc-
ture exposure index (SEI); (f) self-burning
index (SBI).



2124 Ager et al.

socioeconomic and ecological goals of federal forest
restoration programs will require mapping protec-
tion versus restoration of fire, considering the juxta-
position of fire regimes and socioecological values.

In terms of project-specific strategies for mit-
igating transboundary risk, past research on fuel
treatment optimization with wildfire simulation mod-
eling (Finney, 2001, 2007) has revealed how patterns
of treatment units, their orientation, and shape can
be optimized to reduce fire spread in particular direc-
tions. These concepts can be applied to transbound-
ary risk where fuel treatment units are optimized to
reduce fire spread along vectors that most contribute
to transboundary fire. Simulation outputs identify
transmission paths (e.g., Fig. 9) that can be mitigated
with the treatment optimization model (Finney,
2006) to identify optimal treatment locations to
reduce fire spread in those specific directions.

4.3. Networks for Communicating Risk

As pointed out in other studies (Ager et al.,
2017; Bodin, Crona, & Ernstson, 2006; Fischer,
Vance-Borland, Jasny, Grimm, & Charnley, 2016),
network methods can inform landscape planning
for restoration, biodiversity conservation, and fire
protection efforts in a number of ways. In this study,
network analysis of simulation outputs provided an
analytical framework to disentangle transmission
on a large fragmented landscape and visualize
landscape fire connectivity. Fire networks describe
where collaborative networks among institutions
and landowners are most needed to facilitate
transboundary planning (Fischer et al., 2016) to
coordinate wildfire management, whether it be the
design of fuel break systems for community wildfire
protection, or managing wildfires as fuel treatments
in fire-adapted forests. Network metrics, including
node degree, network density, transmission ratios,
and transmitted fire, describe the typology of fire
transmission on fragmented landscapes. This in-
formation can be used to balance investment in
restoration of fire-adapted landscapes with efforts
to protect communities from wildfires. For instance,
from a fire suppression standpoint, a high node
degree for a private land designation would indicate
a risk liability to other public and private parcels in
the network. Similarly, fuels management activities
on lands with high values of incoming transmission
will likely not reduce the likelihood of a fire arriving
from another designation, and fuel management

activities need to target nodes in the network that
are responsible for large fire transmission.

4.4. Application to WUI Protection Planning

Our transboundary assessment methods have
multiple applications for community protection
planning. Transmission networks could be used to
provide explicit identification of the sources of wild-
fire exposure and the responsible landowners. The
fireshed encloses the sources of ignitions transmitting
fire to communities, thus identifying the relevant
planning area from a biophysical risk standpoint
for community protection planning. This approach
is in contrast to the current community wildfire
protection planning (CWPP) guidelines (CWPP
Task Force, 2014), where perimeters are typically
based on administrative boundaries (Jakes et al.,
2011). The lack of a spatial planning framework
for the CWPP process has led to a wide range of
planning scales (e.g., neighborhoods, towns, multiple
towns, entire counties) and associated boundary de-
lineations that are potentially unrelated to the spatial
extent of fire transmission to communities. This type
of scale mismatch between planning boundaries and
the ecological pattern or process relevant to the
conservation or protection problem has been widely
discussed (Cumming et al., 2006; Guerrero, McAllis-
ter, Corcoran, & Wilson, 2013; Sarkar et al., 2006).
Our analysis inherently connects landscapes and
represents exposure as a process among land parcels
rather than a property of the parcel. Because land-
scape fragmentation within public lands and on pri-
vate lands is at a fraction of the scale of large wildfire
events, the importance of the landscape overshadows
the properties of individual parcels in terms of risk.
Although this is incorporated in risk assessments that
use burn probability, it is not possible to disentangle
the spatial scale of risk and the relative contributors
to different parcels. Moreover, the merging of large-
scale risk assessment products (Calkin, Thompson,
Finney, & Hyde, 2011) with the CWPP process as
part of an all lands approach has not been discussed.
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