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Population genetic studies provide a foundation for conservation planning, especially

for endangered species. Three chloroplast SSRs (mtrnSf-trnGr, mtrnL2-trnF, and

mtrnL5-trnL3) and the internal transcribed spacer were used to examine the population

structure of Helianthemum in northwestern China. A total of 15 populations of the

genus were collected. Nine chloroplast haplotypes and two nuclear genotypes were

detected. Both the nuclear and chloroplast data showed two lineages in Helianthemum

songaricum, respectively, distributed in Yili Valley and western Ordos Plateau. A total

of 66.81% (p < 0.001) of the genetic variation was supported by this lineage split. A

Mantel test showed a significant correlation between genetic distance and geographical

distance (r = 0.937, p< 0.001). Based on genetic analyses, cpSSRs data support strong

genetic divergence between regions. We speculate that the climate change during the

late Tertiary and early Quaternary isolated H. songaricum into their current distribution,

resulting in interruption of gene flow, leading to isolation and genetic divergence between

the two regions. Meanwhile, possible selfing would increase genetic drift in small

fragmented populations, that might account for the observed genetic divergence in both

regions. Given the loss of genetic diversity and genetic divergence in small populations of

Helianthemum in northwestern China immediate conservationmanagement steps should

be taken on the species.

Keywords: Helianthemum, Yili Valley, western Ordos Plateau, genetic diversity, genetic structure, conservation

implication

INTRODUCTION

Helianthemum is a shrub or subshrub mostly distributed in the Mediterranean, extending
to Central Asia (Yang and Michael, 2007). Helianthemum songaricum and H. ordosicum in
northwestern China is disjunctively distributed in Yili Valley of Xinjiang and western Ordos Plateau
of Inner Mongolia, growing in rocky hills and slopes in steppe-desert regions between 1000 and
1400m. It has spine-tipped branches, stipulate leaves, yellow flowers, and insect pollinated. Because
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of anthropogenic activities, such as grazing, mining, and
the heavy harvest of firewood over the last few decades,
H. songaricum andH. ordosicum has been in decline and become
highly fragmented. As a result, it was listed as endangered in the
China Species Red List (Fu, 1992).

There is disagreement with the taxonomic status of species
in Helianthemum in northwestern China. Initially, taxonomists
considered only one species of Helianthemum in northwestern
China, Helianthemum songaricum Schrenk (Li, 1990). However,
later studies found that there was a significant difference of pollen
morphology and chromosome number between populations in
Yili Valley and those in western Ordos Plateau. In the Yili Valley
pollen was striate with a cytotype of 2n = 20, and in the western
Ordos Plateau the pollen was perforate with 2n = 40 (Mo et al.,
1997; Cao et al., 2000). Based on these results, a new taxon,
H. ordosicum, was proposed in western Ordos (Zhao et al., 2000).
More recently, Yang and Michael (2007) recognized only one
species, H. songaricum. In our previous phylogeographic study,
two chloroplast intergenic spacers data supported two species:
H. songaricum and H. ordosicum. (Su et al., 2011).

Correctly defining the taxonomy and populations (i.e.,
intraspecific manage units, MU) is essential to make effective
conservation strategies for endangered species (Frankham
et al., 2002). Incorrect taxonomy would lead to ill-conceived
management strategies. For example, outcrossing of different
taxa can create inviable or infertile offspring (Barton and
Hewitt, 1981; Coyne and Orr, 1989) and dismantle of coadapted
complexes (Mayr, 1963; Shields, 1982; Templeton, 1987), leading
to outbreeding depression. Outcrossing depression can also be
observed in crosses at the intraspecific level (Geiger, 1988; Waser
and Price, 1989). Populations that have adapted to different
habitats could also suffer from outbreeding depression and
should treated as a distinct manage unit to avoid outcrossing
(Frankham et al., 2002).

Information on genetic structure can resolve ambiguous
classifications and establish a foundation for conservation genetic
planning. Chloroplast simple sequence repeats (cpSSRs) are a
highly polymorphic molecular tool in the population genetic
analysis (Vendramin et al., 1996; Morgante et al., 1997; Ebert
and Peakall, 2009). Besides their high mutation rates, they have
other specific features. Because of their uniparental inheritance,
they could show pronounced level of population differentiation
(Ennos, 1994; Vendramin et al., 1999; Flannery et al., 2006).
In addition, in monoecious species, uniparentally inherited
genomes have only half the effective population size (Birky,
1988), therefore, these genomes are sensitive to historical
bottlenecks (Morgante et al., 1997). Though the apparent
advantages, chloroplast DNA markers might only provide partly
genetic information of a species (Mäder et al., 2010), and
combination with biparentally inherited nuclear DNA markers
would present a more integral view of population structure
and demography history (Burban and Petit, 2003; Petit et al.,
2005).

The primary conclusion in our previous study, that was
significant genetic divergence existed between Yili Valley and
western Ordos Plateau, was only based on two chloroplast
spacers (trnD-trnT and rps16-trnK) and need to be further

improved with nuclear genome data. In addition, population
structure in the two regions are still unclear because of
the limited polymorphism in the two chloroplast spacers (Su
et al., 2011). Here, we use three highly polymorphic cpSSRs
and nuclear Internal Transcribed Spacer (ITS) sequence to
investigate the full genetic structure of Helianthemum in
northwestern China to address the following questions: (1)
Whether populations of Helianthemum in western Ordos
Plateau represent a distinct taxa, H. ordosicum? (2) if so,
what is the genetic structure within the two species? (3) What
are the conservation implications from the genetic structure
analysis?

MATERIALS AND METHODS

Sampling
In 2010 and 2014, H. songaricum and H. ordosicum was
sampled throughout its distribution in northwestern
China. A total of 15 populations of the species were
collected: nine from Yili Valley and six from western
Ordos Plateau (Figure 1A). The geographical locations
of the collection sites are presented in Table 1. Six to
twelve individuals were sampled in each population. Fresh
leaves were dried in silica gel and stored at 4◦C until DNA
extraction.

DNA Extraction, CpSSRS, and ITS
Sequencing
Total genomic DNAwas extracted from dried leaves by the CTAB
method (Doyle and Doyle, 1987). Polymerase chain reactions
(PCR) were carried out in a volume of 25µL reaction mixtures
containing 4mM MgCl2, 0.2mM dNTP, 0.5µmol primer,
and 1 U Taq polymerase (Applied Biosystems, Foster City,
Calif.), implemented in a Biorad T100 thermocycler (Biorad).
The cpSSRs were amplified using three Helianthemum-specific
polymorphic loci detected in regions trnL-trnF, trnL5-trnL3, and
trnS-trnG: mtrnSf-trnGr, mtrnL2-trnF, and mtrnL5-trnL3 (see
Soubani et al., 2014), and following the temperature profile:
95◦C for 4min; 30 cycles of 92◦C for 45 s; 57◦C for 45 s;
and 72◦C for 1min; linked a extension at 72◦C for 10min;
ITS2 region was amplified using primers of Sun et al. (1994),
and following the temperature profile: 94◦C for 5min; 35
cycles of 94◦C for 30 s; 52◦C for 45 s; and 72◦C for 1min;
linked a extension at 72◦C for 8min. The cpSSRs products
were separated by capillary electrophoresis, with an ABI 3730xl
(Applied Biosystems) automated sequencer. CpSSRs fragment
sizes were determined in Geneious version 7.0 using the package
Plugin (Kearse et al., 2012), using Gene-flo 625 (Chimerx)
as the internal lane standard. ITS2 amplified primers were
used in sequencing reactions conducting in the DYEnamic ET
Terminator Kit (Amersham Pharmacia Biotech). Sequencing
were carried out in ABI 3730xl. ITS2 electropherograms were
edited and assembled in SEQUENCHER 4.8 (Gene Codes,
Ann Arbor, MI, USA), then the sequences were aligned in
CLUSTALW (Thompson et al., 1994), and refined by visual
inspection.
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FIGURE 1 | Sampling distribution of Helianthemum in China (a), the cp haplotype distribution (b), and ITS genotypes distribution in Helianthemum (c).

Population numbers correspond to those in Table 1; cp haplotypes to those in Table 2, pie-charts represent haplotype frequency.
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TABLE 1 | Details of sample locations, sample size, and genetic variation for 15 populations of Helianthemum.

Region Number Location Code Latitude Longitude Altitude Sample Cp ITS

(N) (E) (m) Number Haplotype Genotype

Yili Valley 1 Junmachang JMC 43.23 81.98 1318 10 8H1,2H2 8A

2 Heishantou HST 43.58 82.47 810 12 12H1 8A

3 Kekesu KKS 43.2 81.93 1166 10 10H1 8A

4 Zhongyangchang ZYC 43.57 82.57 952 12 12H1 8A

5 Kebo KB 43.17 81.75 1246 10 10H1 8A

6 Bole BL 44.83 82.05 566 8 8H3 8A

7 Longkou LK 43.42 82.47 855 10 10H3 8A

8 Kalabula KLBL 43.45 82.62 829 10 10H1 8A

9 Baishidun BSD 43.68 82.05 1220 10 10H4 8A

Western Ordos Plateau 10 Mengxi MX 39.8 106.88 1260 10 1H5,9H6 7B

11 Qianligou QLG 39.77 106.92 1450 10 2H5,8H6 7B

12 Kabuqi KBQ 39.58 106.92 1248 12 4H5,2H6,2H7,4H8 8B

13 Qipanjing QPJ 39.35 107.07 1328 12 8H5,2H6,2H9 8B

14 Qianlishan QLS 39.85 106.93 1359 6 2H5,4H6 6B

15 Hainan HN 39.45 106.98 1230 10 8H5,2H6 8B

Figures before the genetic variation represent the number of the variation in the population.

Population Genetic Analysis
For ease of presentation in this study, the terms “locus” refers to
a cpSSR site, and “allele” refers to a length-variant at a cpSSR site.
Alleles of the three plastid loci were scored, respectively, treated
as ordered characters and then combined together as multilocus
haplotypes, assuming a stepwise pattern in mutation (Ohta and
Kimura, 1973). Using stirling probability distribution and Bayes’s
theorem, the completeness of haplotype sampling in this study
was estimated (Dixon, 2006).

The number of different alleles (Na), the effective number of
alleles (Ne), andNei’s genetic distence (Nei, 1978), were caculated
in GenAlEx 6.5 software (Peakall and Smouse, 2006). Within-
population diversity (hS), total gene diversity (hT), genetic
differentiation index (GST, leaves out mutation steps between
haplotypes; NST, includes mutation steps between haplotypes)
were calculated in the program HAPLONST, using U-test to
determine whether NST is significantly larger than GST.

Using pairwise population differentiation measures (FST) as
the variance components (Wright, 1965), analysis of molecular
variance (AMOVA) was performed to study the partition of
total genetic variation within and among populations, conducted
in ARLEQUIN v.3.01 (Excoffier et al., 1992). The significance
test used 10,000 permutations. To evaluate the population
genetic structure, a Neighbor-Joining network (NJ) of the 15
populations was constructed in MEGA 6.0 (Tamura et al.,
2013), using Nei’s genetic distance matrix. This genetic distance
matrix was also used to perform principal coordinate (PCO)
analysis in GenAlEx 6.5 (Peakall and Smouse, 2006). To reveal
the genetic divergence between the two regions, a Mantel test
was performed in ARLEQUIN v.3.01, with 10,000 permutations
significance test. Geographical distance was calculated in
GEODIS 2.5 (Posada et al., 2000), natural-log transformed
in Excel 2000, and then correlated with the Nei’s genetic
distances.

Phylogenetic Analysis
To analyse the genealogical relationships among all the
chloroplast haplotypes, a network was constructed usingmedian-
joining method conducted in NETWORK v. 4.600 (Bandelt et al.,
1999).

RESULTS

Allele and Sequence Analysis
A total of 13 alleles were detected in the three cpSSRs: three
alleles in mtrnSf-trnGr, four alleles in mtrnL2-trnF, and six
alleles in mtrnL5-trnL3. The 154 individuals sampled from 15
populations yielded 9 haplotypes (Table 2). Using the method
described in Dixon (2006), the estimated probability of haplotype
completeness was 1.0, suggesting that we have sampled almost
all potential haplotypes in this study. For the ITS2 region,
the aligned sequence length was 449 bp, and one informative
nucleotide substitution (G/T) was found in position 173. Two
nuclear genotypes (A and B) were identified in 116 individuals
from 15 populations. GenBank accession numbers of the ITS2
sequences are KY314618-KY314619.

Haplotype Patterns
The cpSSR haplotypes were partitioned among the two regions:
Yili Valley and western Ordos Plateau. Haplotypes H1-H4 were
distributed in Yili Valley, and haplotypes H5–H9were distributed
in western Ordos Plateau. Between the two regions, there was
no shared haplotypes (Figure 1B). In Yili Valley, haplotype H1
was widespread in six populations of the total nine populations;
rare haplotype H2 was found in population JMC; haplotype H3
was isolated in populations BL and LK, and haplotype H4 was
isolated in population BSD. In western Ordos Plateau, haplotypes
H5 and H6 were found in each population; rare haplotypes, H7
and H8 were found in population KBQ, and H9 was found in

Frontiers in Plant Science | www.frontiersin.org 4 January 2017 | Volume 7 | Article 2010

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Su et al. Genetic Structure of Helianthemum

TABLE 2 | Nine haplotypes of Helianthemum recognized on basis of three

chloroplast SSRs, mtrnSf-trnGr, mtrnL2-trnF, and mtrnL5-trnL3.

Haplotypes mtrnSf-trnGr mtrnL2-trnF mtrnL5-trnL3

H1 133 224 239

H2 133 219 239

H3 133 224 238

H4 133 224 240

H5 133 223 243

H6 133 223 244

H7 135 222 243

H8 134 223 244

H9 135 223 242

FIGURE 2 | Median-joining network of Helianthemum haplotypes. The

blank circles indicate missing or inferred haplotypes; the circle size is

proportional to haplotype frequency; haplotypes in the network showed in the

same colors correspond to those in the geographical distribution, Figure 1B.

populationQPJ (Figure 1B). For ITS genotype, all the individuals
in Yili Valley contained one genotype (A), and all the individuals
in western Ordos Plateau contained the other genotype (B)
(Figure 1C).

The genetic relationships among the nine haplotypes
also supports the disjunct geography of the Yili Valley
and Ordos Plateau. The haplotypes found in the two
geographic regions are also distinct based on the
haplotype network (Figure 2). These two regional lineages,
haplotypes H1-H4 corresponding to Yili Valley and
H5-H9 corresponding to western Ordos Plateau, were
connected by at least two hypothetical haplotypes (mv3
and mv5).

Genetic Diversity and Genetic Structure
The mean different alleles number (Na) was 1.267, and effective
alleles number (Ne) was 1.150. Across the entire study area, total
gene diversity (hT) was 0.805 (SE 0.0632), and within-population
gene diversity (hS) was 0.209 (SE 0.0679). Genetic differentiation
index GST was 0.740 (SE 0.0784), and NST was 0.803 (SE 0.0617).
As shown by the results of a U-test (U = 0.99, p < 0.01),
NST was significantly higher than GST, suggesting a significant
phylogeographical structure withinHelianthemum. In Yili Valley,
hT was 0.583 (SE 0.1501), hS was 0.04 (SE 0.0395), and genetic
differentiation index was (GST = 0.932, NST = 0.934); in western

TABLE 3 | Results of analysis of molecular variance for Helianthemum

based on chloroplast SSRs data.

Source of variation d.f. Sum of Variance Percentage of

squares components variation (%)

Among populations 14 81.473 0.5608 79.32*

Within populations 137 20.033 0.1462 20.68

Yili Valley vs. western Ordos

Plateau

Among geographic regions 1 53.099 0.7002 66.81*

Among populations within

regions

13 28.375 0.2017 19.24*

Within populations 137 20.033 0.1462 13.95*

Yili Valley

Among populations 8 21.791 0.2650 93.22

Within populations 83 1.600 0.0192 6.78

western Ordos Plateau

Among populations 5 6.583 0.0983 22.36

Within populations 54 18.433 0.3414 77.64

*P < 0.001.

Ordos Plateau, hT was 0.634 (SE 0.0748), hS was 0.463 (SE
0.0836), and genetic differentiation index was (GST = 0.270,
NST = 0.226). AMOVA analysis showed that 79.32% (p <

0.001) of the total variation occurred among populations. When
populations were grouped by geographical region, 66.81% (p
< 0.001) of the total variation occurred among the regions
(Table 3). In Yili Valley, 93.22% (p < 0.001) of the total variation
occurred among populations; in western Ordos Plateau, 22.36%
(p < 0.001) of the total variation occurred among populations.
Mantel’s test showed a significant correlation between genetic
distance and geographical distance (r = 0.937, p < 0.001,
Figure 3).

The PCO plot illustrates the distinct differences between
regions and differences within regions. The first two axis
accounted for 76.14 and 13.66% of the total variation, respectively
(Figure 4). The first axis separated all the Helianthemum
populations into two groups, one including populations in
Yili Valley and the other including populations in western
Ordos Plateau. The second axis separated all the populations
in Yili Valley into three groups, one including population BSD,
one including populations BL and LK, and another included
the remaining populations. The PCO plots suggested a high
genetic divergence between Yili Valley and western Ordos
Plateau population, and also a high genetic divergence among
populations within Yili Valley. The PCO plot was consistent
with the structure of the NJ network (Figure 5). In the NJ
network, all the populations from Yili Valley clustered into a
clade (Yili Valley clade), sister to the other clade containing all
the populations from western Ordos Plateau (western Ordos
clade). Yili Valley clade consists of two inner clade: the first
inner clade contains populations BSD, BL, and LK, and the
second clade contains the remaining populations. In the first
inner clade, population BSD are separate from populations BL
and LK. In western Ordos clade, populations MX, QLG, and
QLS from the north of the plateau cluster together, drifting apart
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FIGURE 3 | The figure shows a significant relationship between

geographic and genetic distance (r = 0.937, p < 0.001).

FIGURE 4 | Plots of the first two coordinates based on pairwise

population differentiation (Nei’ s) matrix of Helianthemum.

from populations HN, KBQ, and QPJ, from the south of the
plateau.

DISCUSSION

Genetic Divergence Between Yili Valley
and Western Ordos Plateau
Both the nuclear and chloroplast phylogenetic analyses showed
two distinct lineages in Helianthemum, distributed in Yili Valley
and western Ordos Plateau (Figures 1, 2). NJ network and
PCO plots also indicated the similar result (Figures 4, 5).
AMOVA analysis and Mantel test both showed a high level
of genetic divergence between the two regions. In addition,
ploidy in H. songaricum is 2X while in H. ordosicum
is 4X. Wiley (1978) stated “A single lineage of ancestral
descendant populations of organisms which maintains its
identity from other such lineages and which has its own
evolutionary tendencies and historical fates, should be defined
as species status.” The two single lineages in Helianthemum in
northwestern China clarified the taxonomic confusion of the
genus, supporting that populations in western Ordos Plateau
should be given species rank, H. ordosicum, supposed by Zhao
et al. (2000).

FIGURE 5 | Neighbor-Joining tree of the 15 Helianthemum populations

constructed using Nei’s genetic distance matrix.

In early Tertiary, the terrain and climate of northwestern
China were very different from the arid and mountainous
conditions of today. Some species of ancient Mediterranea
flora, such as Helianthemum, spread along the relic of
ancient Mediterranea distribution, across the Hexi Corridor,
arrived to Alxa desert (Czenda, 1977; Liu, 1995). In the late
Tertiary, uplifting of the northern Tibetan Plateau caused
extensive aridification in northwestern China (Zheng et al.,
2003; Sun et al., 2008). During the Quaternary, glaciation
began to developed in the Northern Hemisphere, and the
colder climate reached its maximum at about 0.8–0.6 Ma
(Williams et al., 1993). Due to the dramatic climate change,
many plant species of deserts in northwestern China gradually
became extinct (Liu, 1995). This climatic history suggests that
ancestral Helianthemum distributed in Hexi Corridor, a passage
connecting Yili Valley with western Ordos Plateau, became
extinct leaving those distributed in Yili Valley and western
Ordos Plateau as relics. This hypothesis is supported by the
haplotype relationships shown in the median-joining network
(Figure 2). The putative extinction of Helianthemum along
this corridor limited gene flow between the two regions. In
addition to restricted gene flow, the climate in Yili Valley
likely differentiated from that of the western Ordos Plateau.
Because of the Tianshan Mountains, the Yili Valley has a
Central Asia climate (Liu, 1995) with hot- dry summers, and
mild-humid springs and winters (Shi et al., 2005). However,
climate in western Ordos Plateau is typically drier throughout
the year (Walker, 1974). Helianthemum in these two regions
have inhabited distinct habitats for several millennia, harboring
unique populations.
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Genetic Diversity and Genetic Structure
Total genetic diversity of the two species are both moderate
(H. songaricum: hT = 0.583; H. ordosicum: hT = 0.634),
compared with other desert plants, such as Ammopiptanthus
mongolicus (hT = 0.434), A. nunas (hT = 0.041) (Su
et al., 2016), Reaumuria soongorica (hT = 0.312) (Qian
et al., 2008), and are both higher than that in the previous
phylogeography study of Helianthemum (H. songaricum, hT =

0.162; H. ordosicum, hT = 0.566), using two chloroplast
intergenic spacers (Su et al., 2011). The inconsistency is due
to higher polymorphism in the three cpSSRs than the two
chloroplast spacers.

The cpSSRs data showed signs for genetic divergence in
both H. songaricum and H. ordosicum. AMOVA analysis
demonstrated significant genetic divergence among populations
in both H. songaricum and H. ordosicum. The genetic divergence
in the two species were also supported by NJ network and
PCO analysis. As shown by the NJ network and PCO plots
(Figures 4, 5), populations BL, LK, and BSD clustered together,
apparently separated from the other populations in Yili Valley;
populations HN, KBQ, and QPJ clustered together, apparently
separated from the other populations in western Ordos Plateau.
The significant genetic divergence among populations in the two
species might be attributed to several factors. First, the seed
viability is poor. In a Helianthemum flower, most ovules are
unfertilized, or fertilized but with abnormal development, usually
leaving only 1-3 well-developed seeds. Thus, seed production
is very low (Ma et al., 2007). In addition, the seed requires a
dormancy period, and with the poor water translocation due to
the hard testa (Cao et al., 2000), the germination is very low
(Ma et al., 2007). Second, habitats of the two species are both
highly fragmented. In Yili Valley, there are several mountain
ranges that subdivide Helianthemum habitat into five valleys
(Zhang, 2006). The collected sites of H. songaricum are located
in different secondary valleys. Similar in western Ordos Plateau,
collection sites of H. ordosicum located in different valleys,
along the Table Mountains. Within each species, the numerous
geographic barriers isolate the populations, obstructing gene
flow among them, and consequently likely decreasing genetic
diversity and increasing the genetic divergence. Third, a reduced
population size in the two species might also affect the population
structure by increased selfing, mating among related individuals,
and genetic drift. Based on congeners (Rodríguez-pérez, 2005;
Aragón and Escudero, 2008), H. songaricum is likely an
outcrosser but also self-compatible. Increased selfing or mating
among related individuals in small population would reduce
heterozygosity (Schaal and Leverich, 1996), and increased genetic
drift would fix alleles randomly (Lynch et al., 1995), resulting
in an alteration of population allele composition, inducing the
population as an unique genetic sector (Gaudeul et al., 2000). The
pattern of single haplotypes found in nearly all the populations
in the Yili Valley suggests selfing is a fixture of this region.
Compared to H. songaricum, H. ordosicum populations have
greater population diversity (Table 3), and typically multiple
haplotypes per population (Figure 1). These contrasting patterns
suggest a greater degree of selfing or inbreeding inH. songaricum

that could be caused by barriers to gene flow, differences in the
abundance of pollinators or adaptation to a selfing life history.

Implications for Conservation in
Helianthemum
Habitat fragmentation is a significant threat to the survival
of plant species in many terrestrial ecosystems (Young et al.,
1996). Our data observed low genetic diversity in isolated
small populations in Helianthemum in northwestern China. Low
genetic diversity can reduce population fitness and viability,
weakening the population’s ability to respond to changing
selection pressures, increasing the extinction vulnerability
(Young et al., 1996). We suggest an effective conservation
management program incorporated our genetic analysis in
following manners: (i) Significant genetic divergence showed
by both nuclear and chloroplast data indicates two single
evolutionary lineages in Helianthemum in northwestern China.
The two species should be treated, respectively, when performed
a management strategy. (ii) For in situ conservation, all the
natural habitat of Helianthemum populaton should be preserved
by local governments. Nature reserves for H. ordosicum have
been set up in western Ordos Plateau. However, in Yili
Valley, conservation of H. songaricum has not been given
enough attention, and we propose nature reserves for H.
songaricum should be set up at once. In addition, for serious
fragmentation in both species, extinct populations should be
reestablished to connect remnant populations in each species,
using progenies from populations with nearest geographic
distance. Also, population sizes should be augmented by
transplanting progenies propagated from original populations.
(iii) For both species, ex situ conservation site should be
established first. Seeds collection should capture all detected
genetic variations to represent the genetic diversity of each
species in maximum, avoiding artificially induced bottlenecks
(Maunder et al., 2001). Because of genetic uniqueness of
populations BSD, BL, and LK in H. songaricum, seeds collections
in these populations should be deposited as separate stocks.
Meanwhile, seedlings of each species should be cultured for
their future restoration. In H. songaricum, crossing individuals
from unique populations (BSD, BL, and LK) and the rest of
the populations should be tested ex situ to prevent potential
outcrossing depression.
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