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In the U.S. Forest Service’s Forest Inventory and Analysis (FIA) pro-
gram, as in other natural resource surveys, many auxiliary variables are
available for use in model-assisted inference about finite population par-
ameters. Some of this auxiliary information may be extraneous, and
therefore model selection is appropriate to improve the efficiency of the
survey regression estimators of finite population totals. A model-assisted
survey regression estimator using the lasso is presented and extended to
the adaptive lasso. For a sequence of finite populations and probability
sampling designs, asymptotic properties of the lasso survey regression
estimator are derived, including design consistency and central limit the-
ory for the estimator and design consistency of a variance estimator. To
estimate multiple finite population quantities with the method, lasso sur-
vey regression weights are developed, using both a model calibration ap-
proach and a ridge regression approximation. The gains in efficiency of
the lasso estimator over the full regression estimator are demonstrated
through a simulation study estimating tree canopy cover for a region in
Utah.
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1. INTRODUCTION

1.1 Model-Assisted Estimation

Consider estimation of a finite population total ty ¼
P

j2U yj, where U ¼
f1; . . . ;Ng is the set of elements of the finite population and yj is the value of
a response variable for the jth element. Let s � U be selected according to a
sampling design pð�Þ, where pðsÞ is the probability of selecting s. For j; k 2 U,
let pj ¼ Pr½j 2 s� ¼

P
s�U:j2s pðsÞ denote the first-order inclusion probabilities

of the design and pjk ¼ Pr½j; k 2 s� ¼
P

s�U:j;k2s pðsÞ the second-order inclu-

sion probabilities. Assuming pj > 0 for all j 2 U, the design is a probability
sampling design and the Horvitz and Thompson (1952) estimator

t̂y;HT ¼
X
j2s

yj

pj
¼
X
j2U

yj
Ij

pj
; (1)

where Ij¼ 1 if j 2 s and Ij¼ 0 otherwise, is design unbiased for ty in the sense
that

Epð̂ty;HTÞ ¼
X
s�U

t̂y;HTðsÞpðsÞ ¼ ty:

No model or other structure has been assumed for y.
In the United States Forest Service’s Forest Inventory and Analysis

Program (FIA), numerous response variables y are collected in the field or
through manual interpretation of aerial photography using a systematic or ran-
dom sampling design. Data collection can be extremely expensive, so there is
strong interest in using ancillary data from remote sensing and other spatial
data sources to improve efficiency in inventory estimates and reduce inventory
costs. For j 2 U, let xj ¼ ð1; xj1; . . . ; xjpÞT denote the vector of ancillary data.
The key assumption of our method is that tx ¼

P
j2U xj is known and fxjgj2s

is observed for the sample. We do not require the stronger condition that
fxjgj2U is observed for the entire finite population. But if such element-level
data are in fact available, then our key assumption is met not only for the ori-
ginal variables, but also for any of their transformations, singly or in combin-
ation with others (e.g., interaction terms).

In the FIA, a wealth of relevant ancillary data are available across the
United States, including spectral values and indices provided through satellite
programs such as Landsat, topographic and bioclimatic variables derived from
digital elevation models, and predicted vegetation surfaces compiling remotely
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sensed data layers into information most relevant to natural resource land man-
agers. As is common in such applications, these data fxjgj2U are known for the
entire finite population, so that we do in fact have a very large vector of poten-
tial covariates from the original variables and their transformations.

By contrast, in household surveys it would be unusual to have this kind of
rich ancillary data at the element level of person within household. If rich an-
cillary data were instead available at the household level, then we conjecture
that the techniques we describe could be adapted by developing model-assisted
methods at the cluster level instead of the element level, as is commonly done
in related contexts (see, for example, S€arndal, Swensson, and Wretman 1992,
section 8.4). We do not pursue cluster-level ancillary data further in this paper.

One way to use these ancillary data in estimation is to compute a model-
assisted estimator of ty by specifying a working model for the mean of y given
x and using this model to predict y values. Linear working models lead to clas-
sical survey poststratification, ratio, and regression estimators (Cochran 1977,
chapters 5–7), all of which are special cases of the generalized regression esti-
mator (GREG) (Cassel, S€arndal, and Wretman 1976; S€arndal, Swensson, and
Wretman 1992, chapter 6). Other specifications of the working model lead to
model-assisted estimators based on local polynomial regression (Breidt and
Opsomer 2000), penalized splines (Breidt, Claeskens, and Opsomer 2005;
McConville and Breidt 2013), neural networks (Montanari and Ranalli 2005b),
regression splines (Goga 2005), and additive and generalized additive models
(Opsomer, Breidt, Moisen, and Kauermann 2007; Wang and Wang 2011),
among many others. See S€arndal (2010) for some general review of model-
assisted estimation and Montanari and Ranalli (2005a) and Breidt and
Opsomer (2009) for nonparametric and semiparametric model-assisted meth-
ods. We caution that many of these model-assisted estimators require the stron-
ger condition that fxjgj2U is known for the entire finite population.

In this paper, we consider the GREG under a linear working model,

yj ¼ xT
j bþ �j (2)

with b ¼ðb0; b1; :::; bpÞT and �j independent and identically distributed with
mean zero and variance r2. We emphasize that the working model is a device
used to motivate estimators and is not assumed to hold, particularly in the
design-based asymptotic results described below. The GREG is then

t̂y;greg ¼
P

j2s yj � xT
j b̂s

pj
þ
X
j2U

xT
j b̂s (3)

(Cassel, S€arndal, and Wretman 1976; S€arndal, Swensson, and Wretman 1992,
section 6.3), with regression parameters estimated via
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b̂s ¼ argmin
b
ðYs � XsbÞTP�1

s ðYs � XsbÞ ¼ ðXT
s P�1

s XsÞ�1XT
s P�1

s Ys; (4)

where Xs ¼ ½xT
j �j2s is an n� ðpþ 1Þ matrix, Ys ¼ ½yj�j2s is an n-vector, and

Ps ¼ diag ðpjÞj2s is an n� n diagonal matrix of the first-order inclusion proba-

bilities for the sampled elements.
The GREG is asymptotically design unbiased and consistent for ty under

mild design conditions, even if the working model is not correct. The GREG
typically has smaller variance than the Horvitz-Thompson estimator if the
working model has some predictive power for y; see Sarndal, Swensson and
Wretman (1992, Section 6.7), Fuller (2009, Section 2.2).

1.2 Model Selection and the Lasso

In the FIA, the numerous layers of ancillary data fxjgj2U are frequently corre-
lated and potentially do not have significant relationships with the variables of
interest. In this setting, model selection to remove extraneous variables could
reduce the variance of the GREG, making it a more efficient estimate of the
finite population total.

Two widely used methods of model selection are best subsets selection and
stepwise selection. If the number of potential covariates is large, then best sub-
sets selection becomes computationally time consuming. While stepwise selec-
tion is more computationally efficient, the discrete solution path can result in a
model that is locally, but not globally, the best model. Silva and Skinner
(1997) considered the use of best subsets and forward stepwise regression to
estimate a finite population quantity under simple random sampling without
replacement.

The “least absolute shrinkage and selection operator” (lasso) method pro-
posed by Tibshirani (1996) simultaneously performs model selection and coef-
ficient estimation by shrinking coefficients to zero. The lasso method finds
coefficients that minimize the sum of the squared residuals subject to a con-
straint on the sum of the absolute value of the coefficients. More specifically,
the coefficient estimates for lasso are given by:

b̂ ¼ argmin
b
ðY � XbÞTðY � XbÞ þ k

Xp

j¼1

jbjj; (5)

where the estimate of the intercept bo is not penalized and k � 0 (Tibshirani
1996). The lasso model selection method is computationally efficient since the
solution path is piece-wise linear (Efron, Hastie, Johnstone, and Tibshirani
2004) and it selects the global solution since the lasso criterion is convex.
Therefore, the lasso method is often superior to the best subsets method and
the stepwise method.

134 McConville et al.

Deleted Text: s
Deleted Text: l
Deleted Text: -
Deleted Text: which
Deleted Text: `
Deleted Text: operator' 
Deleted Text: which


The literature on the lasso and related methods is vast and growing.
Asymptotic results include Knight and Fu (2000), who derive limiting distribu-
tions of lasso-like estimators when (2) is assumed to hold. In the high-
dimension/low sample size setting of more covariates than observations, vari-
ous asymptotic conditions on the design matrix in (2) have been proposed to
establish oracle inequalities and variable selection properties of the lasso.
Among many examples, see Zou (2006), Bunea, Tsybakov, and Wegkamp
(2007), Van De Geer and Bühlmann (2009), Raskutti, Wainwright, and Yu
(2011), and the references therein. These results are not directly applicable in
our context of sampling from a finite population and applying design-based
methods because (2) is only a working model and not an inferential target.
Nonetheless, our method’s development below will proceed as if (2) holds
with a fixed number of covariates, p.

1.3 Survey Regression Estimation with the Lasso

If the model in (2) is sparse, meaning only p0 of the p coefficients are nonzero,
then estimation of the zero coefficients in (4) leads to extra variation in (3). A
reduced model could reduce the overall design variance of the GREG; hence
we propose using the following survey-weighted lasso coefficient estimates in
the GREG:

b̂
ðLÞ
s ¼ argmin

b
ðYs � XsbÞTP�1

s ðYs � XsbÞ þ k
Xp

i¼1

jbij; (6)

where k � 0. In computing the coefficient estimates, one can leave a subset of
the coefficients unpenalized by excluding those coefficients from the penalty
term. In section 3, we discuss how to ensure the estimator is calibrated to the
population totals of the unpenalized predictors, a problem of considerable
interest in survey practice (e.g., Deville and S€arndal 1992; S€arndal 2010). The
survey-weighted lasso coefficient estimates can be found using one of the vari-
ous algorithms constructed to find (5) since we can rewrite (6) as

b̂
ðLÞ
s ¼ argmin

b
ðY�s � X�s bÞ

TðY�s � X�s bÞ þ k
Xp

i¼1

jbij;

where Y�s ¼ P�1=2
s Ys; X�s ¼ P�1=2

s Xs and P�1=2
s ¼ diagðp�1=2

j Þj2s. The lasso
survey regression estimator for ty is then

t̂y;lasso ¼
X
j2s

yj � xT
j b̂
ðLÞ
s

pj
þ
X
j2U

xT
j b̂
ðLÞ

s
: (7)

Survey Regression Estimation with the Lasso 135

Deleted Text: model 
Deleted Text: ;
Deleted Text: ;
Deleted Text: ;
Deleted Text: ,
Deleted Text: model 
Deleted Text: r
Deleted Text: e
Deleted Text: l
Deleted Text: -
Deleted Text: ,
Deleted Text: &sect;
Deleted Text: )
Deleted Text: )
Deleted Text: -


From (6) and (7), it is evident that only fxjgj2s and
P

j2U xj are required for
computation of the lasso survey regression estimator.

For selecting the penalty parameter k, one can use a survey-weighted ver-
sion of the Akaike (1973) Information Criterion (AIC), the Schwarz (1978)
Bayesian Information Criterion (BIC), or cross-validation. We used cross-
validation to select the penalty parameter in the simulation study of section 4.

1.4 Survey Regression Estimation with the Adaptive Lasso

A shortcoming of the lasso criterion is that by shrinking it produces biased esti-
mates for coefficients that are far from zero. In the adaptive lasso criterion
function (Zou 2006), the coefficients in the l1 penalty are weighted by the in-
verse of a root-n consistent estimator, and therefore large coefficients tend to
have less bias.

To estimate the finite population total, ty, we consider an adaptive lasso sur-
vey regression estimator,

t̂y;alasso ¼
X
j2s

yj � xT
j b̂b
ðALÞ
s

pj
þ
X
j2U

xT
j b̂b
ðALÞ
s

; (8)

where the estimated coefficient vector based on the sample is

b̂
ðALÞ
s ¼ argmin

b
Ys � Xsbð ÞTP�s 1 Ys � Xsbð Þ þ k

Xp

i¼1

jbij
jb̂sij

; (9)

and the equation for b̂s is found in (4). Only fxjgj2s and
P

j2U xj are required
for computation of the adaptive lasso survey regression estimator.

To compute the survey-weighted adaptive lasso coefficient values, we can
transform the criterion in (9) to look like the criterion in (5):

P�1=2
s Ys �P�1=2

s XsV�1Vb
� �T

P�s 1=2Ys �P�1=2
s XsV�1Vb

� �
þ k

Xp

i¼1

jbij
jb̂sij

ðY�s � X�s b
�ÞTðY�s � X�s b

�Þ þ k
Xp

i¼1

jb�i j;

where V is the ðpþ 1Þ � ðpþ 1Þ diagonal matrix of the penalty vector

ð1; jb̂s1j�1; . . . ; jb̂spj�1Þ. Then we proceed with the original algorithm using

the transformed covariate matrix X�s ¼ P�1=2
s XsV�1 and the transformed study

variable vector Y�s ¼ P�1=2
s Ys to obtain b̂

ðALÞ
s . The survey-weighted adaptive
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lasso coefficient values are found by back transforming, b̂
ðALÞ
s ¼ V�1b̂

ALÞ�ð
s ,

and are plugged into (8).

2. ASYMPTOTIC PROPERTIES OF THE LASSO
SURVEY REGRESSION ESTIMATOR

We study the asymptotic properties of the lasso survey regression estimator in
a design-based setting in which both sample size and population size go to in-
finity. The dominant error in survey regression estimation is the sampling
error, as can be seen by writing (for any parameter estimates b̂N and corres-
ponding finite population target bN)

ĵty � tyj ¼
�����
X
i2U

yi � xT
i bN

� � Ii

pi
�1

� �
þ

X
i2U

xT
i

Ii

pi
� 1

� �( )
bN�b̂N

� ������
	 OP

Nffiffiffi
n
p
� �

þ
Xp

j¼1

OP
Nffiffiffi

n
p
� �

OPðjbNj � b̂NjjÞ;

where the
P

i2U xijðIip�1
i � 1Þ terms are uniformly OPðN=

ffiffiffi
n
p
Þ for j ¼ 1; 2; . . . ; p

under very mild design conditions. The usual OPðN=
ffiffiffi
n
p
Þ of survey regression

estimation, dominated by residual variation from fyi � xT
i bNg, will then con-

tinue to hold as long as the number of covariates grows slower than our ability
to estimate their coefficients, max1	 j	 pOPðjbNj � b̂NjjÞ ¼ oPðp�1Þ uniformly
for j ¼ 1; 2; . . . ; p.

In this paper, we assume that the number of covariates is fixed and show in
theorem 2.1 that the coefficient estimation error is OPðN�1=2Þ. The argument
above suggests that our results will hold much more generally. Assumptions
are specified in section 2.1 and are used in section 2.2 to establish design con-
sistency of the lasso survey regression estimators and a design-based central
limit theorem, showing that the lasso estimator has the same asymptotic prop-
erties as the GREG (result 5 of Deville and S€arndal [1992] is a similar result
for general calibration estimators). This means that the effect of shrinkage and
selection is asymptotically negligible in the estimation of finite population
totals. In finite samples, however, shrinkage and selection via the lasso can re-
duce the large weight adjustments often seen in GREG estimators and can lead
to substantial efficiency gains, as shown via simulation in section 4. We also
propose a variance estimator and establish its design consistency.

Throughout this section, we denote the survey-weighted lasso coefficients
of (6) by b̂N to simplify the notation and to emphasize the dependence on N.
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2.1 Design Assumptions

Consider the classical survey asymptotic framework of nested populations,
U1 � U2 � � � � � UN � � � �. Let sN � UN be selected according to a sampling
design pNð�Þ, where jsN j ¼ nN ¼ n is the size of the Nth sample. We suppress
the subscript N in n as well as in pj and pjk for simplicity of notation. Let
Djk ¼ pjk � pjpk. Assume the following conditions as N !1 with p fixed:

D1. The penalty parameter satisfies kN ¼ oð
ffiffiffiffi
N
p
Þ.

D2. The sampling rate nN�1 ! p 2 ð0; 1Þ.
D3.
• The matrices

ĈN ¼
1
N

X
i2UN

xixT
i

Ii

pi
and CN ¼

1
N

X
i2UN

xixT
i

are positive definite and ĈN � CN ¼ opð1Þ elementwise.
• There exists C positive definite such that CN � C ¼ oð1Þ elementwise.
• There exists D 2 Rpþ1 such that

DN � D ¼ 1
N

X
i2UN

xiyi � D ¼ oð1Þ

elementwise.
D3. The matrix R ¼ lim

N!1
RN exists and is positive definite, where RN is the

design covariance matrix

RN ¼

RðxyxyÞ
N RðxyxxoÞ

N � � � RðxyxxpÞ
N

RðxxoxyÞ
N RðxxoxxoÞ

N
..
.

..

. ..
.

RðxxpxyÞ
N RðxxpxxoÞ

N . . . RðxxpxxpÞ
N

2
66666666664

3
77777777775

¼

n

N2

XX
i;j2UN

Dij

pipj
xiyixT

j yj � � � n

N2

XX
i;j2UN

Dij

pipj
xiyixT

j xjp

..

. ..
.

n

N2

XX
i;j2UN

Dij

pipj
xixipxT

j yj � � �
n

N2

XX
i;j2UN

Dij

pipj
xixipxT

j xjp

2
66666666664

3
77777777775

of the following ðpþ 2Þðpþ 1Þ vector of centered, standardized Horvitz-
Thompson estimators:
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zN ¼

ffiffiffi
n
p

N

X
i2UN

xiyi
Ii

pi
� 1

� �

ffiffiffi
n
p

N

X
i2UN

xixik
Ii

pi
� 1

� �" #p

k¼0

2
666664

3
777775; (10)

where xi0 
 1.
D4. The normalized, centered, Horvitz-Thompson estimators defined in (10)

satisfy a central limit theorem: zN!DNð0;RÞ.
D5. The subvector z�N ¼ ðzN;1; zN;pþ2; zN;pþ3; . . . ; zN;2pþ3Þ of the vector

zN defined in (10) has a design-consistent covariance matrix estimator

R̂
�
N ¼

n

N2

XX
i;j2UN

Dij

pipj

IiIj

pij
yiyj

n

N2

XX
i;j2UN

Dij

pipj

IiIj

pij
yix

T
j

n

N2

XX
i;j2UN

Dij

pipj

IiIj

pij
xiyj

n

N2

XX
i;j2UN

Dij

pipj

IiIj

pij
xixT

j

2
66664

3
77775

¼
R̂
ðyyÞ
N R̂

ðyxÞ
N

R̂
ðxyÞ
N R̂

ðxxÞ
N

2
4

3
5;

in the sense that R̂
�
N � R�N ¼ opð1Þ elementwise where R�N is the covariance

matrix of z�N .
Remark 1. Our asymptotic formulation of fixed p and penalty growing as in

(D1) is chosen for the finite population regression estimation context in which
the dominant errors are sampling errors, not the errors in estimation of finite
population regression coefficients. In our section 4 application to an environ-
mental resource survey, N grows like the number of pixels in an image of a
landscape, while p grows like the number of information layers (e.g., imagery
types) for that landscape, which is necessarily very small relative to N. Hence
we have not considered formulations in which p grows with N, though such an
asymptotic structure might usefully extend the scope of LASSO application in
surveys. Such formulations are beyond the scope of this paper.

Remark 2. Our main interest is in asymptotic comparison of the GREG to
the lasso survey regression estimator, so our assumptions are sufficient to en-
sure design consistency and asymptotic normality of the GREG and design
consistency of its conventional variance estimator. Weaker assumptions, like
those in Isaki and Fuller (1982), Robinson and S€arndal (1983), or Breidt and
Opsomer (2000), could be used to establish results of the type assumed here.

Remark 3. The assumed design-based central limit theorem in (D5) is funda-
mental in survey practice, in which weighted point estimates are computed,
variances are estimated accounting for the complexity of the design, and cor-
responding normal-theory confidence intervals are constructed. Examples of
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designs under which such central limit theory holds include simple random
sampling with and without replacement (H�ajek 1960), stratified unequal prob-
ability samples with replacement (Krewski and Rao 1981), and stratified sim-
ple random sampling without replacement (Bickel and Freedman 1984),
among many others. See Fuller (2009, section 1.3) for review of some of the
relevant literature.

Remark 4. Assumption (D3) ensures that the finite population coefficient
vector defined by

bN ¼ ðXT
UXUÞ�1XT

UYU ;

where XU ¼ ½xT
j �j2U is an N � ðpþ 1Þ matrix and YU ¼ ½yj�j2U is an N-vector,

converges as N !1 to the vector b� ¼ C�1D 2 Rpþ1: The assumption does
not imply that bN converges to b, the coefficient vector in the working model.

Remark 5. Since xi contains an intercept term, (D4) covers lim
N!1

RðxoyxoyÞ
N

¼ RðxoyxoyÞ where

RðxoyxoyÞ
N ¼ RðyyÞ

N ¼ n

N2

XX
i;j2UN

Dij

pipj
yiyj;

and similarly lim
N!1

RðxxoxxoÞ
N ¼ RðxxoxxoÞ where

RðxxoxxoÞ
N ¼ RðxxÞ

N ¼ n

N2

XX
i;j2UN

Dij

pipj
xixT

j :

2.2 Asymptotic Results

Proofs of the results in this section are omitted but are detailed in McConville
(2011). We first establish a central limit theorem for the survey-weighted lasso
coefficients as estimates of the finite population coefficients.

Theorem 2.1 Under assumptions (D1)–(D5), the survey-weighted lasso co-
efficients b̂N satisfy

ffiffiffiffi
N
p
ðb̂N � bNÞ!

D Nð0; p�1C�1VC�1Þ

as N !1, where the matrix V is defined by

V ¼ RðxyxyÞ � 2
Xp

k¼0

b�kR
ðxxkxyÞ þ

Xp

k¼0

Xp

l¼0

b�kb
�
l R
ðxxkxxlÞ

and ½b�k �
p
k¼0 ¼ C�1D.
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Unlike theorem 2 of Knight and Fu (2000), theorem 2.1 is derived in the finite
population setting without independent and identically distributed errors and
without a true parameter vector b. The result implies that the effect of shrink-
age and selection is asymptotically negligible since the survey-weighted lasso
coefficient estimators consistently target the finite population regression par-
ameters, just like the usual weighted least squares estimators in (4). It follows
immediately that the model-assisted estimator with survey-weighted lasso co-
efficients will be asymptotically equivalent to the difference estimator, with
estimated coefficients replaced by finite population coefficients, a result stated
in the next theorem. The GREG shares this equivalence.

Theorem 2.2 Under assumptions (D1)–(D5), the estimator t̂y;lasso is
asymptotically equivalent to the difference estimator,

t̂y;diff ¼
X
j2s

yj � xT
j bN

pj
þ
X
j2UN

xT
j bN ;

in the sense that ffiffiffi
n
p

N
t̂y;lasso � t̂y;diff
� �

¼ opð1Þ;

so that

fVarpð̂ty;diffÞg�1=2ð̂ty;lasso � tyÞ!
D

Nð0; 1Þ; (11)

where

Varp t̂y;diff
� �

¼
XX

i;j2UN

Dij
yi � xT

i bN

pi

yj�xT
j bN

pj
:

A standard variance estimator with exactly the same form as that of the GREG
is design consistent for the variance of the difference estimator and hence can
be plugged into the central limit theorem of (11) and used to generate asymp-
totically valid confidence intervals. This is the content of the following the-
orem and corollary.

Theorem 2.3 Under assumptions (D1)–(D6),

V̂ ð̂ty;lassoÞ ¼
XX

i;j2s

Dij

pij

yi � xT
i b̂N

� �
pi

yj � xT
j b̂N

� �
pj

(12)
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¼ Varp t̂y;diff
� �

þ op
N2

n

� �
:

Corollary 1 Under assumptions (D1)–(D6),

fV̂ ð̂ty;lassoÞg�1=2ð̂ty;lasso � tyÞ!
D

Nð0; 1Þ:

3. WEIGHTS FOR THE LASSO SURVEY REGRESSION
ESTIMATOR

In practice, it is often the case that many, possibly hundreds of, finite popula-
tion quantities need to be estimated from the same survey data set. The GREG
has the interesting property that

t̂y;greg ¼
X
j2s

1þ ðtx � t̂x;HTÞT
X
k2s

xkxT
k

pk

 !�1

xj

2
4

3
5 1

pj
yj ¼

X
j2s

xjðsÞyj; (13)

where tx is the population total vector of the covariates and t̂x;HT is the corres-
ponding Horvitz-Thompson estimator vector of the covariate totals (S€arndal,
Swensson, and Wretman 1992; section 6.5). The regression weights fxjðsÞgj2s
do not depend on y and so can be applied to any response variable. As long as
the study variables relate even weakly with the covariates, the GREG weights
produce a more efficient estimator than the Horvitz-Thompson weights
fp�1

j gj2s.
A drawback of the lasso survey regression estimator is the lack of regression

weights since the lasso coefficients are not linear combinations of the y-values.
We consider two approaches to address this drawback and generate regression
weights for the lasso survey regression estimator: a model calibration approach
in section 3.1 and a ridge regression approximation in section 3.2.

3.1 Weights via Model Calibration

Since the lasso method does not produce an estimator that is linear in y, the
lasso survey regression estimator cannot be written as a linear combination of
the y values in the sample. To obtain weights, we employ the model calibration
method of Wu and Sitter (2001), used in related contexts by Montanari and
Ranalli (2005b) and Opsomer et al. (2007). The resulting calibration estimator
can be written as a weighted sum of the sampled study variable as in (13) but
with the caveat that the weights now depend on the sampled study variable, y.
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The lasso calibration estimator is found by regressing the study variable, yj,

on an intercept and the lasso-fitted mean function, xT
j b̂
ðLÞ
s , over the sample.

Because this calibration step involves linear regression, the lasso calibration es-
timator can be written in the same form as (13) where xj is replaced by

x�j ¼ ð1; xT
j b̂
ðLÞ
s
ÞT :

t̂y;cal ¼
X
j2s

1þ ðtx� � t̂x�;HTÞT
X
k2s

x�kx�Tk

pk

 !�1

x�j

2
4

3
5 1

pj
yj: (14)

Since xT
j b̂ðLÞs is dependent on fxj; yjgj2s, the weights in the lasso calibration es-

timator are dependent on the study variable, y. This dependence implies that
the utility of applying these weights to other study variables depends on how
correlated the variables are with y.

In section 4, we compare the lasso calibration estimator with various other
finite population total estimators and consider an adaptive lasso calibration es-
timator where the lasso-fitted mean function in x�j of (14) is replaced with the

adaptive lasso fit, x��j ¼ ð1; xT
j b̂
ðALÞ
s
ÞT :

t̂y;acal ¼
X
j2s

1þ ðtx�� � t̂x��;HTÞT
X
k2s

x��k x��Tk

pk

 !�1

x��j

2
4

3
5 1

pj
yj: (15)

The weights in (14) and (15) are calibrated to the population size N and to the
population total of the lasso-fitted mean function. If desired, additional auxil-
iary variables can be added to x�j or x��j to force exact calibration to the corres-
ponding population totals. Added auxiliary variables are included in the
working regression model even if they were eliminated in the lasso estimation.

3.2 Weights via Ridge Regression Approximation

In a model-based framework, Bardsley and Chambers (1984) introduced and
Chambers (1996) extended a ridge regression estimator for estimating finite
population quantities when there are many potential predictors and multicolli-
nearity may be a problem. Similar ridge regression estimators have been de-
veloped in the model-assisted, design-based context by Rao and Singh (1997)
and Théberge (2000); see Beaumont and Bocci (2008) for a review of this and
related methods. The form of the model-assisted ridge regression estimator is

t̂y;rr ¼
X
j2s

1þ ðtx � t̂x;HTÞT
X
k2s

xkxT
k

pk
þ K

 !�1

xj

2
4

3
5 1

pj
yj (16)
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where K is a diagonal matrix of non-negative cost terms. The ridge regression
weights are typically less variable than the GREG weights. In particular, K can
be chosen so that the resulting weights are non-negative.

Although the lasso coefficients do not have a closed form solution,
Tibshirani (1996) approximated the coefficient estimates with a ridge regres-
sion formula to derive their standard errors. We use this ridge regression ap-
proximation as another way to construct regression weights for the lasso
estimator. Tibshirani (1996) rewrote the penalty term as

Pp
i¼1 b2

i jbij�1, allow-
ing him to obtain the ridge regression coefficient estimates, to which we have
added design weights:

b̂
ðridgeÞ

s ¼ ðXT
s P�1

s Xs þ lQ�Þ�1XT
s P�1

s Ys; (17)

where Q is the diagonal matrix of the vector ð0; jb̂ðLÞs1 j þ g; . . . ; jb̂ðLÞsp j þ gÞ, g is
a small positive number, and Q� is a generalized inverse of Q. The ridge re-
gression penalization has a negative correlation with the magnitude of the lasso
coefficients. To achieve exact calibration on the population total of a predictor,
the corresponding value in the diagonal of Q should be set to zero. The penalty

parameter l is chosen so that
Pp

i¼1 jb̂
ðridgeÞ
si j ¼

Pp
i¼1 jb̂

ðLÞ
si j, where b̂

ðLÞ
si is

defined in (6). The lasso ridge regression estimator is

t̂y;ridge ¼
X
j2s

1þ ðtx � t̂x;HTÞT
X
k2s

xkxT
k

pk
þ lQ�

 !�1

xj

2
4

3
5 1

pj
yj: (18)

This estimator has the same form as (16), with K replaced by l�1Q.
We can also construct an adaptive lasso ridge regression estimator, analo-

gous to the adaptive lasso calibration estimators. The regression coefficient es-
timates take the form of (17), but Q is now the diagonal matrix of the vector

ð0; jb̂ðLÞs1 jjb̂s1j þ g; . . . ; jb̂ðLÞsp jjb̂spj þ gÞ. The weights in (18) are again depend-

ent on the study variable, y, because the weights are a function of the lasso co-

efficients, b̂
ðLÞ
s . In section 4, we compare all of the lasso-based estimators to

the Horvitz-Thompson estimator, the full regression estimator, a regression es-
timator with forward stepwise selection, and the classic ridge regression
estimator.

4. LASSO SURVEY REGRESSION ESTIMATION FOR
TREE CANOPY COVER IN UTAH

To compare the lasso-based regression estimators to other estimators, we con-
ducted a simulation study using photo-interpreted tree canopy cover sample

144 McConville et al.

Deleted Text:  
Deleted Text: &sect;
Deleted Text: 4 Lasso survey regression estimation for tree canopy cover in Utah


data and ancillary layers of processed remote sensing data in Utah. The estima-
tors considered are detailed below.

All computations were completed in R (R Core Team 2015). The LASSO
and ALASSO coefficent estimates were computed using the function glmnet
in the glmnet package (Friedman, Hastie, and Tibshirani 2010). The function
cv.glmnet, which allows for the inclusion of weights, was used to select the
penalty parameter. McConville (2011) also considered survey-weighted ver-
sions of AIC, BIC, and cross-validation to select the penalty parameter; all
yielded similar results in terms of the mean squared error of the resulting sur-
vey regression estimators. For the RIDGE estimator, we chose K ¼ cI with c
selected as the smallest positive value so that the weights are all greater than
one. For both RLASSO and RALASSO, we selected l similarly. The FSTEP
estimator was fit using the function step in the leaps package (Lumley
2009).

McConville (2011) compared these model-assisted estimators to the corres-
ponding model-based estimators and found the model-based estimators to be much
less efficient once the sampling design was informative. We will restrict our atten-
tion to model-assisted estimators, comparing the various lasso-based estimators to
the full regression estimator, the classic ridge regression estimator, and the Horvitz-
Thompson estimator. We caution that our asymptotic theory strictly applies only to
LASSO, so we evaluate our weighted approximations to LASSO via simulation.

4.1 Utah Tree Canopy Cover Data Set

The quantity of interest is the total amount of tree canopy cover for a region of
Utah. Understanding and quantifying tree canopy cover, which is an aerial
measure of the amount of ground covered by tree crowns, is relevant to many
applications, including forest management, fire modeling, air pollution

Abbreviation Estimator Equation

LASSO Lasso survey regression estimator (7)
ALASSO Adaptive lasso survey regression estimator (8)
CLASSO Lasso calibration estimator (14)
CALASSO Adaptive lasso calibration estimator (15)
RLASSO Lasso ridge regression estimator (18)
RALASSO Adaptive lasso ridge regression estimator (18) with modified Q
RIDGE Survey ridge regression estimator (16)
FSTEP Forward stepwise regression estimator
GREG Survey regression estimator (13)
HT Horvitz-Thompson estimator (1)
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mitigation, stream and water temperature, and carbon storage. The photo-
interpreted data used here arise from a national pilot project conducted by FIA
and the U.S. Forest Service Remote Sensing Applications Center as part of the
development of the updated 2011 National Land Cover Database (NLCD) tree
canopy cover layer. An intensive (approximately 1 km x 1 km) grid of photo
plots was established over a pilot area the approximate size of one Landsat
scene in southern Utah. Each photo plot consisted of 105 dots distributed in a
90 m � 90 m square area. Each dot was characterized as falling on a tree
crown or not. The response variable of percent tree canopy cover was defined
as the proportion of tree dots identified on the photo plot. Predictor variables
included transformed aspect, slope, topographic positional index, elevation,
land cover and tree canopy cover from the 2001 NLCD (Homer, Huang, Yang,
Wylie, and Coan 2004) and Landsat-5 reflectance bands. See Coulston,
Moisen, Wilson, Finco, Cohen, et al. (2012) for more details on the data used
in this study.

Each of the auxiliary variables is available at a finer resolution than the
photo-interpreted data. The auxiliary variables were collected on a 30 by 30
meter grid, and therefore there are nine observations of every covariate for
each photo-interpreted observation. To collapse the auxiliary information, the
mean, standard deviation, minimum, and maximum are taken of the nine ob-
servations. All variables are standardized by subtracting the empirical mean

and dividing by the empirical standard deviation. The following variables are
included in the working model:

Variable Description

CAN MEAN Mean of 2001 National Land Cover Database
tree canopy cover estimates

CAN STD Standard deviation of 2001 National Land Cover
Database tree canopy cover estimates

CTI MEAN Mean of the Compound Topographic Index
CTI STD Standard deviation of the Compound Topographic Index
DEM MEAN Mean of the Digital Elevation Model
DEM STD Standard deviation of the Digital Elevation Model
SLOPE MEAN Mean of the slope
SLOPE STD Standard deviation of the slope
TASPCOS MIN Minimum of the cosine transformed aspect
TASPCOS MAX Maximum of the cosine transformed aspect
TASPCOS MEAN Mean of the cosine transformed aspect
TASPCOS STD Standard deviation of cosine transformed aspect
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We treated the high intensity grid of N¼ 4,151 grid points as the finite
population of interest. We emphasize that in our simulation and in other real
applications with remote sensing and digital elevation data of these types, all
of the auxiliary variables listed above are available at every grid point, as are
any transformations of the variables, singly or in combination with others (e.g.,
interaction terms). That is, we have known fxjgj2U , not just our minimal re-
quirement of known fxjgj2s and

P
j2U xj.

In regressing tree canopy cover for the entire finite population on an additive
model of the p¼ 12 covariates above, the coefficient of determination was R2

¼ 0:57 and only half of the regression coefficients were statistically different
from zero. The regression on the model with main effects and all two-way
interactions (p¼ 78) had R2 ¼ 0:60 and 11 regression coefficients were statis-
tically different from zero. These population-level results suggest that useful
predictive models should be sparse, so that model selection is appropriate.

We selected M¼ 2000 replicate samples using both simple random sam-
pling without replacement (SI) and stratified simple random sampling without
replacement (STSI). The ten counties in the population served as the strata.
Sample sizes for the ten strata were n� ð0:3, 0.1, 0.04, 0.04, 0.06, 0.06, 0.06,
0.1, 0.2, 0:04Þ for n¼ 50, 100, and 200. This stratified sampling scheme re-
sulted in an informative, unequal probability sampling design where the inclu-
sion probabilities were positively correlated with the study variable.

4.2 Design Bias and Design Mean Squared Error

We computed design bias and design mean squared error (MSE) by averaging
across the M replicate samples. The percent relative design bias was less
than 2.6 percent in absolute value for all of the estimators under all of the sam-
pling schemes, with three exceptions: RIDGE under STSI with p¼ 12, n¼ 50,
–5.0 percent relative bias and GREG under SI, and STSI with p¼ 78, n¼ 100,
7.45 percent relative bias, and 5.85 percent relative bias, respectively. Table 1
displays the ratio of the design MSE of each estimator to that of the LASSO.
As the sample size increases, the substantial efficiency advantage of the lasso
estimators over the GREG becomes less pronounced, a result consistent with
the asymptotic theory. The calibration or ridge approximation used to obtain
weights does not seem to decrease the design efficiency.

The adaptive lasso method appears to have higher design MSE than the
lasso counterpart, and we conjecture this is because the covariates were stand-
ardized. The loss of efficiency of the adaptive method is particularly acute for
the larger model; this is in large part due to the reliance of the adaptive method
on the initial round of estimates, which are extremely variable (as shown by
the poor performance of GREG). McConville (2011) conducted simulation
studies similar to Example 4 in Tibshirani (1996), where the working model
was large but the true model was sparse, and found the adaptive lasso method
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did produce coefficient estimates closer to the true model coefficients and
therefore was more design efficient.

In the Utah simulation study with p¼ 12 predictors, the lasso selected mod-
els with 4.49 variables on average, the adaptive lasso selected models with
4.05 variables, and forward stepwise selected models with 3.35 variables.
When there were p¼ 78 potential predictors, the lasso, adaptive lasso, and for-
ward stepwise selected, on average, 10.32 variables, 13.55 variables, and
13.22 variables, respectively.

4.3 Variance Estimation and Confidence Interval Coverage

Variance estimators based on (12) were constructed for each estimator. We also
constructed the alternate variance estimator presented by S€arndal, Swensson,
and Wretman (1989) where the p�1

i ; p�1
j in (12) are replaced by the correspond-

ing weights. Since LASSO and ALASSO cannot be rewritten as a weighted
sum of the response variable, they do not have an alternate variance estimator.

As seen in table 2, the alternative variance estimators for the lasso estimators
have substantial negative bias, but less negative bias than those of the RIDGE,
FSTEP, or the GREG. The standard variance estimator performed slightly
worse than the alternative variance estimator in nearly all cases and is not dis-
played here. The performance of the theoretically unbiased variance estimator
for HT is included for comparison. The bias reduces in all cases at the larger

Table 1. Ratio of Design MSE for Each Estimator to Design MSE of LASSO
under Simple Random Sampling without Replacement and Stratified Simple
Random Sampling without Replacement; 2 Working Models Considered:
Additive Model (p 5 12) and Two-Way Interaction Model (p 5 78)

p ¼ 12 p ¼ 78

SI STSI SI STSI

n ¼ 50 n ¼ 100 n ¼ 50 n ¼ 100 n ¼ 100 n ¼ 200 n ¼ 100 n ¼ 200

ALASSO 1.08 1.03 1.21 1.01 1.35 1.09 3.12 1.30
CLASSO 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00
CALASSO 1.10 1.03 1.24 1.02 1.40 1.11 3.46 1.34
RLASSO 1.06 1.05 0.95 1.00 1.06 1.04 0.97 0.97
RALASSO 1.09 1.05 0.99 1.02 1.10 1.06 1.20 1.05
RIDGE 1.11 1.07 1.01 1.05 1.32 1.21 1.32 1.35
FSTEP 1.17 1.06 1.46 1.11 2.22 1.19 17.02 2.20
GREG 1.50 1.14 1.91 1.24 209.49 3.57 887.05 20.55
HT 1.98 2.12 1.85 1.95 2.10 2.12 1.98 2.09

MSE, mean squared error; SI, simple random sampling without replacement; STSI,
stratified random sampling without replacement.

148 McConville et al.

Deleted Text: e
Deleted Text: c
Deleted Text: i
Deleted Text: c
Deleted Text: equation
Deleted Text: equation


Table 2. Percent Relative Bias of Variance Estimators, with the Standard
Variance Estimator (12) Used for the Nonlinear Estimators LASSO and
ALASSO, and the Alternate Variance Estimator (See Text) Used for All Other
Cases

p ¼ 12 p ¼ 78

SI STSI SI STSI

n ¼ 50 n ¼ 100 n ¼ 50 n ¼ 100 n ¼ 100 n ¼ 200 n ¼ 100 n ¼ 200

LASSO �23 �15 �38 �26 �26 �17 �37 �30
ALASSO �30 �18 �51 �29 �44 �27 �78 �48
CLASSO �22 �14 �39 �26 �27 �18 �38 �31
CALASSO �29 �17 �52 �28 �47 �28 �80 �50
RLASSO �24 �15 �39 �30 �35 �23 �43 �34
RALASSO �27 �15 �42 �32 �34 �25 �43 �33
RIDGE �28 �15 �40 �33 �28 �16 �38 �28
FSTEP �29 �16 �54 �34 �65 �32 �87 �69
GREG �28 �17 �46 �35 �78 �45 �79 �61
HT �1 �2 4 �3 �6 2 �3 �4

SI, simple random sampling without replacement; STSI, stratified random sampling
without replacement.

Table 3. Coverage of Nominal 95% Confidence Intervals, with the Standard
Variance Estimator (12) Used for the Nonlinear Estimators LASSO and
ALASSO, and the Alternate Variance Estimator (See Text) Used for All Other
Cases

p ¼ 12 p ¼ 78

SI STSI SI STSI

n ¼ 50 n ¼ 100 n ¼ 50 n ¼ 100 n ¼ 100 n ¼ 200 n ¼ 100 n ¼ 200

LASSO 90 93 82 89 89 92 86 88
ALASSO 89 92 78 89 86 90 79 86
CLASSO 90 93 81 89 89 92 85 88
CALASSO 89 93 79 89 86 90 77 86
RLASSO 89 92 82 89 88 91 84 88
RALASSO 89 92 81 88 88 90 85 89
RIDGE 88 93 80 87 90 92 85 89
FSTEP 89 93 79 88 82 89 64 77
GREG 88 92 80 86 65 83 61 76
HT 94 94 91 92 93 95 92 93

SI, simple random sampling without replacement; STSI, stratified random sampling
without replacement.
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sample size. The bias in the variance estimators leads to undercoverage of
nominal 95 percent confidence intervals, as shown in table 3. The coverage
improves slightly in all cases using the alternative variance estimator, and
improves as sample size increases.

Given the coverage levels seen here, a natural concern is the quality of the nor-
mal approximations in theorem 2.1 and corollary 1. In these simulations, the dis-
tributions of the lasso estimators of individual regression coefficients may or may
not be well approximated by normal distributions: if the coefficient is small and
likely to be shrunk to zero, then of course the normal approximation is poor. Such
effects are, however, washed out in the lasso survey regression estimators of the
total. Conventional diagnostics indicate that the distributions of the lasso survey
regression estimators are well approximated by normal distributions, even at sam-
ple size 50. The GREG estimator has somewhat heavier tails and a worse approx-
imation to normality, as expected given the large weight variation in GREG.

4.4 Properties of the Survey Weights

As discussed in section 3.1, a single set of weights is often applied to several study
variables, with estimators taking the form of a linear combination of the sampled
study variable. The jth weight can be heuristically interpreted as the number of
similar elements in the population that the jth element in the sample represents.
Large differences in values of weights are undesirable, as they allow some
elements to be much more influential than others. Positive weights are essential be-
cause a negative weight no longer carries the described interpretation and can lead
to nonsensical estimates. There is an extensive survey literature on weight proper-
ties, particularly in the construction of calibration estimators (Deville and S€arndal
1992; S€arndal 2010) and in the construction of model-assisted estimators with
many calibration constraints (Rao and Singh 1997; Théberge 2000; Beaumont and
Bocci 2008). All of the model-assisted estimators presented here that can be writ-
ten as linear combinations of y variables have weights of the form p�1

j þ w�j ,
where the first component is the Horvitz-Thompson weight and the second com-
ponent is the model adjustment. We now study the properties of the weights for
the estimators in our simulation experiment.

In calibration estimation (Deville and S€arndal 1992; S€arndal 2010), weights are
constructed that reproduce known population-level information, while remaining
as close as possible (under some metric) to the original Horvitz-Thompson
weights. One way to assess this calibration property of the weights is to compute

1
M

XM
j¼1

jwj � p�1
j j

p�1
j

� 100%;

the percent relative average absolute distance between the Horvitz-Thompson
weights and the weights for the various methods. As shown in table 4, the cali-
bration weights moved the least since the model adjustment is only calibrating
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the estimator on the population size and the fitted values. As the estimators are
calibrated on more quantities, the model adjustment term becomes more vari-
able and the weights show greater movement, with the GREG weights moving
the most.

To understand better how the weights vary within a sample, we computed
the average over replicate samples of the empirical within-sample variance of
the weights:

varðwÞ ¼ 1
M

XM
m¼1

var wðmÞj

n o
j2sðmÞ

� �
¼ 1

M

XM
m¼1

1
n� 1

X
j2sðmÞ

wðmÞj � �wðmÞ
� �2

;

where sðmÞ is the mth replicate sample, �wðmÞ ¼ n�1P
j2sðmÞ wðmÞj and wðmÞj is the

jth weight in the mth replicate sample.
We are also interested in how much the weight for element j 2 U varies from

sample to sample when element j is in the sample. We computed the empirical
variance of the weight for element j across all Mj replicate samples in which j ap-
peared. We then averaged these empirical variances across all j in the universe:

varðwjjj 2 sÞ ¼ 1
N

X
j2U

varðwjjj 2 sÞ

¼ 1
N

X
j2U

1
Mj � 1

XM
m¼1

wðmÞj � �wj

� �2
Ifj2sðmÞg;

where �wj ¼ M�1
j

PM
m¼1 wðmÞj Ifj2sðmÞg and Mj ¼

PM
m¼1 Ifj2sðmÞg.

Table 4. Percent Relative Average Absolute Distance between the Survey
Weights and the Horvitz-Thompson Weights

p ¼ 12 p ¼ 78

SI STSI SI STSI

n ¼ 50 n ¼ 100 n ¼ 50 n ¼ 100 n ¼ 100 n ¼ 200 n ¼ 100 n ¼ 200

CLASSO 9.79 6.92 14.63 10.32 6.88 4.70 10.07 7.47
CALASSO 10.12 6.94 15.61 10.56 7.23 4.79 12.16 7.90
RLASSO 29.99 23.98 41.14 30.25 25.40 19.79 34.36 23.70
RALASSO 30.23 23.33 41.66 30.50 24.91 19.38 32.63 22.60
RIDGE 34.15 26.51 41.96 33.14 24.13 19.56 33.32 22.39
FSTEP 18.69 12.55 43.76 24.93 29.64 17.14 162.83 57.20
GREG 59.74 31.66 140.00 62.86 741.62 126.22 5,238.29 566.33

SI, simple random sampling without replacement; STSI, stratified random sampling
without replacement.
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Table 5 displays both of these variance statistics for the weights within and
across the samples. We only see variability in the HT weights under the un-
equal probability sampling and when measuring the variance within the sam-
ple. Since the calibration estimator weights are highly correlated with the HT
weights, the variance measures are only slightly higher for the calibration esti-
mators than for the HT. The GREG weights have the highest variability be-
cause of the need to calibrate on many covariates. The FSTEP weights are less
variable than GREG, but substantially more variable than those from the lasso
methods when p¼ 78 and n¼ 100 and under the unequal probability sampling
designs. Although the RIDGE, RLASSO, and RALASSO also are based on a
full model, the variability in the weights is controlled by the penalization.

A concern with highly variable weights is the possibility of negative
weights. The average percentage of negative weights was computed for each
sampling design. The calibration weights were negative in only 0.027 percent
of all cases and the ridge regression weights were never negative by construc-
tion, while the FSTEP weights varied from 0.33 percent to 13 percent negative
weights and the GREG weights varied from 1 percent to 46 percent negative
weights, on average, depending on the sampling design.

Although the small variability in the weights of the calibration estimators is
desirable, the weights still depend on the study variable, y. Both the GREG
and HT weights are independent of y and only depend on the sample, s.
Therefore, it is important to assess how well the y-dependent weights perform,
in comparison with the y-independent weights, when applied to other study
variables of interest. McConville (2011) conducted extensive simulation stud-
ies in which the lasso weights were applied to other variables. We conducted
some additional simulations specifically for the Utah data set by creating noisy
versions of canopy cover and applying the y-dependent weights to these new
variables. Our results (not shown) are entirely consistent with McConville
(2011): the design MSE of the estimators produced using lasso weights was
smaller than the design MSE of the estimators with HT weights if the add-
itional study variable was correlated with y, and the design MSE was roughly
equal to the HT design MSE if the additional study variable was uncorrelated
with y.

4.5 Domain Estimation

Other study variables that are of particular importance in applications are
domain-restricted y values, yjIfj2Ag, where A is any subset of U. In the FIA con-
text, A could be a county or other geographic domain, or could be defined by
the values of other covariates, such as the set of all grid points j with aspect
ranging from north-northwest to north-northeast.

Highly variable weights are increasingly important as domain sizes decrease
and the presence or absence of individual elements becomes more critical. To
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assess the impact of weight variation in the FIA example, we constructed two
sets of ten nested "strata-based" domains of increasing size. The first set was
obtained by setting domain 1 equal to stratum 1, domain 2 equal to stratum 1
combined with stratum 2, etc.: U1;U1 [ U2; . . . ;U1 [ U2 [ � � � [ U10 ¼ U.
The second set was formed by using the quantiles of transformed aspect to
define 10 groups, then combining sequentially as above to form ten nested
“aspect-based” domains.

For SI with p¼ 12 and n¼ 50, results are qualitatively very similar for esti-
mation of the domain total on both sets of domains, as shown in the left col-
umn of figure 1. The adaptive versions of the lasso estimators are omitted from
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Figure 1. Root-Mean Squared Error of Estimators, Excluding the Adaptive
Versions, for Aspect-Based Domains (Top) and Strata-Based Domains (Bottom),
under Simple Random Sampling with p 5 12, n 5 50 (left), and p 5 78, n 5 100
(Right). Plotting Symbols are L 5 LASSO, C 5 CLASSO, R 5 RLASSO,
RD 5 RIDGE, F 5 FSTEP, G 5 GREG, H 5 HT. GREG is not shown in the bot-
tom right panel because its root mean squared error exceeds 200.
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this figure for clarity, but in every case they track their nonadaptive versions
closely. The GREG is the worst for estimation at all domain sizes except the
largest two or three, with root MSE values larger even than HT. For the
smallest domains, all of the estimators except GREG and nonlinear LASSO
are very comparable, with GREG being worse and LASSO much better. For
moderate to large domains, nonlinear LASSO maintains its dominance, with
the remaining estimators ordered (from best to worst) as weighted lasso,
RIDGE, FSTEP, HT, then GREG. The loss in efficiency from using
weighted approximations to nonlinear LASSO is quite striking. Finally, for
the whole population, the lasso estimators are all comparable, beating
RIDGE narrowly and beating GREG by a good margin. HT is the worst for
this largest domain.

For p¼ 78 and n¼ 100, results as shown in the right column of figure 1 are
for the most part similar to those for the smaller model. The exceptions are that
FSTEP behaves much worse than it does for the smaller model, and GREG’s
RMSE is so large that it cannot be displayed on the same scale. For p¼ 78 and
n¼ 200, results (not shown) are qualitatively similar to those for p¼ 12 and
n¼ 50.

5. SUMMARY

Based on the FIA simulation study, LASSO or ALASSO would be recom-
mended in the situation (unusual in our experience) where survey regression
estimates are needed, but survey weights are not needed. Of the two, the
adaptive version ALASSO would seem to be preferable since it attempts to
correct for some deficiencies of LASSO. In our simulations, however,
ALASSO did not perform as well as LASSO, in part because of standardiza-
tion of our covariates and in part due to poor performance (particularly in
the large model) of the least squares coefficient estimators used in determin-
ing adaptive weights. For the more standard situation in which survey
weights are desired, our calibrated CLASSO and ridged RLASSO per-
formed very well and had similar computational demands. CLASSO was
slightly better in many respects than RLASSO. Calibrated adaptive
CALASSO and ridged adaptive RALASSO suffered from some of the same
computational problems as ALASSO in our study, with RALASSO having
some advantages over CALASSO. Our lasso-based methods tended to have
less variable weights than GREG, ridged GREG (RIDGE), or GREG with
forward stepwise selection (FSTEP). Less weight variation means much
lower chance of negative weights and much better domain estimation prop-
erties. Both CLASSO and RLASSO yielded similar RMSE properties in es-
timation for domains, dominating GREG, RIDGE, and FSTEP. Like
GREG, RIDGE suffers from the logistical limitation that it requires process-
ing and maintaining all of the auxiliary data layers, while the lasso methods
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offer the possibility of dropping some covariates entirely. This is desirable
in a production environment, potentially reducing costs and increasing pro-
cessing speed.

This paper was motivated by survey regression estimation for a major
natural resources survey, with large amounts of auxiliary data obtained
from remote sensing. Practitioners naturally want to apply modern regres-
sion techniques like the LASSO in this context. Application of these meth-
ods in other survey contexts may be limited by the availability of auxiliary
information. In some countries, population registries contain rich auxiliary
information and the LASSO methods may have applicability. In the United
States, government agencies are increasingly interested in improving sur-
vey data products through the use of "big data" available from various
sources, including social media, internet data and sensor networks.
Methods developed in this paper may have future application with such
auxiliary information.
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