Towards improving wildland firefighter situational awareness through daily fire behaviour risk assessments in the US Northern Rockies and Northern Great Basin

W. Matt JollyA,B and Patrick H. FreebornA

AUS Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, 5775 Highway 10 W, Missoula, MT 59808, USA
BCorresponding author. Email: mjolly@fs.fed.us

Abstract. Wildland firefighters must assess potential fire behaviour in order to develop appropriate strategies and tactics that will safely meet objectives. Fire danger indices integrate surface weather conditions to quantify potential variations in fire spread rates and intensities and therefore should closely relate to observed fire behaviour. These indices could better inform fire management decisions if they were linked directly to observed fire behaviour. Here, we present a simple framework for relating fire danger indices to observed categorical wildland fire behaviour. Ordinal logistic regressions are used to model the probabilities of five distinct fire behaviour categories that are then combined with a safety-based weight function to calculate a Fire Behaviour Risk rating that can plotted over time and spatially mapped. We demonstrate its development and use across three adjacent US National Forests. Finally, we compare predicted fire behaviour risk ratings with observed variations in satellite-measured fire radiative power and we link these models with spatial fire danger maps to demonstrate the utility of this approach for landscape-scale fire behaviour risk assessment. This approach transforms fire weather conditions into simple and actionable fire behaviour risk metrics that wildland firefighters can use to support decisions that meet required objectives and keep people safe.

Additional keywords: fire danger, safety, weather.

Received 10 August 2016, accepted 22 April 2017, published online 10 July 2017

Introduction

Wildland fires are a common ecosystem disturbance that burn \textasciitilde 3.50 \times 10^8 ha of global vegetation each year (Giglio \textit{et al.} 2010). Intentional wildland fires are human-ignited to clear forests, promote grazing and establish plants (Bowman \textit{et al.} 2011), and undesired wildland fires are suppressed to protect human lives and property (Finney 2005). Globally, the number of days that wildland fires are likely to burn is increasing (Jolly \textit{et al.} 2015), making the probability of unplanned wildland fires more common. However, attempting to contain wildland fires comes with the direct transferal of risk to firefighting personnel. This risk is underscored each year by line-of-duty deaths of wildland firefighters throughout the world. Over the last 20 years, 49 US firefighters have died when they were overtaken by erratic or rapidly spreading wildfires (National Intergency Fire Center 2015). Wildland firefighting is inherently risky but daily and seasonal variations in fire weather can compound that risk.

Wildland fire behaviour is controlled by the interactions between available fuels, topography and local weather conditions (Countryman 1972). Because fuels and topography vary spatially but do not change during the days or weeks while a wildland fire is burning, these variables can be mapped and known before fires start. However, weather conditions vary across space and time and therefore can have profound effects on the type and behaviour of a wildland fire. For this reason, US firefighters are expected to assess current and future fire weather and fire behaviour when developing tactics and strategies during any wildland fire engagement, as set by the following set of Standard Firefighting Orders (National Wildfire Coordinating Group 2014):

1. Keep informed on fire weather conditions and forecasts.
2. Know what your fire is doing at all times.
3. Base all actions on current and expected behaviour of the fire.
4. Identify escape routes and safety zones and make them known.
5. Post lookouts when there is possible danger.
7. Maintain prompt communications with your forces, your supervisor, and adjoining forces.
8. Give clear instructions and ensure they are understood.
9. Maintain control of your forces at all times.
10. Fight fire aggressively, having provided for safety first.

Despite the fact that firefighters are required to keep informed on fire weather and to base their actions on safety and expected fire behaviour, very few resources are available to inform the tactical decisions made during the wildland fire
initial response, or initial attack (IA), and no simple resources exist to utilise weather forecasts to predict fire behaviour risk across large landscapes. The emergence of long-term datasets like gridded weather climatologies and daily incident reports provides the historical information necessary to make these associations. Methods that synchronise and build statistical relationships between these quantitative and qualitative datasets could ultimately be implemented within a tool that transforms current and expected fire weather conditions into simple and actionable metrics of fire behaviour risk. If such a tool were developed, it would improve firefighters’ situational awareness and ensure that tactical decisions are better aligned with both current and expected fire weather and fire behaviour potential.

Here, we present the initial development of a framework that combines fire danger information derived from surface weather stations with daily information about worst-case observed categorical fire behaviour to predict the probability of five distinct fire behaviour types. Categorical fire behaviour probabilities are then weighted based on their potential effects on firefighter safety to produce an expected fire behaviour risk metric that can be used to inform daily operational wildland fire decisions. Finally, we compare these predictions with the daily maximum fire radiative power (FRP) measured by Moderate Resolution Imaging Spectroradiometer (MODIS) to characterise the relationship between fire behaviour risk and maximum energy release rate, and we demonstrate the utility of this approach by mapping fire behaviour risk across three adjacent US National Forests using daily, moderate-resolution gridded surface weather data.

Materials and methods

Fig. 1 illustrates the data streams, processing and formulae used to calculate fire behaviour risk. First, keywords describing fire behaviour types are transcribed from daily incident reports and converted into a time series of categorical fire behaviour indexes (CFBX). The daily fire behaviour indexes are in turn synchronised with daily fire danger indexes obtained from the nearest or most representative surface weather station. Next, ordinal logistic regression analyses are used to model the probability of observing a categorical fire behaviour type as a function of fire danger. These probabilities are then multiplied by an *a priori* weighting function intended to quantify the effect of a categorical fire behaviour type on wildland firefighter safety. Ultimately, the output is a daily index reflecting the fire behaviour risk that wildland firefighters are exposed to.

Study area

The study area comprises three adjacent US National Forests: the Lolo National Forest (LNF), the Bitterroot National Forest (BRF) and the Salmon–Challis National Forest (SCF). The LNF and BRF cover 0.9 and 0.6 Mha respectively within the Northern Rockies Geographic Area, whereas the SCF covers 1.7 Mha in
the northern Great Basin Geographic Area (Fig. 2). From north to south, there is a general gradient towards warmer, drier and windier fire weather conditions, higher and steeper terrain, and a transition from timber fuel models to shrub and grass fuel models (Table 1).

Fire behaviour and fire danger associations
The Incident Command System (ICS) Incident Status Summary form 209 (ICS-209) provides a field where fire managers can record daily, detailed descriptions of fire behaviour observations. The US Forest Service Fire and Aviation Management Web Applications site (FAMWEB, https://fam.nwcg.gov/famweb/, accessed 23 May 2017) hosts an archive of historical ICS-209 forms organised by Geographic Area Command Center (GACC), year (2002–15), and incident name and number. Incidents were selected from this archive based on the following criteria: (i) the origin was located within the study area; (ii) either the LNF, BRF or SCF were primarily responsible for managing the incident; or (iii) an appreciable amount of the area that burned during the incident occurred within the study area.

Information transcribed from the ICS-209 forms included the incident name and number, origin latitude and longitude, report date, and a description of the fire behaviour observed during the current reporting period. A list of all incidents used in the present study is given in Appendix 1.

Fire behaviour descriptions written on the ICS-209s were translated into one of five CFBXs based on the following keywords: (1) smouldering, (2) creeping or spreading, (3) running, spotting, or torching, (4) crowning or crowning and spotting, or (5) extreme or erratic. If a fire behaviour description contained keywords that spanned several categories, then the maximum CFBX was assigned to the incident on that day. This procedure ultimately produced a daily time series of CFBX codes for each incident. A daily CFBX code was not assigned if an ICS-209 was not submitted, or if an ICS-209 was submitted but lacked any fire behaviour keywords.

Each incident with a daily time series of CFBX codes was assigned to a single Remote Automated Weather Station (RAWS) either by the fire behaviour specialists who ran analyses in the Wildland Fire Decision Support System (WFDSS) or otherwise based on proximity. Station information (location, climate class, green-up date, etc.) and weather observations at 1300 hours (air temperature, relative humidity, 20-foot (~6.1 m)
windspeed, etc.) were downloaded from FAMWEB, and imported into FireFamily Plus (Bradshaw and McCormick 2000) to calculate daily values of the Energy Release Component (ERC) and the Burning Index (BI) for the US National Fire Danger Rating System (NFDRS). ERC is an index that is related to the maximum energy release at the flaming front of a fire and BI is proportional to the flame length at the head of a fire (Bradshaw et al. 1983). Although BI is calculated in part using ERC, BI incorporates windspeed into the calculation and thus adds more information than simply the fuel dryness indicated by ERC. To ensure that ERC and BI values are comparable between locations, we constrained calculations to a single fuel model (Fuel Model G), which has been demonstrated to have a strong relationship with the occurrence of large fires (Andrews et al. 2003; Riley et al. 2013). Daily ERCs and BIs at each RAWS were converted into percentiles based on the most recent 20 years (1996–2015) of seasonal data between 1 June and 31 October.

Synchronising the daily time series of ERC and BI percentiles with the CFBX codes resulted in multiple pairs of fire danger and CFBX codes for the same incident: one pair for every day that an ICS-209 was submitted and contained a description of fire behaviour. If multiple fires were burning simultaneously, then multiple pairs of fire danger percentiles and CFBX codes exist for the same day. A simple exploratory data analysis (EDA) was performed to summarise the distribution of fire danger percentiles and CFBX codes in each forest. Based on this EDA, categorical fire behaviour observations were restricted to the most representative fire danger conditions by removing outliers where the ERC or BI percentile exceeded $3 \times$ the median absolute deviation (MAD) (Iglewicz and Hoaglin 1993).

Table 1. Climate, topography and fuels summary for the Lolo National Forest (LNF), the Bitterroot National Forest (BRF) and the Salmon–Challis National Forest (SCF)

<table>
<thead>
<tr>
<th>Climate</th>
<th>Lolo National Forest (LNF)</th>
<th>Bitterroot National Forest (BRF)</th>
<th>Salmon–Challis National Forest (SCF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily mean windspeed (m s$^{-1}$)</td>
<td>Jul 2.1–2.7 2.3–2.9 2.8–3.3</td>
<td>Aug 2.1–2.6 2.3–2.9 2.6–3.6</td>
<td>Sept 2.0–2.6 2.2–2.9 2.4–3.2</td>
</tr>
<tr>
<td>Topography</td>
<td>Elevation class (m) 0–1000 3.6 0.4 0.1 1001–2000 86.9 56.4 20.4 2001–3000 9.4 43.2 76.5 3001–4000 0.0 0.0 3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope class (%) 0–25 66.0 62.7 58.9 26–40 33.2 34.7 38.9 41–55 0.8 2.5 2.1 56–75 0.0 0.1 0.1 >75 0.0 0.0 0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuels Fire Behaviour Fuel Model (FBFM13)</td>
<td>FFBM 1 10.1 15.6 16.6</td>
<td>FFBM 2 10.2 10.6 23.5</td>
<td>FFBM 3 0.0 0.0 0.0</td>
</tr>
<tr>
<td>Grass group total 20.2 26.2 40.1</td>
<td>FBFM 4 0.1 0.1 0.4</td>
<td>FBFM 5 17.0 16.2 22.7</td>
<td>FBFM 6 0.0 0.0 0.3</td>
</tr>
<tr>
<td>FBFM 7 0.0 0.0 0.0</td>
<td>FBFM group total 17.2 16.4 23.5</td>
<td>FBFM 8 21.7 23.9 13.5</td>
<td>FBFM 9 13.3 12.2 10.6</td>
</tr>
<tr>
<td>FBFM 10 27.7 21.3 12.3</td>
<td>Timber group total 62.6 57.5 36.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ordinal logistic regressions

The CFBX codes are ordinal data because they are ranked from 1 to 5 in order of progressively more extreme fire behaviour. For each of the three national forests, we use ordinal logistic regression methods (Agresti 1984) to model the cumulative probability \(p \) of observing a categorical fire behaviour type as a function of fire danger. The approach is an extension of binary logistic regression methods whereby cumulative probabilities are transformed by the logit function so that the log of the cumulative odds is linearly related to the predictor variables, as follows:

\[
\text{logit}[p(CFBX)] = \alpha_i + \beta_{ERC}X_{ERC} + \beta_{BI}X_{BI}, \quad i = 1, 2, 3, 4
\]

where \(i \) represents the different cut-points of CFBX that divide the five fire behaviour types into two groups while still preserving their order, \(\alpha_i \) are the intercepts associated with the cut-points, \(\beta \) is the cut-point-independent coefficient adhering to the parallel slopes or proportional odds assumption, and the predictor variables ERC and BI are expressed as percentiles. After obtaining the parameter estimates, the cumulative odds are transformed into cumulative probabilities and differenced to obtain the probability of observing the \(i \)th fire behaviour type, \(\pi(CFBX) \), with the fifth and final probability obtained based on the identity that all probabilities must add up to one. Different models are obtained if only one fire danger index is used as the predictor variable and either \(\beta_{ERC} \) or \(\beta_{BI} \) is dropped from Eqn 1. If only one fire danger index is used, then \(\pi(CFBX_{ERC}) \) and \(\pi(CFBX_{BL}) \) are probability curves, and if both fire danger indexes are used, then \(\pi(CFBX_{ERC, BL}) \) is a two-dimensional probability contour.

As geographic variations in fuels, weather and topography can induce spatial gradients in the likelihood of certain types of fire behaviours, probability curves and contours are generated for each forest using local associations between the CFBX codes, ERC and BI. For example, \(\pi(CFBX_{ERC}) \) represents the probability of observing the \(i \)th fire behaviour type as a function of ERC for the Lolo National Forest, as indicated by the superscript. It is also important to note that the probability of the \(i \)th fire behaviour type (as calculated here) is not the same as the burn probability, or how often or how likely a fire burns an area at a given intensity level (Finney 2005). Instead, \(\pi(CFBX) \) is a conditional probability indicating the likelihood of observing the \(i \)th categorical fire behaviour type on a day when a fire is already (or expectedly) present on the landscape.

Fire behaviour risk

Per the framework of Finney (2005), probability contours for each forest are incorporated into a fire behaviour risk analysis. Daily fire behaviour risk (FBR) is calculated as follows:

\[
FBR_{ERC, BL}^{NF} = \sum_{i=1}^{5} \pi(CFBX_{ERC, BL, i}) \times RWF_i
\]

where the daily FBR for each national forest, identified by the superscript NF, depends on the daily fire danger rating, \(\pi(CFBX_{ERC, BL}) \) is the probability of the \(i \)th fire behaviour type occurring on a day with a particular combination of ERC and BI percentiles, and \(RWF_i \) is a risk weighting function intended to capture the magnitude of the effects of the \(i \)th categorical fire behaviour type on firefighter safety, which, as of yet, is assumed independent of fuels, weather and topography:

\[
RWF_i = 10^{-2}
\]

Together, Eqns 2 and 3 combine the probabilities and the consequences of different categories of fire behaviour to yield a fire danger-driven, safety-based risk metric that reflects firefighters’ exposure to potential fire behaviour.

Fire behaviour risk contours for each forest are made more intuitive by normalising the scale from 1 to 100 by dividing the FBR value by the maximum FBR (typically found at the 100th percentile of both ERC and BI) and multiplying by 100. For more convenient use in fire management applications, the normalised FBR contours are then divided into five ERC and five BI percentile classes (0–57, 58–77, 78–91, 92–96, 97–100) based on the Northern Rockies South-west Zone Fire Danger Operating Plan (Lolo NF 2015), and the maximum normalised FBR in each percentile classes is used to construct a 5 × 5 fire behaviour risk matrix for each forest.

Finally, we used fire danger indexes calculated from gridded surface weather data to demonstrate how these models could be used to estimate FBR across landscapes. We used a gridded surface weather dataset that was derived by downscaling a combination of the North American Land Data Assimilation System (NLDAS-2) and monthly gridded precipitation from the Parameter-elevation Regressions on Independent Slopes Model (PRISM) (Abatzoglou 2013). This dataset provides daily measures of 2-m maximum and minimum temperature, 2-m maximum and minimum relative humidity, and total daily surface precipitation from 1979 to 2015. We combined those data with gridded daily maximum windspeed from the North American Regional Reanalysis (Mesinger et al. 2006), downscaled to 4-km resolution using nearest-neighbour resampling, to calculate the ERC and BI for the US NFDRS based on the same algorithms used to calculate fire danger (Bradshaw et al. 1983) and for consistency, we use Fuel Model G for all calculations as noted earlier. We expressed each daily gridded ERC and BI as percentiles from the entire 37-year time series. We used the individual forest-level models developed for the LNF, BRF and SCF to map potential FBR for two example time periods in 2015 that represent non-fire season (9 April, yearday 100) and fire season (27 August, yearday 240) using fire danger calculations from a gridded meteorological dataset solely to demonstrate the utility of our fire behaviour risk model to map firefighter exposure in real time.

Verification

MODIS FRPs from both the Aqua and Terra platform provide instantaneous estimates of flaming and smouldering energy release rates (Kaufman et al. 1998; Wooster et al. 2003). We extracted subdaily FRP observations from the MODIS Collection 5.1 active fire (MCD14ML) products for all active fire pixels that fell with the fire perimeters of all fires used in the test data. Fire perimeters were obtained from incident data or were
extracted from the Monitoring Trends in Burn Severity project (Eidenshink et al. 2007). From these data, the maximum FRP of all active fire pixels detected per fire and per day (FRPmax) was summarised by categorical fire behaviour index and also compared with fire behaviour risk using quantile regressions (Koenker 2005) fitted to the 50th (median), 75th and 95th percentiles.

Results
Datasets for the LNF, BRF and SCF consist of 26, 13 and 8 wildland fires respectively, with 465, 297, and 231 (total \(n = 993 \)) daily pairs of fire danger and categorical fire behaviour indexes. Depending on the duration of an incident, the number of observations collected on an individual fire ranged from 1 to 68 daily pairs. Over half (53%) of the daily pairs were collected on days when the fire was observed to be running, spotting, or torching (CFBX 3), and 51% of the daily pairs were collected when either the ERC or BI exceeded their 89th percentile.

Distributions of ERC and BI percentiles for each category of fire behaviour (Fig. 3) demonstrate that, in general, more vigorous fire behaviour is observed at higher fire danger. Moreover, there is a noticeable lower limit of fire danger conditions that will support certain categories of fire behaviour, and this threshold increases with increasingly active fire behaviour. In contrast to smouldering fires (CFBX 1), which can occur over nearly the entire spectrum of fire danger, extreme or erratic fires (CFBX 5) are limited to the narrow, upper range of the hottest, driest and windiest conditions. The median ERC percentiles recorded on extreme or erratic fire behaviour days were 97, 93 and 92% for the LNF, BRF and SCF respectively, and BI percentiles were 93, 93 and 92% respectively.

After removing outliers (\(\pm 3 \) times the median absolute deviation) identified during the EDA (Fig. 3), datasets for the LNF, BRF and SCF were reduced to 418, 264 and 203 (final total \(n = 885 \)) daily pairs of fire danger and categorical fire behaviour indexes. A summary of the Ordinal Logistic Regressions between fire danger and categorical fire behaviour indexes is given in Table 2. For the univariate regressions, the coefficients \(\beta_{ERC} \) and \(\beta_{BI} \) were significant for all three forests, suggesting that ERC and BI are suitable as independent predictors of fire behaviour for these forests. Coefficients for both ERC and BI were significant in the combined model for the SCF, and only \(\beta_{ERC} \) was significant for the Lolo and Bitterroot. However, the univariate plots (Fig. 4) and the bivariate plots (Fig. 5) for each forest show that the likelihood
of expected fire behaviour is sensitive to ERC as well as BI. Therefore, both variables are retained in the final FBR metrics for all forests for consistency.

The individual probabilities of observing a given category of fire behaviour were very intuitive. Smouldering surface fires (CFBX 1) are most likely to occur at low fire danger (Fig. 4). As either ERC or BI increased, the probability of only observing a smouldering surface fire diminished and the probabilities of observing more intense categorical fire behaviours began to increase. Probabilities for creeping and spreading surface fires (CFBX 2) peaked between approximately the 40th to 55th percentiles of ERC and the 20th and 30th percentiles of BI. As fire danger increased, the probability of only observing a smouldering surface fire diminished and the probabilities of observing a creeping and spreading surface fire increased at and above CFBX 2, with median values more than doubling between consecutive categorical fire behaviour indexes (CFBX 2: 39.7 MW, CFBX 3: 113.1 MW, CFBX 4: 304.4 MW, CFBX 5: 894.0 MW). Ultimately the relationship between daily FBR and daily FRPmax reveals that an increase in fire behaviour risk is accompanied by an expanding window of fire behaviour potential (Fig. 7b). Quantile regressions fitted to the 50th, 75th and 95th percentiles (τ) are all significant (P < 0.001). In particular, the quantile regression fitted to the 95th percentile captures the trend in the upper limit of fire behaviour potential, which over the full range of FBR exhibits a more than 4-fold increase in the maximum heat release rate.

Example maps of FBR are shown in Fig. 8. FBR was consistently low across all three forests during the spring on yearday 100 in 2015 but it was highly variable and reached maximum values on yearday 240 during the peak of the fire season in the Northern Rockies and Great Basin. Despite areas with extremely high FBR, other areas during the same time period were near minimum values, suggesting that this method is capable of capturing asymmetric fire behaviour potential across landscapes.

Discussion

The framework presented here is the first attempt at systematically correlating indices from the US NFDRS with observed, categorical descriptions of wildland fire behaviour. The ordinal logistic regression results are intuitive and show promise in differentiating relationships between fire danger and categorical

Table 2. Results of the ordinal logistic regression analysis performed for each forest in the study area

<table>
<thead>
<tr>
<th>Parameter estimate</th>
<th>Value</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient β_{ERC}</td>
<td>0.084</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept x_1</td>
<td>3.844</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept x_2</td>
<td>5.909</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept x_3</td>
<td>8.843</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept x_4</td>
<td>10.796</td>
<td>0.000</td>
</tr>
<tr>
<td>Coefficient β_{BI}</td>
<td>0.045</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept x_1</td>
<td>0.419</td>
<td>0.479</td>
</tr>
<tr>
<td>Intercept x_2</td>
<td>2.331</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept x_3</td>
<td>5.090</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept x_4</td>
<td>7.009</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Table 2. Results of the ordinal logistic regression analysis performed for each forest in the study area

<table>
<thead>
<tr>
<th>Parameter estimate</th>
<th>Value</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient β_{ERC}</td>
<td>0.075</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept x_1</td>
<td>1.524</td>
<td>0.001</td>
</tr>
<tr>
<td>Intercept x_2</td>
<td>4.289</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept x_3</td>
<td>7.434</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept x_4</td>
<td>9.740</td>
<td>0.000</td>
</tr>
<tr>
<td>Coefficient β_{BI}</td>
<td>0.065</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept x_1</td>
<td>0.812</td>
<td>0.007</td>
</tr>
<tr>
<td>Intercept x_2</td>
<td>3.381</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept x_3</td>
<td>6.346</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept x_4</td>
<td>8.660</td>
<td>0.000</td>
</tr>
<tr>
<td>Coefficient β_{ERC and BI}</td>
<td>0.068</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept x_1</td>
<td>0.007</td>
<td>0.581</td>
</tr>
<tr>
<td>Intercept x_2</td>
<td>1.528</td>
<td>0.001</td>
</tr>
<tr>
<td>Intercept x_3</td>
<td>4.300</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept x_4</td>
<td>7.442</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Table 2. Results of the ordinal logistic regression analysis performed for each forest in the study area

<table>
<thead>
<tr>
<th>Parameter estimate</th>
<th>Value</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient β_{ERC}</td>
<td>0.093</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept x_1</td>
<td>2.362</td>
<td>0.007</td>
</tr>
<tr>
<td>Intercept x_2</td>
<td>4.804</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept x_3</td>
<td>8.923</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept x_4</td>
<td>10.567</td>
<td>0.000</td>
</tr>
<tr>
<td>Coefficient β_{BI}</td>
<td>0.064</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept x_1</td>
<td>0.312</td>
<td>0.660</td>
</tr>
<tr>
<td>Intercept x_2</td>
<td>2.369</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept x_3</td>
<td>6.244</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept x_4</td>
<td>7.849</td>
<td>0.000</td>
</tr>
<tr>
<td>Coefficient β_{ERC and BI}</td>
<td>0.070</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept x_1</td>
<td>0.027</td>
<td>0.278</td>
</tr>
<tr>
<td>Intercept x_2</td>
<td>2.492</td>
<td>0.005</td>
</tr>
<tr>
<td>Intercept x_3</td>
<td>5.033</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept x_4</td>
<td>9.240</td>
<td>0.000</td>
</tr>
<tr>
<td>Coefficient β_{ERC and BI}</td>
<td>0.084</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept x_1</td>
<td>0.020</td>
<td>0.581</td>
</tr>
<tr>
<td>Intercept x_2</td>
<td>2.492</td>
<td>0.005</td>
</tr>
<tr>
<td>Intercept x_3</td>
<td>5.033</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept x_4</td>
<td>9.240</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Table 2. Results of the ordinal logistic regression analysis performed for each forest in the study area

<table>
<thead>
<tr>
<th>Parameter estimate</th>
<th>Value</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient β_{ERC and BI}</td>
<td>10.796</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept x_1</td>
<td>9.740</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept x_2</td>
<td>8.606</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept x_3</td>
<td>7.849</td>
<td>0.000</td>
</tr>
<tr>
<td>Intercept x_4</td>
<td>10.567</td>
<td>0.000</td>
</tr>
</tbody>
</table>
fire behaviour probabilities across a narrow range of western US forests. This fire behaviour risk framework can serve as the foundation for new tools that provide up-to-date, daily potential fire behaviour information to support strategic and tactical decision making.

The fire behaviour risk framework is primarily composed of four components: (i) qualitative, categorical fire behaviour observations (CFBX), (ii) normalised fire weather observations (ERC and BI), (iii) categorical probability modelling, and (iv) risk weighting. Each of these components has strengths and weaknesses that are detailed below.

Categorical fire behaviour observations are recorded once or twice per day on ICS-209 forms. These categories are loosely coupled with physical fire properties that can be quantified and measured, such as reaction intensity (W m$^{-2}$), fireline intensity (W m$^{-1}$), spread rate (m s$^{-1}$) and flame length (m). If these properties could be measured everywhere on a fire and throughout the day, each CFBX code would capture a broad range of values due to spatial and temporal fluctuations in fire behaviour. Moreover, the magnitude of the measurements for the same CFBX code would differ between regions depending on the local fuels, weather and topography, and the measured differences between successive CFBX codes would not be constant.

Conveniently, the risk analysis framework implemented here is based on the probabilities of a given categorical fire behaviour rather than a discrete prediction of it. This allows for the possibility of any fire behaviour type on a given day but those categorical fire behaviour types are limited to the fire danger conditions under which they have been observed.

Only using ICS-209 reports to obtain CFBX codes biases our dataset towards larger and generally more complex incidents. Undoubtedly, the timeliness and representativeness of the fire behaviour descriptions affect the resulting magnitudes and shapes of probability curves and contours. For example, a delay in the submission of the first ICS-209 would fail to record the extreme fire behaviour that likely contributed to the rapid initial development of the fire, thus resulting in fewer observations of the upper CFBX classes. Conversely, the continued submission of ICS-209s during the later stages of the fire’s lifetime would preferentially include more observations of the lower CFBX classes even though fire behaviour is likely more influenced by suppression operations. Assigning the highest CFBX code to a particular day based on the worst-case fire behaviour description neglects the spatial and temporal distribution of fire behaviour. ICS-209s rarely described where on the fire and in what fuels the maximum fire behaviour was observed, and it is entirely

Fig. 4. Results of the ordinal logistic regression analysis performed for the Lolo (LNF), Bitterroot (BRF) and Salmon–Challis (SCF) National Forests. The probability of a categorical fire behaviour index (CFBX) is modelled using one predictor variable only: either the Energy Release Component (ERC) percentile (top panels), or the Burning Index (BI) percentile (bottom panels). Each probability curve is constructed from the coefficients and intercepts summarised in Table 2.
possible that the maximum fire behaviour was never observed or was observed but never recorded. In reality, large fires rarely exhibit consistent fire behaviour across their entire fireline. Therefore, field-based observations that are more localised could also improve the data collection for our approach. Future improvements aim to include fire behaviour observations from ICS-209 reports with observations made during IA and field observer reports from large fires to improve our ability to rate fire behaviour over the full range of environmental conditions.

Owing to the coarse spatial resolution of the fire behaviour observations, we develop the probability curves using the ERCs and BIs from the fire danger rating area of the nearest or most representative RAWS. However, it is possible that the localised weather conditions influencing the fire at the time the categorical fire behaviour observations were made were different to the conditions measured at the nearby weather station. Future improvements to fire weather analyses used in the present framework may include the use of higher-resolution gridded data that can better represent local-scale influences on fuel moistures and fire potential (Holden and Jolly 2011).

The ordinal logistic regression analysis performed here directly relates fire weather conditions with the likelihood of different types of fire behaviours, and is therefore a well-suited component of the fire risk calculation. However, linking fire danger information with observed fire behaviour to predict potential fire behaviour has been part of the Canadian Fire Behaviour Prediction System for decades (Stocks et al. 1989; Hirsch 1996; Taylor et al. 1997). These predictions are provided to firefighters as part of their Fire Behaviour Prediction (FBP) field guide (Taylor et al. 1997). In addition to quantitative descriptions of fire behaviour such as rates of spread, indices from the Canadian Forest Fire Danger Rating System (CFFDRS) along with information about fuel types are used to provide predictions of the type of fire behaviour expected, such as surface fire, intermittent crown fire (i.e. torching) and continuous crown fire. However, our method is complementary to the FBP approach because it expresses the individual probabilities of each fire behaviour category and thus allows a more complete interpretation of potential fire behaviour and, when combined with the Risk Weighting Factors, it can be used to better express the potential exposure risk to firefighters.

The safety-based RWF created here is simply used as a temporary place holder. Future work will focus on quantifying spatially varying RWFs based on local fuels and terrain. A more appropriate RWF, for example, could integrate information about the fuel size distribution and loadings in order to approximate the fireline intensity for a particular fire behaviour type. Fireline intensity varies by orders of magnitude as flames carry from the surface into tree crowns (Alexander 1982). It is therefore possible that a more complete method for rating risk could quantify the potential fireline intensity of each fuel stratum and use fireline intensity directly as a weighting factor for quantifying fire behaviour risk.

Our FBR is a numerical rating of the sum of the categorical fire behaviour probabilities and consequences of each type of fire behaviour occurring under a given combination of ERC and...
Fig. 6. Final results of the fire behaviour risk (FBR) analysis performed for the Lolo (LNF), Bitterroot (BRF) and Salmon–Challis (SCF) National Forests. The maximum normalised FBR (top panels) in each fire danger class is used to construct the 5×5 FBR matrices (bottom panels).

Fig. 7. Relationship between qualitative observations of Categorical Fire Behaviour Indexes (CFBX) and daily maximum fire radiative power (FRP) detected by Moderate Resolution Imaging Spectroradiometer (MODIS) are shown in (a). Quantile regressions relating normalised Fire Behaviour Risk (FBR) with the daily maximum FRP are shown in (b). Results are based on data combined from all three forests in the study area.
BI percentiles. In order to apply this metric appropriately, it will need to be translated into a categorical risk rating that can be tied directly to operational wildland fire management decisions aimed at mitigating risk (Garvey and Lansdowne 1997). Similarly to adjective fire danger ratings, the adjective risk ratings could be used to inform firefighters during briefings, and could be incorporated into fire behaviour risk matrices (Fig. 6) for display on local forest pocket cards (Andrews et al. 1998). In addition to pocket cards, the emergence of web-based map displays is changing the way that fire weather and fire danger information are delivered to support wildland fire decision making (Horel et al. 2014). Our example maps (Fig. 8) show promise that this new tool could be combined with forecast fire danger indices to map FBR across landscapes. Such as tool could inform both strategic and tactical wildland fire management decisions and could transform the way that we prioritise and respond to wildland fires.

Independently and quantitatively substantiating descriptions of fire behaviour across multiple years and multiple forests is only feasible by satellite remote sensing of active fires. Larger and more intense fires emit more radiant heat and are therefore more likely to be detected by MODIS. In this regard, our work corroborates the fire behaviour descriptions recorded by incident managers on ICS-209 forms because we show that higher CFBX categories coincide with higher detection probabilities and larger FRP measurements. Ultimately, our fire behaviour risk metric was well correlated with the upper limit (i.e. 95th percentile) of daily maximum FRP, a threshold we suggest is a good indicator of the maximum potential fire behaviour measured on a spatial scale (nominally 1-km resolution) commensurate with the tactical decisions made by wildland firefighters.

The analysis framework presented here provides a roadmap for applying these methods to other forests where the full range of CFBX is documented. In the US, any fire greater than 100 acres (~40.47 ha) in timber or 300 acres (~121.41 ha) in grass or that has national firefighting resources assigned must have an ICS-209 report completed each day. These reports are entered into an online database and have been archived electronically since 2002. Therefore, a wealth of fire behaviour observations has been recorded and is available nationwide. Additionally, there are more than 2200 fire weather stations throughout the US and these data are archived and available. In essence, the critical data needed to develop local relationships between fire danger and categorical fire behaviour probabilities already exist across the United States. Future work will aim to streamline and expand the opportunities for data collection. For example, updated versions of the ICS-209 forms would benefit from a field that allows incident management personnel to directly enter the CFBX code, thereby eliminating the need to manually search for keywords. Aside from large and complex incidents, fire behaviour observations could also be collected and recorded during IA or during prescribed fires or wildfires when ICS-209 forms are not required to be submitted. More work will need to be done to categorise fire behaviour in other ecosystems such as grasslands and shrublands, where colloquialisms other than ‘torching’ and ‘crowning’ may be used to describe fire behaviour types. Future work will also determine how best to implement this framework within non-forested ecosystems, perhaps leveraging both expert fire behaviour observations as well as satellite-based estimates of radiant heat release.

Ultimately, the present framework is the first of its kind to combine both fire danger and fire behaviour observations to predict the probabilities of different categorical fire behaviour types. Although the case studies presented here are solid examples of the system’s flexibility, it can easily be expanded for use in other locations through the world through the
collection of simple fire behaviour observations and the calculation of fire danger indices. This new approach can lay the foundation for a nationwide, gridded, forecastable FBP system that can provide objective criteria about fire behaviour risk to inform both strategic and tactical wildland fire management decisions that meet required objectives while keeping people safe.

Acknowledgements

Funding for this work was provided in part by a NASA Applied Sciences Wildfires grant (NNH11ZDA001N-FIRES).

References

Countryman CM (1972) The fire environment concept. National Wildfire Coordinating Group, PMS-433. (Boise, ID, USA)

www.publish.csiro.au/journals/ijwf
Appendix 1. List of fires used in the fire behaviour risk analysis

<table>
<thead>
<tr>
<th>Map ID</th>
<th>Origin</th>
<th>ICS-209 report date</th>
<th>RAWS ID</th>
<th>RAWS name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fire name</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Year</td>
</tr>
<tr>
<td>Lolo National Forest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cooney Ridge Complex</td>
<td>46.623</td>
<td>−113.826</td>
<td>2003</td>
</tr>
<tr>
<td>2</td>
<td>Mineral–Primm</td>
<td>47.008</td>
<td>−113.758</td>
<td>2003</td>
</tr>
<tr>
<td>3</td>
<td>Cherry Creek</td>
<td>47.473</td>
<td>−115.192</td>
<td>2003</td>
</tr>
<tr>
<td>4</td>
<td>I-90</td>
<td>46.997</td>
<td>−114.472</td>
<td>2005</td>
</tr>
<tr>
<td>5</td>
<td>Prospect</td>
<td>47.055</td>
<td>−115.004</td>
<td>2005</td>
</tr>
<tr>
<td>6</td>
<td>Wyman number 2</td>
<td>46.358</td>
<td>−113.716</td>
<td>2007</td>
</tr>
<tr>
<td>7</td>
<td>Fisher Point</td>
<td>46.499</td>
<td>−113.663</td>
<td>2007</td>
</tr>
<tr>
<td>8</td>
<td>Sawmill</td>
<td>46.607</td>
<td>−113.701</td>
<td>2007</td>
</tr>
<tr>
<td>9</td>
<td>Conger Creek</td>
<td>47.216</td>
<td>−113.037</td>
<td>2007</td>
</tr>
<tr>
<td>10</td>
<td>Black Cat</td>
<td>47.022</td>
<td>−114.152</td>
<td>2007</td>
</tr>
<tr>
<td>11</td>
<td>Jocko Lakes</td>
<td>47.199</td>
<td>−113.729</td>
<td>2007</td>
</tr>
<tr>
<td>12</td>
<td>Chippy Creek</td>
<td>47.808</td>
<td>−114.997</td>
<td>2007</td>
</tr>
<tr>
<td>13</td>
<td>Alder Creek</td>
<td>46.438</td>
<td>−113.851</td>
<td>2010</td>
</tr>
<tr>
<td>14</td>
<td>Packer Meadows</td>
<td>46.653</td>
<td>−114.539</td>
<td>2010</td>
</tr>
<tr>
<td>15</td>
<td>West Riverside</td>
<td>46.716</td>
<td>−113.888</td>
<td>2011</td>
</tr>
<tr>
<td>16</td>
<td>Granite Pass</td>
<td>46.652</td>
<td>−114.634</td>
<td>2011</td>
</tr>
<tr>
<td>17</td>
<td>Falls Point</td>
<td>47.220</td>
<td>−112.909</td>
<td>2012</td>
</tr>
<tr>
<td>18</td>
<td>Wedge Creek</td>
<td>47.211</td>
<td>−113.112</td>
<td>2012</td>
</tr>
<tr>
<td>19</td>
<td>Harrys Flat</td>
<td>46.530</td>
<td>−113.764</td>
<td>2013</td>
</tr>
<tr>
<td>20</td>
<td>Lolo Creek Complex</td>
<td>46.773</td>
<td>−114.251</td>
<td>2013</td>
</tr>
<tr>
<td>21</td>
<td>Gold Creek</td>
<td>47.089</td>
<td>−113.783</td>
<td>2013</td>
</tr>
<tr>
<td>22</td>
<td>Mill Creek</td>
<td>47.017</td>
<td>−114.203</td>
<td>2013</td>
</tr>
<tr>
<td>23</td>
<td>West Mullan</td>
<td>47.214</td>
<td>−114.943</td>
<td>2013</td>
</tr>
<tr>
<td>24</td>
<td>Morrell Complex</td>
<td>47.313</td>
<td>−113.516</td>
<td>2015</td>
</tr>
<tr>
<td>25</td>
<td>West Fork Fish Creek</td>
<td>46.873</td>
<td>−114.849</td>
<td>2015</td>
</tr>
<tr>
<td>26</td>
<td>Little Joe</td>
<td>47.241</td>
<td>−115.281</td>
<td>2015</td>
</tr>
<tr>
<td>Bitterroot National Forest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Frog Pond</td>
<td>45.692</td>
<td>114.033</td>
<td>2003</td>
</tr>
<tr>
<td>28</td>
<td>Black Frog Complex</td>
<td>45.608</td>
<td>−113.834</td>
<td>2003</td>
</tr>
<tr>
<td>29</td>
<td>Rockin</td>
<td>46.053</td>
<td>114.401</td>
<td>2005</td>
</tr>
<tr>
<td>30</td>
<td>Gash Creek</td>
<td>46.395</td>
<td>114.254</td>
<td>2006</td>
</tr>
<tr>
<td>31</td>
<td>Rombo Mountain</td>
<td>45.748</td>
<td>−114.235</td>
<td>2007</td>
</tr>
<tr>
<td>32</td>
<td>Kootenai Creek</td>
<td>46.553</td>
<td>114.235</td>
<td>2009</td>
</tr>
<tr>
<td>33</td>
<td>Dominic Point</td>
<td>46.324</td>
<td>113.941</td>
<td>2010</td>
</tr>
<tr>
<td>34</td>
<td>Downing Mtn</td>
<td>46.242</td>
<td>−114.250</td>
<td>2010</td>
</tr>
<tr>
<td>35</td>
<td>Forty One Complex</td>
<td>46.222</td>
<td>113.942</td>
<td>2011</td>
</tr>
<tr>
<td>36</td>
<td>Beaver–Bitterroot Branch</td>
<td>45.550</td>
<td>114.450</td>
<td>2011</td>
</tr>
<tr>
<td>37</td>
<td>Sawtooth</td>
<td>46.228</td>
<td>114.308</td>
<td>2012</td>
</tr>
<tr>
<td>38</td>
<td>Chandol Creek</td>
<td>45.561</td>
<td>114.221</td>
<td>2012</td>
</tr>
<tr>
<td>39</td>
<td>Gold Pan Complex</td>
<td>45.657</td>
<td>114.780</td>
<td>2013</td>
</tr>
<tr>
<td>Salmon–Challis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Shower Bath</td>
<td>44.621</td>
<td>−114.622</td>
<td>2007</td>
</tr>
<tr>
<td>41</td>
<td>Banner</td>
<td>44.380</td>
<td>−115.210</td>
<td>2010</td>
</tr>
<tr>
<td>42</td>
<td>Black Canyon</td>
<td>43.908</td>
<td>−112.973</td>
<td>2011</td>
</tr>
<tr>
<td>43</td>
<td>Salt</td>
<td>44.983</td>
<td>−114.236</td>
<td>2011</td>
</tr>
<tr>
<td>44</td>
<td>Indian</td>
<td>45.422</td>
<td>−114.150</td>
<td>2011</td>
</tr>
<tr>
<td>45</td>
<td>Halstead</td>
<td>44.446</td>
<td>−115.166</td>
<td>2012</td>
</tr>
<tr>
<td>46</td>
<td>Lodgepole</td>
<td>44.528</td>
<td>−114.458</td>
<td>2013</td>
</tr>
<tr>
<td>47</td>
<td>Elevenmile</td>
<td>44.450</td>
<td>−114.569</td>
<td>2015</td>
</tr>
</tbody>
</table>