Climate Change Vulnerability and Adaptation in the Blue Mountains Region
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Groundwater-Dependent Ecosystems

Kathleen A. Dwire and Sabine Mellmann-Brown®

Introduction

In the Blue Mountains, climate change is likely to have significant, long-term
implications for freshwater resources, including riparian areas, wetlands (box

7.1), and groundwater-dependent ecosystems (GDEs, box 7.2). Climate change is
expected to cause a transition from snow to rain, resulting in diminished snowpack
and shifts in streamflow to earlier in the season (Leibowitz et al. 2014, Luce et

al. 2012; see chapter 3). Additional effects include changes in extreme high- and
low-flow events; alteration of groundwater recharge rates; changes in the fate and
transport of nutrients; sediments, and contaminants, and temporal and spatial shifts
in critical ecosystem processes and functions (Johnson et al. 2012, Raymondi et al.
2013). Another consequence of climate change is higher frequency and severity of
droughts (Seager et al. 2007), which will influence distribution of plant species, and
likely increase susceptibility to insect attacks, as well as increase the frequency and
severity of wildfires (see chapter 6).

In this chapter, we synthesize existing information and describe the potential
effects of climate change on riparian areas, wetlands, and groundwater-dependent
GDEs of the Malheur, Umatilla, and Wallowa-Whitman National Forests. We begin
by defining riparian areas, wetlands, and GDEs, highlighting the considerable
overlap among these ecosystems, as well as the numerous definitions for them. We
briefly describe the range of plant communities that occur in these special habitats,
partly to highlight the existing diversity of wetland/riparian vegetation, but also as a
basis for discussing the potential influences of climate change. Much of this chapter
is devoted to summarizing existing information on the current condition of special
habitats in the Blue Mountains, with focus on wetland/riparian plant communities.
Although we describe potential changes for different riparian/wetland vegetation
groups, we also emphasize that there is considerable uncertainty about the rates
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Box 7.1—Climate change effects on riparian areas
and wetlands in the Blue Mountains

Broad-scale climate change effects

e Higher air temperature

e Higher frequency and severity of droughts
e Decreased snowpack

* Increased rain-snow ratio

e Altered streamflow

Habitat and species

e  Cottonwood-dominated riparian communities
*  Wetland and riparian aspen communities
»  Willow-dominated riparian communities

e Herbaceous-dominated riparian and wetland communities

Current condition, existing stressors

Cottonwood, aspen, and willow—
Condition:

e Decreased area owing to conversion and development of floodplains

e Degradation of stands owing to altered flow regimes (dams, diversions) and
changes in hydrology owing to floodplain land use

Stressors:

e Structural simplification of channels (e.g., levee construction), roads, live-
stock and native ungulate browsing

e Intentional clearing/removal of native riparian woody species, e.g., to
increase herbaceous forage or pasture area for livestock grazing

Herbaceous—
Condition:

» High cover and frequency of nonnative pasture grasses

» High cover of grazing-tolerant native species
Stressors:

e Heavy herbivory from livestock and native ungulates
e Increasing cover of invasive or noxious plant species

e Planting or seeding of nonnative pasture grasses
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Box 7.1 (continued)

Sensitivity to climatic variability and change
Cottonwood, willow, and aspen—

»  Decreased establishment of willow and cottonwood
» Displacement of wetland/riparian plant species with upland species
e Decreased riparian cover

e Decreased plant growth and increased mortality
Herbaceous—

e Further decreases in native species cover and richness
e Shift in community composition
* Increased success of nonnatives

e Loss of sensitive species

Expected effects of climate change
Cottonwood, willow, and aspen—

* Increased high flows in winter
e Decreased low flows in summer
* Increased demand for water (additional diversions, reservoir expansions)

* Increased browsing pressure
Herbaceous—

e Decreased low flows in summer
e Increased demand for water

e Increased demand for forage and grazing

Adaptive capacity
Cottonwood, willow, and aspen—

e Cottonwood and willow populations have evolved within the range of
regional streamflow variability. They are highly dependent on natural flow
characteristics for seed germination, seedling establishment, and stand per-
sistence. They have limited adaptive capacity where flow regimes have been
altered.

e Aspen and most willow species have high vegetative regenerative capacity
following disturbance (fires, floods), which contributes to adaptive capacity.
However, the ability to persist depends on site conditions, particularly soil
moisture and depth to water table.
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Box 7.1 (continued)
Herbaceous—

» Native, herbaceous wetland species have high soil moisture requirements.
When water table elevations decline and soil moisture conditions become
more limiting, these species are no longer competitive against more drought-
tolerant species, and have limited adaptive capacity.

e Common, dominant native species (e.g., Carex aquatilis) can occur over a
fairly wide range of soil moisture conditions, as well as grazing pressure and
have some adaptive capacity. Less is known about the adaptive capacity of
many native wetland sedge and forb species, but most occur within narrow
ranges of soil saturation/soil moisture conditions. Where these conditions are
not met, sensitive and uncommon herbaceous species will not persist.

Vulnerable geographic locations
Cottonwood, willow, and aspen—

»  Cottonwood gallery forests along low-gradient river segments are extremely
vulnerable, particularly in floodplains with flow diversions or groundwater
pumping. More isolated stands along higher gradient stream segments are
less vulnerable, but still require components of the natural flow regime for
long-term persistence.

*  Most willow stands at lower elevations along low-gradient stream segments
have been affected by floodplain land use and are highly vulnerable. At
higher elevations and along smaller streams, willow stands may be less vul-
nerable. However, willow stands may be comprised of two to eight species,
and the requirements for establishment, growth, and persistence are largely
unknown for some species. Willow stands may persist, but some species
may not survive locally.

* Riparian aspen stands along low-gradient river segments are extremely
vulnerable, particularly in floodplains with flow diversions or groundwa-
ter pumping. Some isolated aspen stands in uplands environments may be
largely dependent on groundwater, so vulnerability depends on underlying
lithology.

Herbaceous—

*  The most vulnerable herbaceous communities are those that have already
been extensively affected by grazing and other land and water uses.

»  Alpine and subalpine herbaceous communities are highly vulnerable owing
to decreases in amount and persistence of snow.

*  Herbaceous communities at mid elevations will experience shifts in commu-
nity composition, with increased cover of nonnatives and loss of uncommon
or sensitive species, but will likely persist.
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Box 7.1 (continued)

Risk assessment
Potential magnitude of climate change effects

Cottonwood-dominated riparian communities: high magnitude of effects
along major rivers, given that cottonwood forests are currently affected and
declining in many locations.

Willow-dominated riparian communities: moderate-high magnitude of
effects for some species and communities. Highest risks are for communi-
ties located along stream segments already affected by grazing and flow
alteration.

Wetland and riparian aspen communities: high magnitude of effects, because
many aspen populations are known to be declining.

Herbaceous-dominated riparian and wetland communities: moderate magni-
tude of effects for communities; high magnitude of effects for rare and sensi-
tive species that will not be competitive in drier environments.

Likelihood of climate change effects

Cottonwood-dominated riparian communities: high likelihood of effects for
cottonwood communities located along larger floodplains.

Wetland and riparian aspen communities: high likelihood of effects given
current (declining) condition.

Willow-dominated riparian communities: high likelihood of effects given
predictions of changes in streamflow, increases in air temperature and
higher frequency and severity of droughts, increased human demands for
water.

Herbaceous-dominated riparian and wetland communities: moderate like-
lihood of effects given predictions of changes in streamflow and higher
frequency and severity of droughts, increased human demands for water and
other resource use.
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Box 7.2—Summary of climate change effects on
groundwater-dependent ecosystems (GDESs) in the
Blue Mountains

Broad-scale climate change effects

e Higher air temperature

e Higher frequency and severity of droughts

e Higher groundwater temperature

«  Decreased snowpack, especially at lower elevations

* Possible changes in groundwater recharge quantity and levels

Habitat and systems

e Springs and associated wetlands and fens, hyporheic zones, groundwater
contribution to streamflow (baseflow)

Current condition, existing stressors
Current condition:

e Numerous springs developed for watering livestock

e GDEs used by livestock, and native ungulates (source of water and forage)
Stressors:

e Continued water development

e Grazing, browsing, and trampling by livestock and native ungulates

Sensitivity to climatic variability and change

e GDEs (springs, wetlands) and stream baseflows are supported by groundwa-
ter recharge from rain and annual snowpack, especially in more permeable
lithologies

e GDEs may contract in size or dry out in summer

e Increased air and water temperatures and drought will stress moisture-
dependent flora and fauna

o Small aquifer systems are generally more vulnerable than larger systems

e Groundwater resources may be less sensitive to climate change than surface
water, depending on local and regional geology, and surrounding land and
water use
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Box 7.2 (continued)

Expected effects of climate change

Reduced groundwater discharge to GDEs

Reduced areas of saturated soil

Perennial springs may become ephemeral

Ephemeral springs may disappear, except during high-snow years

For springs discharging to streams, local cooling influence on stream tem-
perature may be reduced

Increased stress from effects of grazing
Shifts in aquatic flora and fauna communities
Higher groundwater temperatures

“Gaining” reaches of streams may contribute less or become “losing”
reaches

Adaptive capacity

Because GDEs and the biota they support depend on continued availability
and volume of groundwater, they have limited adaptive capacity.

Current information about the role of groundwater on water budgets at dif-
ferent scales is very limited for wildland watersheds. Although ongoing
research may reveal adaptive capacity in some locations, current information
suggests that groundwater resources are declining.

Vulnerable geographic locations

Vulnerability largely depends on elevation and underlying lithology, which
influence the storage and movement of groundwater.

GDEs located at higher elevations are likely the most vulnerable, given
predicted changes in snowpack volume and persistence. As snowpacks
decrease, less water will infiltrate into subsurface aquifers, and the amount
of groundwater discharge will decrease. High-elevation springs and other
GDEs may be the first to become ephemeral, dry out, and eventually
disappear.

GDEs located at mid elevations may be the least vulnerable, depending on
underlying geology and water demands. GDEs may persist in lithologies that
support large aquifer systems.

GDEs located at lower elevations, including many rheocrene springs or
springbrooks, are extremely vulnerable to increasing water demands, pres-
sure for increased diversion or water development, and other watershed-scale
land use effects.
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Box 7.1 (continued)

Risk assessment
Potential magnitude of climate change effects

» High magnitude of effects for GDEs, especially those located at higher
elevations or occurring where underlying geology only supports small shal-
low aquifer systems.

Likelihood of climate change effects

*  Moderate likelihood of some GDEs disappearing by 2050, but groundwater
research and modeling are needed to identify most vulnerable aquifers and
GDEs.

and direction of change, which depend on the physical watershed and stream
channel conditions, past and present land use, and the reliability of climate-change
predictions for a given area.

Definitions
Riparian Areas

Riparian areas have been ecologically defined as “three-dimensional zones of direct
physical and biotic interactions between terrestrial and aquatic ecosystems, with
boundaries extending outward to the limits of flooding and upward into the canopy
of streamside vegetation” (Gregory et al. 1991). The first dimension of riparian
areas is the longitudinal continuum from headwaters to the mouths of streams and
rivers and ultimately the oceans (Vannote et al. 1980). The second is the vertical
dimension that extends upward into the vegetation canopy and downward into the
subsurface and includes hyporheic and belowground interactions for the length of
the stream-riparian corridor (Stanford and Ward 1988, 1993). The third dimension
is lateral, extending to the limits of flooding on either side of the stream or river
(Stanford and Ward 1993). The dynamic spatial and temporal extent of each of these
three dimensions depends on the watershed hydrologic regime, location within the
stream network of the watershed (elevation, connectivity), and watershed physical
characteristics and geomorphic processes, which in turn influence floodplain water
availability and the distribution of different riparian communities. These physical
characteristics and processes largely regulate the structure and function of riparian
ecosystems (Gregory et al. 1991, Naiman and Décamps 1997, Naiman et al. 2005).
In the Blue Mountains, riparian ecosystems occur along low-gradient, U- and
trough-shaped glacial valleys in alpine, high-elevation sites; along steep-gradient,
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low-order headwater streams; along montane channels flowing through segments of
varying valley width; and along low-gradient, alluvial rivers in the wider reaches of
the Grande Ronde and the John Day Rivers and their tributaries (Crowe and Claus-
nitzer 1997, Johnson 2004, Wells 2006). The diversity of stream sizes, landforms,
valley widths and gradients, and hydrologic regimes determine the types of biotic
communities that occur along streams in a given region; each of these communities
could have distinct responses to changing climate.

To assist in managing riparian areas, numerous administrative definitions and
various terms have been developed (USDA FS 2012c¢). In the Blue Mountains,
riparian areas, wetlands, and intermittent streams are included within Riparian
Habitat Conservation Areas (RHCAS), which specify minimum buffers from
each side of the channel or stream edge: intermittent streams (15 m), wetlands and

non-fish-bearing perennial streams (46 m), and fish-bearing streams (91 m). Active Wetlands can be

management within these buffers must comply with a number of riparian manage- extremely diverse,
ment objectives designed to improve habitat conditions for fish species that have exhibiting a wide
been federally listed as threatened or endangered under the Endangered Species range of vegetation,
Act (USDA FS 1995). Along many stream segments, the dimensions of the riparian soil, and hydrologic
buffers differ from the ecologically defined riparian area described above. characteristics.
Wetlands

Numerous definitions for wetlands have been developed for a range of administra-
tive, academic, and regulatory delineation purposes (National Research Council
1995). For all federal regulatory activities, wetlands are ecosystems “that are
inundated or saturated by surface or groundwater at a frequency and duration
sufficient to support, and that under normal circumstances do support, a preva-
lence of vegetation typically adapted for life in saturated soil conditions” (Federal
Interagency Committee for Wetland Delineation 1989). Wetlands can be extremely
diverse, exhibiting a wide range of vegetation, soil, and hydrologic characteristics
(Cowardin et al. 1979, National Research Council 1995). However, all definitions
emphasize hydrologic variables, particularly duration, seasonality, and depth of
inundation and soil saturation, that result in distinctive hydric soils and wetland
vegetation.

For the Blue Mountains, the Oregon Wetlands Geodatabase provides a sum-
mary map of wetlands (figs. 7.1 through 7.3), color-coded by wetland type, as clas-
sified by the U.S. Fish and Wildlife Service (http://oregonexplorer.info/wetlands/
DataCollections/GeospatialData_Wetlands) (Cowardin et al. 1979). The maps were
compiled from existing National Wetlands Inventory data and many additional
sources, including local surveys and academic studies. Three broad categories of
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wetlands occur in the Blue Mountains: palustrine, lacustrine, and riverine (Cowar-
din et al. 1979). Palustrine wetlands are freshwater wetlands that include marshes,
wet meadows, and forested wetlands, and may be dominated by trees, shrubs, or
emergent vegetation. Some palustrine wetlands may be associated with streams,
particularly in headwaters, whereas many are isolated, occurring in basins, depres-
sions, or wet meadows. Lacustrine wetlands border lake shores. Riverine wetlands
are associated with streams and rivers, and occur along stream channels.

In this database, most riparian areas are treated as riverine wetlands (figs.

7.1 through 7.3), demonstrating the overlap in definitions of riparian areas and
wetlands. This designation may result in an overestimate of wetland area, because
some riparian areas may not qualify as jurisdictional wetlands (Federal Interagency
Committee for Wetland Delineation 1989), but it does provide a basis for manage-
ment, because all wetland and riparian areas in national forests in the Blue Moun-
tains are managed as RHCAs (USDA FS 2012c). The mapped wetlands (shown

in figs. 7.1 through 7.3) illustrate the extent and diversity of these resources in the
three national forests of the Blue Mountains.

Although the Oregon Wetlands Geodatabase is an excellent resource for
national forests in Oregon, it covers only wetlands that occur within the state’s
boundaries. The portion of the Umatilla National Forest in Washington is therefore
excluded, as well as the small portion of the Wallowa-Whitman National Forest
along the Snake River in Idaho. Wetland databases are not available for Washington
and Idaho.

Groundwater-Dependent Ecosystems

Groundwater is broadly defined as *“all water below the ground surface, including
water in the saturated and unsaturated zones” (USDA FS 2012c). Groundwater-
dependent ecosystems are “communities of plants, animals and other organisms
whose extent and life processes are dependent on access to or discharge of ground-
water” (USDA FS 2012a, 2012b), which can greatly contribute to local and regional
biodiversity (Murray et al. 2006). The GDEs occur at aquifer discharge locations,
such as springs, rheic, lentic or alluvial systems (Aldous et al. 2015), which are also
referred to as surface/terrestrial GDEs (Bertrand et al. 2012, Goldscheider et al.
2006). Many wetlands, lakes, streams, and rivers receive inflow from groundwater,
which can contribute substantially to maintenance of water levels, as well as water
temperature and chemistry required by native biota (Lawrence et al. 2014, Winter
2007).
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Along stream segments referred to as “gaining reaches,” groundwater enters the
stream from the banks or the channel bed, and the volume of downstream stream-
flow is subsequently increased (Winter 2007, Winter et al. 1996). Groundwater
can contribute substantially to late-summer streamflow (Gannett 1984) and is the
source for cool-water upwellings that serve as refugia for coldwater aquatic spe-
cies (Lawrence et al. 2014; Torgersen et al. 1999, 2012). Springbrooks, defined as
“runout channels from springs, which may become a stream at some distance from
the spring source” (USDA 2012a), may also contribute to the mediation of stream
temperature. Groundwater is important to stream and river ecosystems in the
John Day River basin (Gannett 1984) and most watersheds in northeastern Oregon
(Brown et al. 2009).

In the Blue Mountains, GDEs include springs, springbrooks, certain high-
elevation lakes, fens, streams, rivers (Brown et al. 2009, 2010), and riparian wet-
lands along gaining river reaches, all of which may provide habitat for rare flora
and fauna. Fens are wetlands supported primarily by groundwater with a minimum
depth (usually 30 to 40 cm) of accumulated peat (Chadde et al. 1998; USDA FS
2012a, 2012c). Springs are entirely supported by groundwater.

Five types of GDEs have been sampled in the Blue Mountains: helocrene, hill-
slope, hypocrene, mound, and rheocrene (USDA FS 2012a, 2012b; modified from
Springer and Stevens 2009). Helocrene springs emerge diffusely from low-gradient
wetlands, often discharging from indistinct or multiple sources. Hillslope GDEs
are springs or fens located on hillslopes, usually on 20- to 60-degree slopes, often
with indistinct or multiple sources of groundwater. Springs associated with mounds
actually emerge near the top of elevated surfaces, i.e., mounds composed of peat or
mineralized carbonate, and may be located within fens or wetland complexes near
subsurface faults. Rheocrene springs emerge directly into stream channels, and are
also referred to as springbrooks or spring runs. Other types of GDES may occur in
the Blue Mountains but have not yet been described or inventoried.

Dependence of Special Habitats on Different Water
Sources

In contrast to surrounding upland ecosystems, the occurrence and characteristics of
riparian areas, wetlands, and GDEs depend on the availability of abundant water.
The fundamental hydrologic processes that influence these special habitats are

(1) the amount, timing, and type of precipitation (rain or snow); (2) streamflow
variables described by magnitude, frequency, timing, duration, and rate of change
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(Nilsson and Svedmark 2002) and other characteristics of surface water runoff;
(3) groundwater recharge; (4) groundwater discharge; and (5) evapotranspiration
(Lins 1997).

Because precipitation is the ultimate source of water and directly influences
streamflow characteristics and groundwater dynamics, it is expected that climate-
induced changes in precipitation will affect riparian areas, wetlands, and GDEs.
The availability of water to riparian areas, wetlands, or GDEs is also influenced
by physical watershed characteristics that affect infiltration and surface and hill-
slope runoff, including lithology, soil depth, and topography (Jencso et al. 2009).
However, determining how climate-induced changes in hydrologic sources and
processes will affect special habitats is complex and has not been directly studied
in watersheds of the Blue Mountains. Here we draw on research that has been
conducted in other locations in the Western United States with similar plant species
or communities and infer potential climate-induced changes in riparian and wetland
vegetation in northeast Oregon and southeast Washington.

Riparian ecosystems depend on the presence of flowing water, although
streamflow may not be perennial along all stream segments and can vary con-
siderably with season, physical features of the watershed, and water source. The
volume of streamflow largely regulates the transport and deposition of sediment,
influencing the creation and erosion of streambanks; floodplains; point bars; and
meandering, braided, and abandoned channels. Depending on the physical char-
acteristics of a given stream segment, the volume of streamflow can also drive the
seasonal changes in water table elevation of the adjacent riparian area (Jencso et al.
2011). These hydrologic and fluvial processes and resulting geomorphic surfaces
are essential for the establishment, development, and persistence of riparian vegeta-
tion, and strongly influence the local distribution of different plant species and
communities (Naiman et al. 2005). Based on long-term daily flow data (from U.S.
Geological Survey stream gauging stations), different streams in the Blue Moun-
tains have been characterized as supported by perennial runoff, snow plus rain, and
super-stable groundwater (Poff 1996).

As noted above, streamflow volume along gaining reaches increases with the
inflow of groundwater to the channel. Stream water can also drain from the channel
bed and banks to the groundwater system, resulting in a loss of downstream surface
flow volume (Winter et al. 1996); these stream segments are referred to as “losing
reaches.” The extent and location of hyporheic and groundwater exchange along a
channel segment is influenced by valley bottom features, including width, gradient,
substrate size, and depth to bedrock, and can determine whether a reach is gaining
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or losing (Winter et al. 1996). Gaining and losing stream reaches result in different
aquatic communities in the channels and different riparian plant communities on
the floodplains. The extent to which specific reaches are gaining or losing may
change in response to climate-induced changes in precipitation, streamflow charac-
teristics, and groundwater discharge.

Wetlands can be supported by surface water, groundwater, and precipitation,
or frequently by combinations of these sources that differ seasonally (Goslee et
al. 1997, Winter 2001). Fens are primarily supported by springs or local aquifers
and can maintain fairly stable water table elevations despite changes in timing and
amounts of precipitation (Winter 1999). Other wetlands with different or multiple
water sources will likely respond differently to climate-induced changes and vari-
ability (Winter 1999).

In wetlands and riparian ecosystems worldwide, hydrologic variables are
consistently the strongest predictors of plant species distributions (Cooper and
Merritt 2012, Franz and Bazzazz 1977, Lessen et al. 1999, Merritt and Cooper 2000,
Shipley et al. 1991). Ordination and other analyses repeatedly show that riparian
and wetland species and vegetation communities are distributed along gradients
(usually elevational or microtopographic) relating to streamflow duration (Auble
et al. 1994, 1998, 2005; Franz and Bazzazz 1977; Friedman et al. 2006); growing-
season streamflow volume (Stromberg 1993); depth, duration, or timing of flooding
(Richter and Richter 2000, Toner and Keddy 1997); inundation duration (Auble et
al. 1994, Franz and Bazzazz 1977, Friedman et al 2006); and water table elevation
or depth to groundwater (Busch and Smith 1995, Castelli et al. 2000, Cooper et al.
1999, Dwire et al. 2006, Rains et al. 2004, Scott et al. 1999). In wetlands, variables
related to water table elevation and hydroperiod are the primary determinants of
plant species distributions (Goslee et al. 1997, Magee and Kentula 2005, Weiher and
Keddy 1995).

Current understanding of the water sources used by riparian/wetland plants
is limited to a few indicator, keystone, and either highly valued or highly invasive
species (mostly woody) (Cooper and Merritt 2012). However, it has been shown that
riparian/wetland plant species use water from multiple sources (surface water, soil
water, groundwater), depending on life stage and season (Busch and Smith 1995,
Cooper et al. 1999, Goslee et al. 1997). In assessing the vulnerability of riparian/
wetland species to climate-induced changes in streamflow or groundwater, the
availability of water at all life stages must be considered, from plant recruitment
and establishment, to reproducing adults, to persistence at later life stages (Cooper
and Merritt 2012).
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Lack of scientific information makes it difficult to directly infer climate change
effects on riparian vegetation or to describe physical mechanisms regulating water
availability to special habitats in the Blue Mountains. However, based on research
from other locations, we assume that climate-induced changes in precipitation
and streamflow will exert influences on the distribution of riparian vegetation via
changes in local hydrologic regimes. Summer baseflows are predicted to decrease
(Cayan et al. 2001, Luce and Holden 2009). If riparian water table elevation can be
assumed to be in equilibrium with water levels in the stream, reduced baseflows
could result in lower riparian water table elevations and subsequent drying of some
streamside areas, particularly in wider valley bottoms. Increasing air temperature
will result in increased evapotranspiration across the landscape, could reduce the
hydrologic connectivity between uplands and riparian areas (Jencso et al. 2009,
2011), and subsequently could contribute to the drying of some streamside areas.
Dominant wetland/riparian plant communities will respond to climate-induced
changes in hydrologic variables differently owing to differences in their species
composition (Merritt et al. 2010, Weltzin et al. 2000).

Current Resource Conditions

The Blue Mountains have a rich diversity of riparian and wetland plant associations
and community types at mid-montane elevations (Crowe and Clausnitzer 1997) and
at higher elevations and within deep canyons (box 7.3) (Johnson 2004, Wells 2006).
Several quaking aspen (Populus tremuloides Michx.) communities and associa-
tions, which occur in upland locations as well as wetlands and riparian areas, have
also been classified for the Blue Mountains (Swanson et al. 2010). Riparian and
wetland aspen communities are highly valued throughout the Blue Mountains and
are included here as special habitats.

Past land use and management activities have affected riparian and aquatic
resources, but in different ways and to different extents, depending on valley set-
ting, location within the watershed, and land use (Dwire et al 1999; Kauffman et al.
2004; Magee et al. 2008; McAllister 2008; Mcintosh et al. 1994a, 1994b; Parks et
al. 2005; Ringold et al. 2008). Streams, wetlands, and associated plant communities
are possibly the most heavily impacted ecosystems in the Blue Mountains. In many
cases, the effects of past land use and management activities may be considerably
greater than the anticipated gradual influence of climate change. However, for these
altered ecosystems, climate-induced changes will exert additional stress, possibly
resulting in further degradation. In this section, we briefly describe the current
condition of different riparian and wetland vegetation types and how they have been
affected by past land use and management activities.
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Box 7.3—Deep river canyons and climate change:
the lower Snake River and its tributaries

The lower Snake River runs along the Idaho and Oregon state line and forms the
deepest river gorge in North America, commonly referred to as Hells Canyon. From
Hells Canyon Dam, one of three dams in the Hells Canyon Project, the river winds its
way for 114 km to the northern boundary of Hells Canyon National Recreation Area
(HCNRA), managed by Wallowa-Whitman National Forest. With river elevations of
512 m at the dam to 263 m at the northern boundary of HCNRA, this river canyon
provides the warmest and driest environments in the Blue Mountains national forests.

The vegetation of the canyon is characterized by extensive bluebunch wheatgrass
(Pseudoroegneria spicata [Pursh] A. Love) and Idaho fescue (Festuca idahoensis
Elmer) grasslands, with stringers of conifer forests at cooler aspects and higher eleva-
tion. Riparian communities are often confined to narrow strips along river corridors
and moisture gradients are steep. The floodplains, rocky bars and terraces at eleva-
tions below 700 m support a number of unique riparian plant communities character-
ized by black cottonwood, white alder, netleaf hackberry (Celtis reticula [Torr.] L.D.
Benson), and Barton’s raspberry (Rubus bartonianus M. Peck), a narrow endemic
shrub species of Hells Canyon and surrounding canyonlands (Wells 2006).

With the settlement of the canyon in the early 19" century came the introduction
of many nonnative plant species, including tree of heaven (Ailanthus altissima [Mill ]
Swingle), false indigobush (Amorpha fruticosa L.), and Himalayan blackberry (Rubus
armeniacus Focke). The spread of Himalayan blackberry is of particular concern for
the endemic Barton’s raspberry, because Himalayan blackberry is able to occupy
the same habitats but is a better competitor (Ferriel and Ferriel 2010).l Native Rubus
species are restricted by drought conditions during summer, whereas Himalayan
blackberry can store more water and achieves high growth and reproductive rates
(Caplan and Yeakley 2010). Canes can grow up to 10 m long and produce over 700
fruits annually (Pojar and MacKinnon 1994). In Hells Canyon, Himalayan blackberry
retains its leaves over winter, giving it an additional competitive edge over many
native species.

Fire exclusion has affected Hells Canyon, with steep terrain and fast fire spread
in dry canyon grasslands, less than other areas in the Blue Mountains. From 1980
to 2013, over 70 percent of all grass and shrublands of the HCNRA were within one
or more mapped fire perimeters (S. Mellman-Brown, unpublished data on file at
Wallowa-Whitman National Forest, Baker, OR). Many of these fires burned through
riparian zones and replaced existing shrub and forest vegetation with early seral
species. Himalayan blackberry, which resprouts readily from its root crown after fire,
had covers of 80 percent near Pittsburg Creek one year after fire, an increase of 30
percent compared to measurements one decade earlier. On other sites, white alder
(Alnus rhombifolis) Nutt., a tree with poor postfire sprouting abilities, appeared to
be replaced by blackberry thickets after high-severity fire. Increasing fire frequen-
cies with climate change will promote fire-adapted species like tree of heaven and
Himalayan blackberry, potentially creating widespread novel plant communities with
few native elements.

Warming climate with increasing fire frequencies may also facilitate the
invasion and dominance of tamarisk in Hells Canyon (Kerns et al. 2009). Major
population centers for tamarisk (Tamarix spp.) in the northwestern United States are
the warmest and driest environments of the northern Basin and Range, Columbia
Plateau, and central Snake River Plateau. Tamarisk is currently absent from the
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Box 7.3 (continued)

HCNRA, but large populations exist nearby at Farewell Bend and with lower
frequency along the Brownlee Reservoir. Large areas in the lower Snake River and
upper John Day River drainages are also vulnerable to invasion by tamarisk (Kerns
et al. 2009). Habitat suitability modeling by Kerns et al. (2009) suggests that tamarisk
habitat will expand in the Northwest by the end of this century, which could dramati-
cally change the composition and structure of many riparian corridors in the Blue
Mountains.

L Ferriel, J.; Ferriel, R. 2010. Rubus bartonianus status review for Wallowa-
Whitman National Forest, and Baker Resource Area, Vale District. Unpublished
report on file with: USDA, Forest Service; USDI Bureau of Land Management.
Baker City, OR. 10 p.

Riparian Areas

We utilize existing vegetation classifications to highlight the diversity and com-
plexity of riparian areas in the Blue Mountains, and as a basis for discussing how
different vegetation types might respond to climate-induced changes. We present
information for distinct riparian/wetland potential vegetation types (PVTs), and
potential vegetation groups (PVGs) that have been described for the Blue Mountains
(Crowe and Clausnitzer 1997, Powell et al. 2007, Swanson et al. 2010, Wells 2006).
These groupings are hierarchical, aggregated from fine-scale units to mid-scale
units, and are explained in detail in Powell et al. (2007). Potential vegetation types
are fine-scale hierarchical classification units that include plant associations and
plant community types (Powell et al. 2007). They are aggregated into mid-scale
plant association groups (PAGS) representing similar ecological environments as
characterized by temperature and moisture regimes (Powell et al. 2007). The PAGs
are then aggregated into PVGs with similar environmental regimes and dominant
plant species; each PVG typically includes PAGs representing a predominant
temperature or moisture influence (Powell 2000, Powell et al. 2007).

Potential vegetation describes the plant species composition occurring under
existing climatic conditions and in the absence of disturbance (Powell et al. 2007),
implies some knowledge of successional pathways, and is most useful for well-stud-
ied upland vegetation. However, riparian environments can be subject to frequent
and unpredictable disturbances with a range of possible, but largely unstudied,
successional trajectories. Plant associations and community types are interspersed
along stream-riparian corridors as a mosaic, sometimes co-occurring over short
stream lengths, responding to valley bottom width, geomorphic surfaces, and local
differences in hydrologic variables (Naiman et al. 2005). Although successional

Riparian environments

can be subject

to frequent and
unpredictable
disturbances with a

range of possible, but

largely unstudied,
successional
trajectories.
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pathways cannot be reliably determined for these riparian classifications, the plant
community/association descriptions provide detailed floristic information and a
basis for assessing both current conditions and future changes in species composi-
tion in response to management, natural disturbance, and climate-induced changes.
Below, we discuss broad riparian vegetation types and note the number of PAGs
and PV Ts and other groupings that have been classified for each.

Conifer-dominated riparian areas—

Many kilometers of streams in the Blue Mountains are bordered by conifer-domi-
nated riparian communities. Conifer-dominated riparian areas are valued for main-
tenance of riparian microclimates, wildlife habitat, and a source of large wood for
streams (table 7.1). Powell et al. (2007) describe a “cold riparian forest” PVG that
includes three PAGs and 25 PVTs for conifer-dominated riparian areas. Depending
on the PAG, dominant conifer species are subalpine fir (Abies lasiocarpa [Hook ]
Nutt.), Engelmann spruce (Picea engelmannii Parry ex Engelm.), or lodgepole

pine (Pinus contorta var. latifolia Engelm. ex S. Watson). The “warm riparian for-
est” PVG includes two PAGs with seven PVTs dominated by either Douglas-fir
(Pseudotsuga menziesii [Mirb.] Franco) or grand fir (A. grandis [Douglas ex D.
Don] Lindl.), and one PVT by western white pine (Pinus monticola Douglas ex D.
Don). These conifer-dominated riparian vegetation types typically occur at high to
moderate elevations, mostly along first- and second-order streams, and mostly in
moderately to highly confined valley bottoms. Although several other PV Ts have
high cover of ponderosa pine (P. ponderosa Douglas ex P. Lawson & C. Lawson),
grand fir, or Douglas-fir, they occur at lower elevations and are not consistently sur-
rounded by conifer-dominated uplands (Powell et al. 2007).

Conifer-dominated riparian vegetation types have been affected by past for-
est harvest, mining, grazing, road building, fire exclusion, and to a lesser extent,
invasive species (Wickman 1992) (table 7.2). Natural disturbances include wildfire,
infestations by forest insects and fungal pathogens, landslides, and debris flows
(Luce et al. 2012). In some locations at lower elevations, the ponderosa pine-
common snowberry (Symphoricarpos albus [L.] S.F. Blake) community may be
increasing in streamside areas previously dominated by deciduous woody species in
response to channel incision and decreasing riparian soil moisture (table 7.2).

Riparian and wetland aspen plant communities—

Stands of quaking aspen are an uncommon, valued habitat type throughout the Blue
Mountains region, and their sustainability has been a focus for management in up-
lands, riparian areas, and wetlands (Swanson et al. 2010). Classification of wetland
and riparian aspen communities for the Blue Mountains region showed the largest
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number of aspen community types (CT) were associated with herbaceous species in
meadows (eight CTs), followed by associations with common snowberry (four CTs)
and other tall shrubs (three CTs) in riparian areas (Swanson et al. 2010). One aspen
CT was associated with Engelmann spruce, and another with tall shrub wetland

types on slopes, likely occurring at points of groundwater emergence (Swanson et Black cottonwood is

al. 2010). a keystone riparian
Aspen CTs have been affected by fire suppression and herbivory by livestock species occurring

and native ungulates (Baker et al. 1997, Bartos and Campbell 1998, Shinneman et along a variety of

al. 2013). They are currently threatened by herbivory and conifer encroachment, valley types in the Blue

especially those occurring in meadows (Swanson et al. 2010) (table 7.2). Many Mountains.

stands are declining, without signs of regeneration, and are susceptible to a variety
of insects and fungal pathogens (Swanson et al. 2010). Most aspen stands are less
than 1 ha.

Cottonwood-dominated riparian areas—
Black cottonwood (Populus trichocarpa T. & G. ex Hook.) is a keystone riparian
species occurring along a variety of valley types in the Blue Mountains, ranging
from high-gradient, V-shaped valleys to moderately confined or open, low-gradient
valleys (Crowe and Clausnitzer 1997). Powell et al. (2007) classified a “warm ripar-
ian forest” PVG that includes three PAGs dominated by black cottonwood.

Cottonwood-dominated riparian areas were among the earliest settled in the
mid-1800s. Settlers quickly recognized the economic potential for raising livestock,
especially along the wider valley bottoms at mid to low elevations with abundant
forage and water resources (Dwire et al. 1999). The widespread decline of cot-
tonwood and willows (Salix spp.) has been widely attributed to land management
practices associated with livestock production (Beschta and Ripple 2005; MclIntosh
et al. 1994a, 1994b). Many floodplains formerly dominated by woody riparian
species, including portions of the John Day River and its tributaries, were converted
to cattle pastures and hay fields by modifying or relocating portions of the stream
channels, removing woody species, and planting with introduced grasses (Dwire
et al.1999). Other factors, such as use of cottonwood as a wood source, removal of
streamside woody plants as “phreatophyte control,” and hydrologic modification of
streams and rivers for agricultural production and irrigation have contributed to a
decrease in the distribution and abundance of deciduous riparian species, including
cottonwoods and aspen, willows, and alders (Alnus spp.).

Several cottonwood species have been shown to depend on flood frequency
and duration for recruitment and establishment (Mahoney and Rood 1998; Scott
et al. 1996, 1997). Although recruitment of black cottonwood has not been studied
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relative to streamflow characteristics, germination and seedling survival depend

on continuously moist conditions (http:/plants.usda.gov/plantguide/pdf/cs_pobat.
pdf), which are provided in part by high flows during spring runoff. Flow altera-
tion of streams and rivers in the Blue Mountains may possibly have reduced the
recruitment of new cottonwoods, thus contributing to the decline of existing stands.
Limited recruitment has also been attributed to grazing of young cottonwood plants
by livestock (Beschta and Ripple 2005) (table 7.2).

Willow-dominated riparian areas—

Willow-dominated riparian areas are found across elevation ranges, but are most
extensive at mid to lower elevations. Willows provide numerous valued ecological
functions, including shade and organic matter for streams, increased bank stability
and sediment retention, and wildlife habitat for many resident and migratory ver-
tebrate species, such as Neotropical migratory birds (Kauffman et al. 2001, Kelsey
and West 1998) (table 7.1). Willow-dominated riparian areas also maintain water
quality through trapping sediment and pollutants from upslope and upstream ar-
eas, thus reducing the volume or concentrations delivered to streams (Johnson and
Buffler 2008).

Potential vegetation analysis for willow-dominated riparian areas of the Blue
Mountains region resulted in the classification of a “cold riparian shrub” PVG
that includes four PAGs and 10 PVTs (Powell et al. 2007). The cold riparian shrub
PVG occurs at higher elevations or along channels with frequent cold air drainage
at lower elevations (Crowe and Clausnitzer 1997). The dominant willow species
include Booth’s willow (Salix boothii Dorn), undergreen willow (S. commutata
Bebb.), and Drummond’s willow (S. drummondiana Barratt). The “warm riparian
shrub” PVG includes three PAGs with eight PVTs dominated by willow species
that generally occur in moderately confined or open valley bottoms, including
unconfined and glaciated valleys with low slopes (less than 3 percent) in montane
and subalpine settings (Powell et al. 2007). These warm riparian shrub PV Ts are
also referred to as the “alluvial bar” willow group, because they frequently occur
on coarse-textured sands, gravel, and cobble bars. They are generally dominated
by sandbar willow (S. exigua Nutt.), dusk willow (S. melanopsis Nutt.), and Pacific
willow (S. lasiandra Benth.) (Powell et al. 2007).

In many streams throughout North America, the historical removal of Ameri-
can beaver (Castor canadensis Kuhl) has influenced the geomorphic and hydrologic
characteristics of stream channels (Wohl 2001) as well as the distribution of woody
riparian species, especially willows (Naiman et al. 1988). Dam building by beaver
modifies local hydrology, thus expanding wetland area and contributing to retention
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of sediment and organic matter (Butler and Malanson 1995; Meentemeyer and
Butler 1999; Westbrook et al. 2006, 2011). Willows are a preferred source of food
and dam-building material for beaver and readily establish along the edges of
beaver ponds and beaver-influenced stream reaches. In the Blue Mountains, the
removal of beaver likely contributed to the reduction of willow-dominated riparian
areas and abundance of aspen (Kay 1994, McAllister 2008, Swanson et al. 2010).
Beavers and functioning beaver dams are still infrequent in the Blue Mountains
(Swanson et al. 2010).

Willow-dominated riparian areas have been heavily affected by livestock use,
including direct effects of grazing and browsing. Livestock grazing reduces cover
and stem density of adult plants (Brookshire et al. 2002), and in many areas, has
eliminated seedlings and saplings, thus reducing establishment of new plants. Elk
(Cervus elaphus L.) utilize willows throughout the year (Singer et al. 1994, Zeigen-
fuss et al. 2002), and in floodplains with combined herbivory pressure from both
livestock and native ungulates, willows can be highly affected. Flow alteration has
also affected willow-dominated riparian areas; downstream of diversions, species
composition tends to consist of more drought-tolerant species (Caskey et al. 2014).

Other woody-dominated riparian areas (deciduous shrubs and trees)—
Geographic location, complex geology, and highly variable channel forms create

a rich floristic diversity of woody riparian species in the Blue Mountains. Powell
et al. (2007) describe a “warm riparian forest” with seven red alder (Alnus rubra
Bong.) -dominated and two white alder (A. rhombifolia Nutt.) -dominated PVTs. In
drier riparian areas, classified as “low soil moisture riparian shrub,” 16 additional
PVTs are described, dominated by 13 different shrub species that occur across a
range of valley bottom types, including steep canyons. In a “warm riparian shrub”
PVG, they describe the following PVTs, dominated by different riparian woody
species:

e Mountain alder (A. viridis subsp. crispa [Chaix] DC.) (16 PVTs)

o Sitka alder (A. v. subsp. sinuata [Chaix] DC.) (3 PVTs)

»  Water birch (Betula occidentalis Hook.) (3 PVTs)

* Red-osier dogwood (Cornus sericea L.) (3 PVTs)

e Currant (Ribes spp.) (3 PVTs)

» Twinberry (Lonicera involucrata [Richardson] Banks ex Spreng.) (1 PVT)
e Shrubby cinquefoil (Dasiophora fruticosa [L.] Rydb.) (1 PVT)

e Alderleaf buckthorn (Rhamnus alnifolia L’Hér.) (1 PVT)

In some locations, certain woody riparian plant associations are likely the result
of land use, particularly hydrologic modification that has caused the conversion
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of willow-dominated areas to communities dominated by more dry-tolerant shrub
species, such as shrubby cinquefoil, currant, and common snowberry. Woody-
dominated riparian areas, including those with cottonwood, willow, and aspen, have
also been affected by livestock grazing, herbivory pressure from native ungulates,
and conversion to pastures and other agricultural uses (table 7.2).

Herbaceous-dominated riparian areas—

Several herbaceous-dominated riparian and wetland plant associations have been
identified in the Blue Mountains, reflecting both environmental conditions and

past land use. Herbaceous-dominated riparian and wetland communities occur
over a wide elevation range from alpine to lower montane environments. Crowe
and Clausnitzer (1997) identified 11 herbaceous plant associations and 17 plant CTs
located in meadows, most of which were dominated by different sedge (Carex,
Eleocharis, and other genera) species. In addition, they described seven herbaceous
plant associations and six plant CTs that occurred along shaded streams or springs
(GDEs). Herbaceous-dominated riparian areas occur most commonly in moderately
confined to wide valley bottoms, usually along low-gradient stream segments.

At mid elevations, herbaceous-dominated meadows have been affected by
heavy elk grazing. At nearly all elevations, meadows have also been affected by
livestock use (Kauffman et al. 2004), with lasting impacts in many areas (Skovlin
and Thomas 1995). At lower elevations, changes in species composition, density,
and cover have resulted from either the complete or partial conversion of natural
meadows to pasture along some floodplains. As with willow-dominated com-
munities, hydrologic modifications, including water diversions and construction of
ditches, and stream modifications (e.g., relocation or alteration of natural channels)
have influenced channel characteristics, seasonal water supply and water table
elevations (Mclntosh et al. 1994a, 1994b). In riparian meadows, the distribution of
herbaceous species is largely determined by seasonal water table elevation (Castelli
et al. 2000, Dwire et al. 2006, Loheide and Gorelick 2007), which can be influenced
by patterns of streamflow runoff. In many meadows, a combination of hydrologic
alteration and livestock grazing has resulted in drier conditions and increased
dominance by nonnative grasses and grazing-tolerant native species (Johnson et al.
1994) (table 7.2).

Subalpine and alpine riparian areas and wetlands—
Wells (2006) described 13 wetland alpine/subalpine plant associations:

e Three are dominated by willow species and generally occur in low-
gradient, U-shaped glacial cirques, U- or trough-shaped glacial valleys,
and higher gradient glaciated valleys.
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Two low shrub associations are identified:

i. “Alpine laurel (Kalmia microphylla [Hook.] A. Heller)/black alpine
sedge (Carex nigricans C.A. Mey) plant association” that occurs in low-
gradient, U- and trough-shaped valleys, and

ii. “Pink mountainheath (Phyllodoce empetriformis [Sm.] D. Don) mounds
plant association” that occurs in the upper terminus of glacial valleys.

Four wet graminoid associations are described, all of which occur most

frequently in U-shaped, low-gradient valleys. They are dominated by the

following sedge species:

i. Water sedge (Carex aquatilis Wahlenb.),

ii. Northwest Territory sedge (C. utriculata Boott),

iii. Blister sedge (C. vesicaria L.), and

iv. Few-flower spikerush (Eleocharis quinqueflora [Hartmann] O.
Schwarz). The “few-flower spikerush plant association” is found in fens
(GDEs) near springs at high elevations (2067 to 2348 m) in the Eagle
Cap and Elkhorn Mountains.

Three moist graminoid associations are described, dominated by the fol-
lowing sedge species:

i. Holm’s Rocky Mountain sedge (C. scopulorum T. Holm),

ii. Woodrush sedge (C. luzulina Olney) and,

iii. Black alpine sedge (C. nigricans C.A. Mey)

A fourth moist graminoid plant association is a sedge-forb mix, most com-
monly associated with headwater springs in the Strawberry Mountains.
Referred to as the “northern singlespike sedge (C. scirpoidea Michx.)/brook
saxifrage (Micranthes odontoloma [Piper] A. Heller)-spring plant associa-
tion,” it is considered an indicator for GDEs (Wells 2006).

Although alpine wetlands and meadows have been affected by past livestock

grazing and ungulate browsing, they are typically in better condition than their

low-elevation counterparts.

PACFISH INFISH Biological Opinion Effectiveness Monitoring—

The PACFISH INFISH Biological Opinion (PIBO) Effectiveness Monitoring was
developed as a response to declining populations of steelhead trout (Oncorhynchus
mykiss Walbaum) and bull trout (Salvelinus confluentus Suckley) in the upper
Columbia River basin (http:/fsweb.r4.fs.fed.us/unit/nr/pibo/index.shtml). Its main
objective is to monitor biological and physical components of aquatic and ripar-
ian habitats (Meredith et al. 2011). As part of the Columbia River Basin Project,
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191 monitoring sites were established in randomly located watersheds across the
Blue Mountains. Sites have been designated as "reference” or "managed” and are
sampled on a 5-year rotation. Reference sites (18 of the 191) are located mostly in
wilderness areas at somewhat higher elevations and with more annual precipitation.
No reference sites are available for the Malheur National Forest, which complicates
comparisons between reference and managed sites in the Blue Mountains. However,
PIBO monitoring data are the primary source of quantitative information on the
condition of riparian areas occurring along “response reaches.”

PIBO monitoring provides a regional evaluation of the condition of riparian
vegetation for both reference and managed sites (Archer et al. 2012a°, Meredith et
al. 2011). At each site, plant species cover is sampled along the densely vegetated
streamside zone, or “greenline” (Winward 2000), and along cross-sectional tran-
sects established perpendicular to the channel or valley bottom. For each site,
“wetland ratings” are calculated based on relative abundance of wetland indicator
species (Coles-Ritchie et al. 2007). For Blue Mountain PIBO sites, the Wilcoxon
rank sum test was used to compare managed vs. reference sites, and the Wilcoxon
signed rank test was used for comparisons between measurement cycles.

Data from 2007 to 2011 showed lower total cover (p = 0.04) and woody cover
(including conifers; p = 0.01) along the greenline for managed sites compared to ref-
erence (fig. 7.4). Nonnative species cover, however, was significantly higher at man-
aged sites relative to reference sites (p < 0.001, fig. 7.4). A comparison of data from
2003 to 2006 to the later sampling cycle (2007-2011) showed no detectable change
in greenline total cover (p = 0.83), cross-section wetland rating (p = 0.30), and
native species richness (p = 0.79). Greenline woody cover appears to have increased
slightly at both managed and reference sites (p < 0.001 and p = 0.03, respectively)
while nonnative cover has decreased (managed sites p = 0.03, reference sites p =
0.002). There is evidence that wetland ratings along the greenline have decreased on
managed sites (p < 0.001). Definitive trends in vegetation and habitat quality will
likely take more than two 5-year sampling cycles to detect.

Invasive weed species occurred in 109 of 178 managed sites (61 percent), com-
pared to 8 of 18 reference sites (44 percent). The five most commonly encountered
invasive plant species for the Blue Mountains PIBO monitoring sites were Canada
thistle (Cirsium arvense [L.] Scop.), reed canarygrass (Phalaris arundinacea L.),

2 Archer, E.K.; Van Wagenen, A.R.; Coles-Ritchie, M. [et al.] [N.d.]. 2012a. Effective-
ness monitoring for streams and riparian areas: sampling protocol for vegetation param-
eters. Unpublished report. On file at: http://www:.fs.fed.us/biology/fishecology/emp.

(8 January 2015).
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oxeye daisy (Leucanthemum vulgare Lam.), tall buttercup (Ranunculus acris L.),
and bull thistle (Cirsium vulgare [Savi] Ten.), similar to findings for the entire
Columbia River basin (Archer et al. 2012b). Archer et al. (2012b) concluded that
invasive plant species are widespread across the interior Columbia River basin,
consistent with results reported by others (Magee et al. 2008, Ringold et al. 2008).
The continued spread of invasive species could contribute to future degradation of
riparian plant communities.

The continued spread
of invasive species
could contribute to
future degradation

of riparian plant

communities.

Wetlands

The number of wetlands in national forests of the Blue Mountains, as derived from
the Oregon Wetlands Geodatabase, is shown in table 7.3 (wetlands for the portion
of the Umatilla National Forest in Washington are not shown). Depending on the
national forest, 42 to 51 percent of the mapped wetlands are classified as “riverine”
or riparian wetlands associated with streams, indicating the overlap in definitions
of riparian areas and wetlands (table 7.3). Riverine wetlands account for the larg-
est area among all wetland types on the Wallowa-Whitman National Forest (table
7.3). Other important wetland types in the Blue Mountains are: palustrine wetlands
(freshwater wetlands including marshes and forested wetlands) and lacustrine
wetlands (bordering lake shores). In Malheur National Forest, palustrine wetlands
account for the largest area among all wetland types (table 7.4). The Oregon Wet-
lands Geodatabase also identified “potential fens” if a wetland, usually palustrine,
occurred near a spring (tables 7.3 and 7.4; figs. 7.1 and 7.3). All fens are GDEs,
defined and discussed in more detail below. In the National Wetlands Inventory
database, fens are frequently classified as a type of palustrine wetland, again
indicating overlap in definitions for riparian areas, wetlands, and GDEs. In the
Cowardin et al. (1979) system, fens typically fall into the Palustrine Emergent Class
(PEM) with a saturated water regime. However, because characterization based on
remotely sensed information is sometimes inaccurate, fens may remain undetected
or be classified as other wetland types (Aldous et al. 2015, Werstak et al. 2012).

Comparing riparian and wetland conditions—

The current condition of riparian and wetland ecosystems differs considerably
depending on location within the watershed, valley configuration, and past and
current land use. The riparian and wetland communities at low to mid elevations
have been the most altered by land use, including grazing, development of water
infrastructure (dams, diversions), road building along floodplains, and conversion of

floodplains to agricultural uses (Crowe and Clausnitzer 1997; Mclntosh et al. 1994a,
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Table 7.3—Number of springs (hamed and unnamed) and wetlands for the Malheur, Umatilla, and
Wallowa-Whitman National Forests®

Springs Wetlands
Potential
National forest Named Unnamed Total Palustrine Lacustrine Riverine  Total fens
Malheur 389 2,462 2,851 4,405 8 4,648 9,061 1,132
Umatilla 268 381 649 2,472 5 1,780 4,257 568
Wallowa-Whitman 273 1,635 1,908 5,419 77 4,886 10,382 1,037
Total 930 4,478 5,408 12,296 90 7,314 23,700 2,737

Note: The number of springs was derived from the National Hydrography Database. The number of wetlands was derived from the Oregon
Wetlands Geodatabase, and excludes national forest land in Washington (Umatilla) and Idaho (Hells Canyon Natural Recreation Area,

Wallowa-Whitman).

& This database identified “potential fens” if a wetland, usually palustrine, occurred near a spring, so overlap exists between the number of
palustrine wetlands and number of potential fens.

Table 7.4—Area of different wetland types® and percentage of forest area for the Malheur, Umatilla, and
Wallowa-Whitman National Forests

Wetland type
National forest Area Palustrine Lacustrine Riverine Potential fens®
Hectares Hectares Percent Hectares Percent Hectares Percent Hectares Percent
Malhuer 696 895 4552 0.7 62 <0.001 1963 0.3 967 0.15
Umatilla 442 428 2091 0.5 104  <0.001 1669 0.4 556 0.001
Wallowa-Whitman 914 115 3897 0.4 1447 0.01 4458 0.5 619 0.06
Total 10540 1613 8090 2142

# Wetland area was derived from the Oregon Wetlands Geodatabase and excludes national forest land in Washington (Umatilla) and Idaho
(Wallowa-Whitman, Hells Canyon National Recreation Area).

® Potential fens are classified primarily as palustrine wetlands and are included in the area calculated for palustrine wetland area.
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1994b) (table 7.2). Riparian and wetland communities that occur in wide, acces-
sible valley bottoms have been more heavily affected than higher elevation, narrow,
conifer-dominated riparian corridors. Effects of climate change on precipitation
and streamflow, combined with agricultural and municipal demands for water, will
continue to affect river segments and riparian areas in lower portions of watersheds
(Theobald et al. 2010). Wetlands and riparian areas that have been affected by land
use are more vulnerable to natural disturbances like flooding or wildfire (Dwire
and Kauffman 2003). Less degraded wetlands and riparian areas may be more resil-
ient to climate-related stressors (Luce et al. 2012).

Groundwater-Dependent Ecosystems

Steep-elevation gradients, varied bedrock, and glacial landforms in the Blue
Mountains influence the distribution, characteristics, and water chemistry of GDEs.
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Although the U.S. Forest Service recognizes that groundwater is a key component
of the water resources on National Forest Systems lands (USDA FS 2007), existing
information on the condition and distribution of GDEs in national forests of the
Blue Mountains is limited. Here, we again rely on data compiled by The Nature
Conservancy (Brown et al. 2010), the National Hydrology Dataset (http://nhd.usgs.
gov), and the Oregon Wetlands Geodatabase (http://oregonexplorer.info/wetlands/
DataCollections/GeospatialData_Wetlands) to assess the current condition of GDEs
in the Blue Mountains.

Springs—

The number of currently mapped springs for Malheur, Umatilla, and Wallowa-
Whitman National Forests is shown in table 7.3. The percentage of named springs,
which implies a known perennial water source, ranges from 9 percent of mapped
springs in Umatilla National Forest (Oregon portion) to 14 percent in both Malheur
and Wallowa-Whitman National Forests. Most springs are unnamed, and many may
not be perennial, especially during drier years. The number of springs is present-
ed here to document the currently known occurrence of spring GDEs in the Blue
Mountains. Although many more springs likely exist, such as rheocrene springs
discharging directly to streams, they are not yet mapped.

Springs play a key role as groundwater discharge zones that deliver cool water
to warming streams and support late-season streamflows in summer, and may
deliver relatively warm water during winter months (Lawrence et al. 2014, Winter
2007). Using criteria developed by The Nature Conservancy, most streams and riv-
ers in the Blue Mountains are at least partially groundwater dependent. Santhi et al.
(2008) estimated that 59 percent of annual streamflow in the semiarid mountains of
eastern Oregon is attributable to groundwater discharge. Locations of groundwater
discharge to streams have been identified using remote sensing (Torgersen et al.
1999) and field techniques (Torgersen et al. 2012) but have not been systematically
mapped (see chapter 4). The focus on stream temperature in relation to salmonid
habitat has increased awareness of the ecological relevance and importance of
groundwater discharge to streams and rivers.

Fens—

The Oregon Wetlands Geodatabase identified “potential fens” if a wetland, usu-
ally palustrine, occurred near a spring. To determine if these wetlands are indeed
fens, each would require a field visit to determine that the wetland is supported (at
least in part) by groundwater and that a minimum depth of peat (30 to 40 cm) has
accumulated within the wetland (Chadde et al. 1998; USDA FS 2012a, 2012c). Fens
occupy less than 1 percent of the Blue Mountains landscape (table 7.4), but they
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contribute substantially to regional biodiversity of plants and animals (Blevins and
Aldous 2011). In an otherwise arid region, perennially saturated fens are critical
habitat for invertebrate and amphibian species. Although not explicitly differenti-
ated as fen vegetation, several herbaceous-dominated plant associations frequently
occur in fens. These are underlain by organic soils and dominated by different
sedge species, including Northwest Territory sedge, Cusick’s sedge (Carex cusickii
Mack. ex Piper & Beattie), Holm’s Rocky Mountain sedge, and woodrush sedge
(Crowe and Clausnitzer 1997).

Current condition of groundwater-dependent ecosystems—

Since 2008, 133 GDEs, mostly springs, have been inventoried and documented

in the Blue Mountains national forests using draft and final versions of the
Groundwater-Dependent Ecosystems Level | and Level 11 inventory methods
(USDA FS 2012a, 2012b). The Level | guide (USDA FS 2012a) describes basic
methods for assessing GDEs within a given area (e.g. national forest, ranger district,
or specific project area) and is intended to qualitatively document the location, size,
and basic characteristics of each GDE site. It also presents a “management indicator
tool,” described in more detail below. The Level Il guide presents more detailed in-
ventory (USDA FS 2012c) in addition to protocols for more comprehensive charac-
terization of the vegetation, hydrology, geology, and soils at a given site.

In Malheur and Wallowa-Whitman National Forests, these inventories targeted
strategically selected sites, because of concerns about disturbance and management,
proposals for water development, and the high value of the resource. The GDE
inventories in Umatilla National Forest targeted portions of grazing allotments
and watersheds with specific management concerns. Most inventories in all three
national forests used the Level 1 inventory protocol (USDA FS 2012b). As of 2014,
eight Level Il inventories have been conducted, including collection of quantitative
vegetation data suitable for monitoring.

In Umatilla National Forest, Level | inventories were conducted at 102 GDEs.
Nearly 72 percent of these GDEs were identified as rheocrene springs that dis-
charge directly into stream channels (table 7.5). Helocrene springs were the second
most common GDE type and typically support a larger, low-gradient wetland (0.1
to greater than 1 ha). Water diversions that withdrew emerging water away from
the spring habitat or adjacent stream were observed at 46 of the inventoried springs
(table 7.5). The amount of water diverted away from the GDE was estimated at 20
sites, averaging 93 percent of the available water at the time of sampling. Informa-
tion on diverted water and other variables was not recorded at two of the 102 GDEs
(“missing data”; table 7.5).
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Table 7.5—Number of different types of groundwater-dependent ecosystems (GDEs) affected by
water diversion for 102 GDEs in Umatilla National Forest

GDEs?

Helocrene Hillslope Hypocrene Mound Rheocrene Unclassified Total

No permanent diversion 8 2 1 1 39 3 54
Permanent diversion” 2 0 1 33 5 46
Missing data 0 1 0 0 1 0 2

Total 13 5 1 2 73 8 102

& See text for definitions of GDE types.

® permanent diversion includes some types of infrastructure that withdrew emerging water away from the spring habitat.

In the GDE Level I protocol (USDA FS 2012a), a series of 25 management
indicator statements assist in identifying potential concerns and needs for manage-
ment action based on observations recorded during field inventories. Information
for the following three management indicators is presented for GDEs in Umatilla
National Forest (table 7.6). Assessments for each of these are described in more
detail in USDA FS (2012a):

e Aquifer functionality—There is no evidence to suggest that the aquifer sup-
plying groundwater to the site is being affected by groundwater withdrawal
or loss of recharge.

e Soil integrity—Soils are intact and functional; for example, saturation is
sufficient to maintain hydric soils, if present, and erosion or deposition is
not excessive.

e Vegetation composition—The site includes anticipated cover of plant
species associated with the site environment, and upland species are not
replacing hydric species.

Over 56 percent of the GDEs had evidence that aquifer functionality was
compromised in some way, usually through groundwater extraction (table 7.6). Soil
alterations in the form of ground disturbance, soil compaction, or soil pedestaling
affected 24 percent of inventoried sites (soil integrity; table 7.6). Upland species
cover was higher than expected in nearly 18 percent of the GDEs, suggesting that
hydric species may have been replaced as a result of altered local hydrology.

Trails created by animals or people were noted in 44 percent of the sites, graz-
ing/browsing by livestock was noted in 36 percent of sites, and grazing/browsing
by wildlife was observed in 16 percent of sites. Thirty-one percent of the sites were
disturbed through animal trampling. Disturbances were severe enough to question
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Table 7.6—Selected management indicators for 62 groundwater-
dependent ecosystem sites in Umatilla National Forest®

Management indicator No concern Issue of concern Not applicable

Agquifer functionality 20 35 7
Soil integrity 42 15 5
Vegetation composition 47 11 4

& Sensu USDA FS 2012c. See text for explanation of management indicators.

the long-term functioning of the most severely impacted GDEs. In summary, the
inventoried GDEs in Umatilla National Forest showed significant resource impacts
through water diversion, soil disturbance, and livestock impacts on vegetation
composition (table 7.6). The GDE inventories for Malheur and Wallowa-Whitman
National Forests documented similar trends (data not shown).

In an assessment of GDEs in Oregon, Brown et al. (2009, 2010) examined
existing data to determine distribution of GDEs and associated threats, focusing on
water quantity and quality. They used the National Hydrography Dataset to identify
locations of GDEs at the scale of hydrologic unit code 6 (HUC6), and focused their
assessment on watersheds containing two or more types of GDEs (e.g., wetlands
and rivers), which they termed “GDE clusters.” To evaluate threats to water quantity
supporting GDEs, they examined the extent of water extraction or pumping through
permitted wells used primarily for irrigation, industrial, and municipal uses, and
unregulated (exempt) wells, which are used for livestock and domestic purposes.
Where possible, they incorporated pending groundwater pumping permits and
projections of residential growth to assess future threats from groundwater extrac-
tion. They found that GDE clusters in the Grande Ronde Valley, which is largely
surrounded by Wallowa-Whitman National Forest, are threatened by diminished
groundwater quantity (Brown et al. 2009).

To evaluate threats to groundwater quality supporting GDEs, Brown et al.
(2009, 2010) examined contamination by nitrogen and phosphorus (high levels of
fertilizer use), pesticides, and other toxic chemicals, using the compiled informa-
tion to locate where GDEs (and GDE clusters) may be threatened by contaminated
groundwater. Based on location and type of surrounding industrial and agricultural
land use, they estimated that 22 to 40 percent of the GDE clusters in the John Day,
Malheur/Owyhee, and northeast Oregon HUCs were potentially at risk by ground-
water contamination from pesticides or nutrients. Although most of the threatened
GDE clusters they identified were located in agricultural valleys, not in national
forests, contaminated groundwater may influence water quality in other portions
of these basins, depending on physical features of the aquifers.
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Potential Climate Change Effects
Riparian Areas and Wetlands

Changing climate in the Pacific Northwest is projected to alter streamflow in rivers
and streams in a number of ecologically significant ways (see chapters 3 and 5).
Warmer temperatures will influence changes in precipitation, evapotranspiration,
and snow accumulation, timing, and rate of melt (chapter 3). Earlier spring snow-
melt will affect the timing and magnitude of peak flows, leading to higher peak
flows in winter (Mote et al. 2005). Summer low flows are projected to decrease
throughout the West (Cayan et al. 2001, Luce and Holden 2009).

In this section, we describe the potential effects of climate change in special
habitats in the Blue Mountains, based on research that has examined responses
of riparian vegetation to hydrologic alteration, primarily dams and diversions, as
described above. However, there is considerable uncertainty in our projections,
because empirical data are lacking on specific mechanisms through which climate
change will influence riparian and wetland plant communities in the Blue Moun-
tains. Climate change is likely to affect diverse riparian/wetland plant communities
differently, depending on elevation, location within the watershed, land use, and
species composition. Shifts in riparian vegetation and reduction in riparian area will
probably occur in response to changes in streamflow characteristics, direct effects
of higher temperatures, and seasonal and spatial distributions of soil moisture
independent of streamflow (atmospheric and non-alluvial groundwater) (box 7.1).

Reduced riparian extent could result in direct losses in quantity and quality
of ecosystem services provided by riparian vegetation, such as wildlife habitat,
recreational value, shade over streams, and buffer capacity for maintenance of
stream water quality. Less quantifiable are the loss of aesthetic values associated
with reduced riparian cover and changes in streamside species composition, veg-
etation and age-class structure. Reduced width of riparian areas associated with
projected changes in streamflow characteristics (see chapter 3), increased severity
and frequency of drought, and higher agricultural and municipal demands for water
could result in lower buffer capacity between aquatic and upland habitats.

Conifer-dominated riparian areas—

In headwater portions of forested watersheds, riparian areas are frequently dominat-
ed by the same species as surrounding uplands, although stands may differ in age,
stem density, and relative proportions of different species or size classes (Dwire et
al. 2015). With progression of climate change, conifer-dominated riparian forests
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are increasingly subject to disturbances occurring in upland forests, including more
numerous and severe fires and more frequent incidence of insect infestations.

In the Blue Mountains, Olson (2000) compared the fire history of upland and
riparian forests, dominated by ponderosa pine, Douglas-fir, and grand fir. In these
dry forest types, characterized by a low-severity fire regime, fires in riparian areas
were slightly less frequent than in uplands of the same forest types, although,
differences were not significant. Williamson (1999) studied fuel characteristics
and potential for crown fire initiation (torching) in paired upland-riparian stands
of ponderosa pine, Douglas-fir, grand fir, and subalpine fir in the Blue Mountains.
The potential for torching was high in both upland and riparian forests of all forest
types, suggesting that high-severity fire could extend downslope into the valley
bottoms. With projected changes in fire intensity and severity, fuel conditions in
riparian areas may not differ sufficiently from those in uplands to stop or reduce the
intensity of large wildfires during hot, dry weather (Luce et al. 2012).

Recent warmer climate has been associated with frequent and extensive insect
outbreaks, as well as outbreaks in places where historical insect activity was low
or unknown (Logan and Powell 2009; see chapter 6). Warming temperatures are
projected to promote insect outbreaks in forested areas by increasing water stress
in host trees while conferring physiological advantages to insects (Bale et al. 2002).
Riparian trees, which grow in moist soils and cool microclimatic conditions, may
be more resistant to insect infestation. However, climate-induced increases in air
temperature and changes in precipitation may result in drier streamside conditions,
leading to stress in riparian trees. In addition, high insect densities may overwhelm
local resistance to attack, making host trees vulnerable despite location along a
stream channel. Wildfire, an important forest disturbance that is directly influenced
by climate change (Peterson et al. 2014, Westerling et al. 2006), can reduce the
resistance of surviving trees to insect attack. In addition, insect-caused canopy
mortality alters the amount, composition, and arrangement of fuels (Jenkins et al.
2008, 2012). As fire- and insect-caused mortality transform the structure of dry
forests, effects on associated riparian forests may also become more prominent.

In a vulnerability assessment of forest trees in the Pacific Northwest, tree spe-
cies were ranked by risk factors: distribution, reproductive capacity, habitat affinity,
adaptive genetic variation, and threats from insects and disease (Devine et al. 2012).
Each risk factor incorporated several variables evaluating the vulnerability of each
species to climate change. Authors found that subalpine fir and Engelmann spruce,
dominant conifer species in many high-elevation, forested riparian areas in the Blue
Mountains, were rated as highly vulnerable to climate change (Devine et al. 2012).
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Although some riparian conifer species could decline in cover, others may increase.
For example, at lower elevations, ponderosa pine, grand fir, and Douglas-fir could
increase in cover and density along drier floodplains.

Riparian and wetland aspen plant communities—

Quaking aspen is one of the few broadleaf deciduous trees in northeastern Oregon,
providing vegetative diversity in the Blue Mountains region (Swanson et al. 2010).
Its relative rarity, high value for wildlife, and colorful autumn foliage contribute to
its aesthetic value. Over the last 25 years, many aspen stands in the Blue Mountains
have been declining in number, area, and stem density (Swanson et al. 2010); simi-
lar dieback has been observed in other locations in western North America (Worrall
et al. 2013). The reasons for broad-scale decline remain uncertain but may be relat-
ed to low soil moisture in severely affected stands (Worrall et al. 2013; see chapter
6). In the Blue Mountains, aspen communities will likely continue to decrease in
extent if climate-related changes reduce water availability, thus affecting stream-

flow characteristics, available groundwater, and drought conditions (see chapter 6).

Cottonwood-dominated riparian areas—
Black cottonwood is a fairly short-lived tree (Braatne et al. 1996) that likely de-
pends on seasonal flooding for recruitment and stand replacement (Lytle and
Merritt 2004, Mahoney and Rood 1998, Merigliano 2005, Shafroth et al. 1998), and
on baseflow for stand maintenance (Lite and Stromberg 2005). Relationships be-
tween streamflow and aspects of cottonwood ecology have been described for dif-
ferent species, geomorphic settings, and regions in western North America, mostly
in response to dams and other flow alterations (Auble et al. 1994, Braatne et al.
1996, Merritt and Cooper 2000). Research results have also indicated that numerous
cottonwood populations are in serious decline, and that nonnative woody riparian
species, notably tamarisk (Tamarix spp.), are expanding in distribution and displac-
ing native cottonwoods throughout the Western United States, particularly along
rivers with altered flow regimes (Friedman et al. 2005, Merritt and Poff 2010).
Although tamarisk is not currently an issue in national forests of the Blue
Mountains, habitat suitability modeling suggests that riparian habitat for tamarisk
will increase throughout the Pacific Northwest over the next century (Kerns et al.
2009), which could have negative consequences for native cottonwoods. Decreases
in distribution and declines in the condition of cottonwood stands are likely for
cottonwood-dominated riparian areas in the Blue Mountains in response to climate-
related changes in availability of stream and groundwater, and increased frequency
and severity of droughts. Many cottonwood stands are already compromised by
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limited recruitment, livestock grazing (Beschta and Ripple 2005), and floodplain
conversion and development. Additional stress from climate-related changes in the
hydrologic regime could have negative effects on the distribution and abundance of
cottonwood.

Willow-dominated riparian areas—
Throughout the Western United States, willow-dominated riparian areas occur in
broad valley bottoms, including unconfined and glaciated valleys with low slopes
in montane and subalpine landscapes (Patten 1998, Rocchio 2006). Floods, stream-
flow, shallow subsurface drainage, and American beaver activities all contribute
to maintenance of high water tables and willow dominance (Demmer and Beschta
2008, Gage and Cooper 2004). The relative importance of streamflow and hillslope
discharge for maintenance of willow ecosystems depends on elevation, geology,
season, and other factors (Westbrook et al. 2006, 2011; Wolf et al. 2007).
Climate-induced changes in precipitation could affect both streamflow char-
acteristics and groundwater discharge and may result in the spatial contraction of
willow communities and in local loss of species near limits of their distribution.
Similar to most cottonwood species, many willow species are thought to be repro-
ductive specialists, requiring open substrates with certain particle size distributions
that are able to maintain soil moisture levels for germination and establishment
(Karrenberg et al. 2002). Hydrologic modification of streams has altered flood fre-
quency and duration along many riparian corridors, which has likely influenced the
local recruitment and persistence of willows and contributed to the decline of some
willow species and communities, particularly those in the “cold riparian shrub”
PVG (table 7.2; see also Stromberg et al. 2010). Willow communities in the “warm
riparian shrub” PVG tend to be dominated by clonal willow species that frequently
establish and spread via vegetative propagules. However, clonal willow species
depend on flow characteristics for creation and reworking of sand and gravel bars,
where they frequently establish. In addition, drying of willow-dominated plant
communities, in combination with higher air temperature and projected decreases
in stream baseflow could reduce soil and foliar moisture and limit their ability to
serve as fuel breaks during wildfires.

Other shrub-dominated riparian areas—

Depending on the species, some shrub-dominated riparian areas could increase in
areal extent and displace more moisture-dependent vegetation, including willow
communities and sedge-dominated meadow communities. Conifers could encroach
into shrub-dominated riparian areas, particularly at lower elevations.
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Herbaceous-dominated riparian areas—

Wetland herbaceous species are highly sensitive and responsive to water table
elevation, which could become more variable and less predictable with changes

in streamflow characteristics and increased frequency and severity of drought. In
some locations, wet meadows could contract in area, and vegetation could shift
from sedge-dominated communities to more drought-tolerant native and nonnative
grasses and possibly shrubs. Changes in species composition and cover of riparian
vegetation could have cascading effects on water quality by reducing infiltration of
runoff, and on stream channel morphology by weakening bank stability.

Summary—

As noted above, climate change could influence riparian and wetland vegetation in
the Blue Mountains in various ways (box 7.1), depending on species composition
and physical setting, specifically valley bottom width and geometry and location
within the stream network and watershed. Some riparian plant communities and
associations could contract in area, many could change in species composition over
time, and others could increase in cover. The following trends are expected:

e Conifer-dominated riparian areas will become more susceptible to
drought, wildfire, and insect infestations. Shifts in latitudinal and altitudi-
nal distribution of dominant conifers will likely track trends in uplands (see
chapter 6). Conifer-dominated communities will increase in cover, particu-
larly at lower elevations, encroaching on shrub-dominated riparian areas
and herbaceous-dominated meadows.

* Riparian and wetland aspen plant communities will likely continue to
decrease in extent and decline in vigor owing to drought and decreased
water availability. Some populations (e.g., those associated with springs)
may be lost because of altered local hydrology.

» Cottonwood-dominated riparian areas will decrease in extent.
Reductions in late summer baseflows will likely compromise the persis-
tence of existing stands. Changes in timing and magnitude of spring runoff
could influence the recruitment and establishment of new individuals, thus
affecting the replacement of existing stands.

»  Willow-dominated riparian areas will decrease in extent as riparian
width contracts in response to changes in frequency and magnitude of
flooding, and lower water table late in the growing season as a result of
lower baseflows. Changes in timing and magnitude of spring runoff could
influence recruitment and establishment of new individuals, thus affecting
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replacement of existing stands. Species composition of willow communities
will likely shift, favoring the most drought-tolerant willows and other shrub
species.

*  Other woody-dominated riparian areas will increase in extent in some
riparian areas, displacing more mesic willow species and communities, and
favoring more drought-tolerant species. In communities dominated by more
drought-tolerant species, encroachment of conifers could increase, possibly
replacing some shrub species over time.

Herbaceous-dominated riparian areas will decrease in extent as riparian
width contracts in response to decreased water availability owing to lower
baseflows, and changes in the magnitude, duration, and extent of flooding.
Some sedge species will be replaced by more drought-tolerant (and grazing
tolerant) native and nonnative grass species, and invasive species will likely
increase in cover.

Groundwater-Dependent Ecosystems

Climatic variables affect hydrological processes, and in the Pacific Northwest,
increased warming will influence the amount, timing, and distribution of runoff, as
well as groundwater recharge and discharge (Elsner et al. 2010, Waibel et al. 2013).
In the Blue Mountains, air temperatures are projected to become warmer during

all seasons, with the largest increases occurring in summer (chapter 3), which

will increase evapotranspiration in all ecosystems, including the special habitats
discussed in this chapter. Snowpack is the main source of groundwater recharge in
mountainous terrain (Winograd et al. 1998).

Higher minimum temperatures can reduce the longevity of snowpack, and
decrease the length of time aquifer recharge can occur, potentially leading to faster
runoff and less groundwater recharge. Groundwater recharge has been examined
in only a few locations (Tague and Grant 2009), and little is known about ground-
water recharge processes in many watersheds, including those that may be shifting
from snow-dominated to more rain-dominated hydrologic regimes (Safeeq et
al. 2013, 2014; see chapter 3). Snowmelt is generally considered a more efficient
recharge agent than rainfall, so snow-to-rain shifts could potentially drive declines
in groundwater recharge in snow-dominated areas (Earman and Dettinger 2011).
Depending on elevation and the hydrogeologic setting, however, slowly infiltrating
precipitation that includes both rain and snow may recharge some groundwater
aquifers as effectively as rapid, seasonal snowmelt runoff. Although rain-on-snow
zones are expected to shift upwards in elevation (see chapter 3), the influence of
these shifts on groundwater recharge is unknown.
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In the Blue Mountains, annual precipitation is projected to remain within the
natural range of variability (see chapter 3). However, summers will be drier, the
onset of snowmelt will be earlier (Luce et al. 2012), the rate of snowmelt will be
more rapid, and the snow water equivalent (SWE) of snowpack will decrease (Fol-
land et al. 2001; see chapter 3), all of which will influence snowpack volume. The
biggest declines in snowpack persistence and April 1 SWE are projected to occur in
mid elevations (see chapter 3). Although effects will differ considerably depending
on local physical features and land use, these changes will likely affect ground-
water recharge rates and, in turn, influence groundwater levels and the amount of
groundwater available to support springs, groundwater-dependent wetlands, stream
baseflows, and soil moisture (Ludwig and Moench 2009).

When assessing potential climate-induced changes to groundwater resources,
recharge, and GDEs, it is critical to consider the hydrogeologic setting. Geologic
units respond differently to changes in precipitation because of differences in
hydraulic conductivity, transmissivity, primary vs. secondary porosity, and fracture
patterns. In a study that combined examination of aerial photography (over 50 to 80
years) and climate analysis, Drexler et al. (2013) showed that five fens in the Sierra
Nevada (California) decreased 10 to 16 percent in area. This decrease in GDE area
occurred over decades with documented increases in annual mean minimum air
temperature and decreases in SWE and snowpack longevity. However, two fens in
the southern Cascade Range, underlain by different geology than the Sierra Nevada,
did not change in area, suggesting that the hydrogeologic setting plays an important
role in mediating changing climate variables on GDEs.

In the Blue Mountains, several different hydrogeologic categories can be
delineated, including igneous/metamorphic, basalt, sedimentary, and older volcanic
units (Gonthier 1985). Igneous and metamorphic rocks that exhibit low permeabil-
ity and porosity, low-volume-groundwater discharges to GDEs, and are recharged
only during large infrequent precipitation or snowmelt events, may not be very
vulnerable to changes in temperature and precipitation regimes. However, aquifers
in sedimentary or basalt formations, which generally have high permeability and
porosity, larger volume discharges to GDEs, and are recharged more frequently,
may be more sensitive to altered climate.

Small, unconfined aquifers, especially surficial and shallow aquifers, are more
likely to have renewable groundwater on shorter time scales and may respond
rapidly to changes in climate (Healy and Cook 2002, Lee et al. 2006, Sophocle-
ous 2002, Winter 1999). Larger, deeper, and confined aquifers are more likely
to have nonrenewable groundwater, may be less sensitive to the direct effects of
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climatic variability and change, and are projected to have a slower response (Wada
et al. 2012). Hydrogeologic units in the Blue Mountains exhibit both confined and

unconfined conditions. The deeper basalt units and older volcanic aquifers tend to
be more confined (Gonthier 1985).

Groundwater storage can act as a moderator of surface water response to
precipitation (Maxwell and Kollet 2008), and changes to groundwater levels can
alter the interaction between groundwater and surface water (Hanson et al. 2012).
Climate-induced changes in connectivity between groundwater and surface water
could directly affect stream baseflows and associated wetlands and other GDEs
(Candela et al. 2012, Earman and Dettinger 2011, Klgve et al. 2012, Tujchneider
et al. 2012). Simulation modeling shows that short flow-path groundwater sys-
tems, including many that provide baseflow to headwater streams, could change
substantially in the timing of discharge in response to changes in seasonality of
recharge (Waibel et al. 2013). By contrast, regional-scale aquifer systems with
flow paths on the order of tens of kilometers, are much less affected by shifts in
seasonality of recharge (Waibel et al. 2013). These effects may be highly variable,
and largely depend on local hydrogeology. In wetlands, changes in groundwater
levels can lead to reduced groundwater inflow, leading to lower water table levels
and altered wetland water balances. For local- and intermediate-scale systems, the
spatial extent of some GDEs will likely contract in response to decreasing surface
water and groundwater and increasing temperatures. Changes in groundwater and
surface water will also vary depending on location within the watershed and stream
network, as well as future land use.

Effects of changing climate on the ecology of GDEs will depend on changes
in groundwater levels and recharge rates, as influenced by the size and position
of groundwater aquifers (Aldous et al. 2015). The GDEs supported by small, local
groundwater systems tend to exhibit more variation in temperature and nutrient
concentrations than regional systems (Bertrand et al. 2012). Larger systems will
likely be more resilient to climate change. Freshwater springs are dependent on
continuous discharge of groundwater and form ecotones between subsurface-
surface water and aquatic-terrestrial environments, which contribute to local and
regional aquatic biodiversity (Ward and Tockner 2001). Springs and springbrooks
are physically stable environments that support locally unique biological communi-
ties (Barquin and Death 2006). However, climate-induced changes in recharge rates
may be reflected in decreased summertime flows with possible drying, as well as
increased winter flow and associated flooding that could have negative impacts on
biological communities (Green et al. 2011).
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Taylor and Stefan (2009) estimated that groundwater temperatures would rise
by up to 4 °C in a temperate region under a doubling of carbon dioxide. Because
many biogeochemical processes are temperature dependent, climate-induced
changes in groundwater temperature may negatively affect the quality of ground-
water and, in turn, influence aquatic communities (Figura et al. 2011). However,
because the thermal regime of groundwater systems is less dependent on air
temperature patterns than surface waters, the effects of rising air temperatures are
likely to be less pronounced in springs and other GDEs.

For fens, peat accumulating processes will be influenced by increasing temper-
atures and local and regional changes in hydrologic regime. Reduced groundwater
levels tend to promote soil aeration and organic matter oxidation. Generation and
maintenance of peat soils over time depend on stable hydrological conditions. In
recent studies of peatlands exposed to groundwater lowering, responses such as soil
cracking, peat subsidence, and secondary changes in waterflow and storage pat-
terns have been observed (Kveerner and Snilsberg 2011). Wetland plant species can
respond to even slight changes in water table elevation (Magee and Kentula 2005,
Shipley et al. 1991, Vitt et al. 1984), and shifts in composition of both vascular and
bryophyte species could occur in fens with lowered water tables.

Land-use changes can alter watershed conditions and generate responses in
biological communities and ecological processes, and in some cases, may override
hydrologic modifications caused by large-scale climate shifts. As noted above for
wetland and riparian ecosystems, effects of land use and management activities
may have more immediate and detectable impacts on GDEs and the species they
support than changing climate. For example, a recent study on spring-channel water
diversion indicated that substantial decreases in physical and aquatic habitat occur
with relatively small (10 to 20 percent) discharge reductions (Morrison et al. 2013).
In the Umatilla National Forest, approximately 45 percent of inventoried springs
undergo water withdrawals from the spring habitat (table 7.5). However, some
spring organisms appear to be resilient to human-induced disturbances. Ilmonen
et al. (2012) showed that invertebrate communities in springs affected by logging
about 30 years prior to sampling did not differ appreciably from those in unaffected
reference springs.

Management Context
Current Management Objectives and Desired Outcomes

Riparian areas and wetlands are protected under the Clean Water Act, which regu-
lates the development and modification of floodplains; minimizes the destruction,
loss, and degradation of wetlands; and enhances the natural and beneficial value
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of wetlands. Current management objectives for riparian areas in eastern Oregon
are mainly informed by the aquatic strategies PACFISH and INFISH (USDA FS
1995, USDA FS and USDI BLM 1995) that were developed and adopted by the U.S.
Forest Service and Bureau of Land Management. These strategies were considered
short-term interim direction to protect native fish populations and their aquatic
habitat. They will be revised by desired riparian conditions and management objec-
tives with the adoption of new land management plans for all three national forests
in the Blue Mountains.

Riparian goals in PACFISH and INFISH address water quality, stream channel
integrity, instream flow, natural timing and variability of water-table elevation,
diversity and productivity of riparian plant communities, and other riparian and
aquatic habitat qualities necessary to support populations of inland native and anad-
romous fish. Riparian vegetation is to be maintained or restored to provide instream
and riparian large wood, thermal regulation (including stream shading), and protec-
tion of floodplain surfaces and banks against uncharacteristic erosion. PACFISH
and INFISH interim direction establishes riparian management objectives (RMOs)
for all watersheds that include inland native or anadromous fish. These RMOs
describe habitat conditions as a range of features that need to be met or exceeded.
The key feature is pool frequency that varies by channel width. Supporting features
include maximum water temperature, instream large wood, width-depth ratios, and
measures of bank stability and bank angle. In the absence of site-specific watershed
analysis, the RMOs provide a benchmark for all management actions and apply
to all Riparian Habitat Conservation Areas (RHCAS), including streams with and
without fish, wetlands, and intermittent streams.

The U.S. Forest Service groundwater management program has made prog-
ress in increasing awareness of the importance and vulnerability of groundwater
resources, and providing guidance on identify, assessing, and analyzing of GDEs
(USDA FS 2012a,c). National forests in the Blue Mountains are still in the early
stages of identifying and understanding the extent of groundwater resources, as
well as potential threats. However, resource managers are increasingly considering
GDEs in watershed assessments and project-level planning.

Management Practices

The establishment of RHCAs has altered management priorities to put primary
emphasis on riparian-dependent resources. Management activities in RHCAS are
subject to specific standards and guidelines that limit timber harvest (including
fuelwood cutting). Consequently, fuel management, timber sales, and forest
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restoration projects commonly exclude RHCAs from any treatment. This manage-
ment approach may be creating uncharacteristic fuel conditions within some ripar-
ian corridors (Messier et al. 2012, Meyer et al. 2012). Avoiding active management
within RHCASs that have been altered by fire suppression and streamflow regulation
(dams, roads, culverts, diversions) could further influence disturbance regimes and
contribute to more uniform, late-seral forest structure, or to increased fire hazard.
This management approach could also affect postdisturbance conditions, resulting
in decreased riparian plant diversity over time.

In upland forest watersheds where fuel treatments are implemented, it might
be beneficial to include adjacent riparian areas for treatments (Meyer et al. 2012) to
avoid concentration of fuels in streamside areas. Although treating fuels in riparian
areas can potentially affect desired functions and ecosystem services (Dwire et al.
2010) (table 7.1), research has indicated that effects of prescribed fire are largely
short term (Arkle and Pilliod 2010, Béche et al. 2005). However, the effects of other
fuel reduction treatments (e.g., mechanical thinning or various treatment combina-
tions) on stream and riparian attributes have not been evaluated.

The RHCA standards and guidelines require adjustment or elimination of
grazing practices that are inconsistent with attainment of RMOs but appear to have
a smaller effect on management practices compared to timber management. The
requirements have resulted in increased fencing of sensitive riparian and wetland
resources within grazing allotments. Other management actions include active
movement of cattle out of riparian zones, and placement of cut conifers to discour-
age access to treated aspen stands and streamside meadows. To monitor the effects
of grazing practices and ensure that they do not prevent the attainment of RMOs,
national forests have implemented riparian monitoring protocols such as Multiple
Indicator Monitoring (Burton et al. 2011) in addition to PACFISH/INFISH effec-
tiveness monitoring.

Adapting Special Habitats to Climate Change in the
Blue Mountains

Management strategies and tactics for increasing resilience of vegetation in the
Pacific Northwest to a warmer climate are well documented (e.g., Gaines et al.
2012; Halofsky et al. 2011; Littell et al. 2012, 2014; Raymond et al. 2013, 2014; see
chapter 6). Although adaptation options for habitats associated with special hydro-
logic conditions are a small part of this knowledge base, these habitats have a dis-
proportionately large effect on biological diversity in the region. Adaptation options
for water resources (Dalton et al. 2013, Halofsky et al. 2011, Strauch et al. 2014; see
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chapter 4) are often synonymous with, or related to, adaptation options relevant

for special habitats (e.g., maintaining and restoring instream flows). These sources
of information, combined with feedback from resource specialists, contributed to

a summary of climate change adaptation options for special habitats in the Blue
Mountains (tables 7.7, 7.8, and 7.9). Implementation of climate-smart management
actions and restoration objectives will benefit from a strategic approach to ensure
that the most important work is occurring in the most important places (Hughes et
al. 2014). Because special habitat conservation is at the interface of vegetation and
stream restoration, opportunities exist for coordination of restoration programs and
on-the-ground actions.

Riparian Areas and Wetlands

The productivity of wetland and riparian ecosystems could decrease in the future
as a result of increased evapotranspiration and reduced snowpack, causing lower
water supply during the growing season and more variable streamflow. Maintaining
appropriate densities of native species, propagating drought-tolerant native species,
and controlling or eliminating nonnative species are strategies that may increase
riparian resilience to a warmer climate (tables 7.7 and 7.8). It would also be benefi-
cial to plant species that have a broad range of moisture tolerances, such as Lewis’
mock orange (Philadelphus lewisii Pursh) and choke cherry (Prunus virginiana L.),
which are resistant to variable water availability during the growing season. Finally,
removing infrastructure (e.g., campsites, utility corridors, spring houses, and spring
boxes) from riparian areas and wetlands will reduce soil compaction and other
physical damage, thus allowing natural physical processes to occur and improv-

ing hydrologic function. Opposition by the public to facilities removal is likely, so
relocation (rather than removal) of some facilities to areas with less environmental
impact can be considered.

Improving soil health and bank stability to reduce erosion and enhance native
vegetation is an adaptation strategy that would improve riparian conditions (Kauff-
man et al. 2004). The most important measure is to reduce degradation of riparian
areas by livestock through fencing and rest-rotation grazing. Livestock grazing has
caused considerable damage to riparian systems over many decades, and efforts to
repair and reduce this damage will improve resilience, although opposition from
range permittees is likely if changes are instituted. Along stream segments with
highly valued deciduous riparian vegetative cover, fencing to exclude native ungu-
lates could also be considered. Elk and deer are frequently able to enter enclosures
or riparian areas that have been fenced to exclude cows.
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Climate Change Vulnerability and Adaptation in the Blue Mountains Region

Riparian areas and wetlands are important components of alpine and subalpine
ecosystems. In these systems, an important adaptation strategy is to reduce existing
stresses, such as conifer encroachment, livestock grazing, and ungulate browsing
(table 7.8). Specific adaptation tactics include controlling livestock grazing and
removing nonnative species where feasible, especially following wildfire. Col-
laboration with range permittees, fire and fuels managers, and coordination with
ongoing restoration activities, will enhance the effectiveness of adaptation actions.

Groundwater-Dependent Ecosystems

Reduced snowpack could decrease water supply, potentially reducing productivity
in all types of GDEs. The primary strategy for increasing resilience in GDEs is to
manage for their functionality in the spatial context of the broader forest landscape
(table 7.9), because the structure and function of GDEs are largely influenced by
surrounding vegetation and hydrology. An adaptation strategy is to maintain GDES
by maintaining water supply and improving soil quality and stability. This can be
accomplished through three different tactics. First, decommissioning roads and
reducing road connectivity is likely to increase interception of precipitation and
local retention of water. Second, trampling of GDEs by domestic livestock and
native ungulates can be better managed with fencing. Third, water can be main-
tained at developed spring sites through improved engineering, including use of
float valves, diversion valves, and pumps. These tactics require significant costs,
and there may be opposition to road removal and grazing restrictions by the public
and range permittees.

As ecosystems, GDEs are understudied, primarily because subterranean
systems are difficult to access. The scientific community is in early stages of
research and management of these ecosystems and faces important knowledge
gaps. The current lack of knowledge on groundwater has limited the consideration
of groundwater resources in integrated forest planning, inventory, monitoring, and
permitting. A framework for managing groundwater resources in national forests is
needed, one that includes a more consistent approach for evaluating and monitoring
the effects of management actions on groundwater. With respect to conservation of
GDEs, guidance on how groundwater resources are considered in agency activities
is needed, and will require evaluation of potential effects of groundwater withdraw-
als on national forest resources. Guidance should also provide a strategy through
which groundwater and vegetation can be jointly managed, thus facilitating man-
agement of riparian areas, wetlands, and GDEs in a warmer climate.
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