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Abstract

The availability of spatially referenced environmental data and species occurrence records
in online databases enable practitioners to easily generate species distribution models
(SDMs) for a broad array of taxa. Such databases often include occurrence records of
unknown reliability, yet little information is available on the influence of data quality on SDMs
generated for rare, elusive, and cryptic species that are prone to misidentification in the
field. We investigated this question for the fisher (Pekania pennanti), a forest carnivore of
conservation concern in the Pacific States that is often confused with the more common
Pacific marten (Martes caurina). Fisher occurrence records supported by physical evidence
(verifiable records) were available from a limited area, whereas occurrence records of
unknown quality (unscreened records) were available from throughout the fisher's historical
range. We reserved 20% of the verifiable records to use as a test sample for both models
and generated SDMs with each dataset using Maxent. The verifiable model performed sub-
stantially better than the unscreenedmodel based on multiple metrics including AUCtest val-
ues (0.78 and 0.62, respectively), evaluation of training and test gains, and statistical tests
of how well eachmodel predicted test localities. In addition, the verifiable model was consis-
tent with our knowledge of the fisher's habitat relations and potential distribution, whereas
the unscreenedmodel indicated a much broader area of high-quality habitat (indices > 0.5)
that included large expanses of high-elevation habitat that fishers do not occupy. Because
Pacific martens remain relatively common in upper elevation habitats in the Cascade Range
and Sierra Nevada, the SDM based on unscreened records likely reflects primarily a confla-
tion of marten and fisher habitat. Consequently, accurate identifications are far more impor-
tant than the spatial extent of occurrence records for generating reliable SDMs for the fisher
in this region. We strongly recommend that practitioners avoid using anecdotal occurrence
records to build SDMs but, if such data are used, the validity of resulting models should be
tested with verifiable occurrence records.
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Introduction
The increased availability of online satellite imagery and biodiversity databases have greatly
expanded the use of spatial data in science and conservation. In particular, the broad availabil-
ity of spatially contiguous environmental data and spatially referenced species occurrence rec-
ords have enabled researchers to generate species distribution models (SDMs) from datasets
that are readily available on the internet [1±3]. Recently, maximum entropy (Maxent) model-
ing has become one of the most common methods for generating SDMs, due to its use of
presence-only data, its strong performance compared to other approaches [3±5], and the avail-
ability of user-friendly computer software for generating Maxent models [6].

Species occurrence records suffer from 3 primary sources of error that may affect the per-
formance and reliability of resulting Maxent models: inaccurate spatial locations, biased sam-
pling, and misidentifications [7]. Maxent models are generally robust to moderate spatial
errors (i.e.,< 5 km) in occurrence records [5, 8±9] and to small sample sizes [3, 10], but are
sensitive to non-representative sampling within the analysis area, and the clustering of records
in areas that are easily accessed or where target animals are more detectable, such as along
roads or trails [11±14]. In contrast, the influence of misidentifications on the performance and
reliability of resulting Maxent models has received much less attention.

Environmental covariate layers used to generate Maxent models are generally derived from
reliable sources, but public species-occurrence databases (e.g., Global Biodiversity Information
Facility [GBIF], NatureServe, biodiversity databases maintained by state and federal resource
agencies) are compiled opportunistically, and typically include both highly reliable occurrence
records that are associated with physical evidence, and anecdotal observations of widely vary-
ing reliability made by individuals with unknown qualifications [15]. For the generation of
SDMs, it is important to recognize that occurrence records contained in such databases have
not been obtained using consistent methodologies in a spatially representative manner and,
more importantly, are likely to contain misidentifications [16]. Of particular concern for those
interested in generating Maxent models for rare and elusive organisms, misidentifications can
dominate such databases [17].

To demonstrate the ease with which Maxent can be used to generate ecologically compel-
ling SDMs with high predictive power from unreliable occurrence data, Lozier et al. [18]
compared Maxent models generated for the cryptozoid Sasquatch using occurrence records
contained in a repository of putative sightings, auditory detections, and tracks (i.e., anecdotal
records lacking physical evidence), and for the American black bear (Ursus americanus) using
only specimen records contained in the GBIF (i.e., highly reliable records associated with phys-
ical evidence). Maxent models for both Sasquatch and black bear performed extremely well
(the area under the receiver operating characteristic curve for test data [AUCtest] was> 0.98),
predicted distributions were strikingly similar in geographic extent, aligned well with general
knowledge of each ªspeciesº range and habitat associations, and the same bioclimatic variables
contributed the most to both models. The authors concluded that black bears were likely the
primary ªcontaminatingº species in the Sasquatch model (i.e., that most Sasquatch records
were misidentifications of black bears), and recommended that the reliability of occurrence
records be scrutinized carefully before including them in SDMs.

Using occurrence records from several online databases, the primary literature, and field
observations for a taxonomically challenging invasive plant species, the yellowdevil hawkweed
(Pilosella glomerata), Ensing et al. [19] evaluated howMaxent models varied in relation to dif-
ferences in the reliability of occurrence records. Two models were generated and compared;
one using a taxonomically reliable and geographically restricted dataset, and another using
all available records, which included the subset of reliable records as well as many records of
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unknown reliability from a much broader geographic area. Both models performed extremely
well (AUCtest> 0.94), but the predicted distribution for the ªreliable recordsº model was 88%
smaller and more homogeneous ecologically than the ªall available recordsº model, indicating
the extent to which misidentifications in occurrence records can confound the interpretation
and application of SDMs for management or conservation. Similar findings were reported
by Costa et al. [20], who used simulated datasets to generate a series of Maxent models that
included occurrence records for both a ªtargetº and a ªcontaminatingº species, with misidenti-
fication rates ranging from 1 to 32%. The magnitude and direction of changes to predicted dis-
tributions were positively related to both the misidentification rate and ecological differences
between the target and contaminating species.

To investigate the potential effects of misidentifications and varying spatial precision on
the performance of Maxent models for the white-nosed coati (Nasua narica) in the American
Southwest, Frey et al. [7] generated a series of models using either bioclimatic or biophysical
environmental covariates. For each set of covariates, they generated 7 Maxent models using
occurrence records that varied either in the reliability of species identifications or in their spatial
precision. They ranked the reliability of species identifications based on the presence or absence
of physical evidence, the qualifications of the observer, the details provided, and environmental
conditions when the observation was made. All resulting models performed very well (AUCtest

> 0.87), however, even those that included species identifications considered to be ªhighly ques-
tionableº, and coordinates that were> 3 km from the actual location. As others have reported
[5, 8±9], the Maxent models they generated were robust to moderately large location errors in
occurrence records. However, because the coati's daily activities are primarily diurnal, and their
appearance and behavior are highly distinctive, they are not prone to being misidentified by
observers [7]. Consequently, it is likely that misidentifications were relatively uncommon in the
occurrence datasets they used, even those they considered to be potentially unreliable.

It remains unclear how the quality of occurrence records affects the performance and reliabil-
ity of Maxent models generated for species that are rare, elusive, and prone to misidentification.
One such species is the fisher (Pekania pennanti), a forest-dwelling mesocarnivore of conserva-
tion concern in the Pacific States (Washington, Oregon, and California) [21±22] that was sym-
patric or parapatric with the Pacific marten (Martes caurina) in many portions of its historical
range [23]. Pacific martens are relatively common in the Cascade Range and Sierra Nevada [24],
whereas fishers are extirpated or have declined precipitously throughout much of this region
[16]. Martens are similar to fishers in size, shape, coloration, and ecological affinities, and even
experienced biologists can mistake them for fishers ([21, 25]; K. Aubry unpublished data).

Species distribution models are becoming increasingly important for fisher conservation
efforts in the Pacific States [26±30]. Because fisher occurrence records associated with physical
evidence are scarce [16], practitioners may be tempted to use records of unknown quality con-
tained in public databases to generate SDMs for the fisher. Given the possibility that martens
or other species were misidentified as fishers in such databases, it is important to gain a better
understanding of how data quality influences the performance and reliability of resulting
SDMs. To investigate this question, we compared the performance and reliability of SDMs
generated for the fisher in the Pacific States with Maxent using datasets that contrasted
strongly in data quality.

Materials andmethods
Fisher occurrence records
We used 2 independent sets of fisher occurrence records from the Pacific States compiled by
Aubry and Lewis [16] to generate species distribution models in Maxent (Table 1). The first
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dataset included 125 fisher occurrence records obtained from 1989 to 2001 with highly reliable
species identifications that were associated with physical evidence and subject to independent
verification (i.e., remote-camera or track-plate detections, opportunistic photographs or digital
images, incidental captures, and road-kills; hereafter, verifiable records). The second dataset
included 389 fisher occurrence records obtained from 1954 to 1993 of varying and largely
unknown reliability (hereafter, unscreened records). Unscreened records consisted primarily
of anecdotal observations compiled by state and federal resource management agencies, and
the results of questionnaires sent to registered trappers or hound hunters. To generate species
distribution models, Maxent assumes a uniform probability distribution among the back-
ground samples; consequently, it is sensitive to the extent of the analysis area [6, 31]. Our anal-
ysis area encompassed approximately 262,900 km2, and was delineated using a 15-km buffer
around all verifiable and unscreened fisher occurrence records in western Washington, west-
ern Oregon, and California (Fig 1A). The geographic extent of our analysis area corresponds
closely to the historical range of fishers in the Pacific States [23].

The verifiable records we used in our analyses were unlikely to contain misidentifications but
were limited in distribution (Fig 1A). In contrast, unscreened records varied substantially in the
reliability of species identifications, but occurred throughout the historical range of fishers (Fig
1A). Only occurrence records that could be plotted on a map within an area< 93.2 km2 (1
township; see [16]) were used in our analyses. Thus, the estimated spatial precision of occur-
rence records in both datasets was< 5.5 km (i.e., coordinates were within 5.5 km of the actual
location). Because spatial errors of this magnitude have been shown to have little effect on the
performance of Maxent species distribution models [5, 7±9], differences in model performance
between these datasets should be attributable primarily to species misidentifications and the geo-
graphic extent of each dataset. Accordingly, these 2 datasets enable us to evaluate the effects of
both species misidentifications and geographically restricted sampling on the performance and
reliability of Maxent species distribution models for a rare, elusive, and cryptic forest carnivore.

Environmental data
We used published information on the habitat relations of fishers in western North America
and our knowledge and experience to identify a suite of 8 environmental covariates that were

Table 1. Fisher occurrence records from the Pacific States used to evaluate the effects of data quality on the performance and reliability of Maxent
species distribution models.

Data Set Region Year n References
Veri®ablerecords Western Washington 1990±1997 0a [32]

Western Oregon 1994±2001 29 [16]
California 1989±1994 96 [25]

Unscreened records Western Washington 1955±1992 94b [33±34]; K. Aubry, unpublished data
Western Oregon 1954±1993 145c [16, 34]

California 1960±1987 150 [35±36]

aA series of standardized remote-camera surveys involving > 17,000 sample nights were conducted throughout westernWashington by various
researchers from 1990 to 1997; no ®sherswere detected.
bWe excluded 22 unscreened ®sheroccurrence records fromWashington compiled by Aubry and Houston [33] because they had spatial precision > 5.5 km
or were located in different ecoregions [34] outside our analysis area, and included 1 additional record from 1992 that was not reported by Aubry and
Houston [33].
cWe excluded 11 unscreened®sheroccurrence records in Oregon compiled by Aubry and Lewis [16] because they were located in different ecoregions [34]
outside our analysis area.

https://doi.org/10.1371/journal.pone.0179152.t001
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Fig 1. Maps depicting (A) the geographic extent of our analysis area in the Pacific States and the locations of
verifiable and unscreened fisher occurrence records used in Maxentmodeling, and (B) the elevational gradient
andmajor physiographic regions that occur within our analysis area.

https://doi.org/10.1371/journal.pone.0179152.g001
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likely to influence the distribution of fishers in the Pacific States (Table 2). In western North
America, fishers are associated with low- to mid-elevation forests (generally< 1,250 m) where
deep, soft snow does not accumulate, with relatively dense canopies and high structural diver-
sity, including abundant large live trees, snags, and logs [16, 21, 37±38]. Using gradient nearest
neighbor (GNN) raster data derived from 2012 Landsat imagery and inventory plots [39], we
selected 5 vegetative covariates that represented varying forest types, stand ages, and structural
conditions: VEGCLASS (vegetation class), AGE (stand age), CANCOV (canopy cover), DDI
(diameter diversity index), and QMD (quadratic mean diameter). We also included BIOMASS
(forest biomass) derived by the USDA Forest Service's Forest Inventory and Analysis program
and Remote Sensing Applications Center [40], because several studies have shown that indices
of primary productivity were important contributors to fisher distribution models [26±28].
Travelling in deep, soft snow is energetically demanding for fishers [41±42], and topography
has been shown to influence fisher habitat selection through its effects on microclimate, forest
growth, and other processes [28, 43±44]. Accordingly, we also included SNOW (winter snow-
fall) and TPI (topographic position index) in our analyses. We calculated TPI within a circular
neighborhood (2-km radius) using Land Facet Corridor Designer for ArcGIS 10 [45]. Detailed
descriptions of how we derived each covariate are presented in Table 2. We used ArcGIS
10.2.2 to prepare all environmental raster data for Maxent modeling and, if necessary, to
resample grids to the resolution of our analyses (250 x 250-m pixels; see Table 2).

Modeling
To generate fisher distribution models, we used Maximum Entropy Species Distribution
Modeling software (Maxent 3.3.3k; [48]). Prior to model development, we excluded DDI and
QMD from our analyses because they were strongly correlated (r� 0.7) with other covariates.
This reduced our suite of environmental covariates to 6: SNOW, TPI, BIOMASS, VEGCLASS,
AGE, and CANCOV. The primary objective of our study was to compare the performance and
reliability of SDMs generated for a rare, elusive, and cryptic forest carnivore using occurrence
records that contrasted strongly in data quality. Accordingly, we used the default settings in

Table 2. Environmental covariates considered for generating species distribution models for the fisher in the Pacific States using Maxent. The 6
covariates selected for Maxent modeling are shaded gray.

Category Covariate Reference Description
Climatic Winter snowfall (SNOW) [46] Average precipitation (mm) as snow during winter (Dec-Feb) from 1971 to 2000. Derived from 4 x

4-km PRISM data and downscaled to 250 x 250-m pixels.
Topographic Topographic position

index (TPI)
[47] Estimate of terrain ruggedness, based on differences in elevation between a cell and the cells in the

surrounding neighborhood. Negative values indicate valleys or canyon bottoms, and positive values
indicate ridges or hilltops. Calculated from a 250 x 250-m digital elevationmodel.

Vegetative Forest biomass
(BIOMASS)

[40] Aboveground live forest biomass (mg/ha). Used at the original resolution of 250 x 250-m pixels.

Vegetation class
(VEGCLASS)

[39] Forest vegetation classes based on canopy cover, basal area of hardwoods, and quadratic mean
diameter of dominant and codominant trees. Derived from 30 x 30-m raster data resampled to 250 x

250-m pixels using a majority algorithm.
Stand age (AGE) [39] Basal area weighted stand age (year). Derived from 30 x 30-m raster data resampled to 250 x

250-m pixels using bilinear interpolation.
Canopy cover
(CANCOV)

[39] Canopy cover of all live trees (%). Derived from 30 x 30-m raster data resampled to 250 x 250-m
pixels using bilinear interpolation.

Diameter diversity index
(DDI)

[39] Diameter diversity index of forest stands based on tree densities in different DBH classes. Derived
from 30 x 30-m raster data resampled to 250 x 250-m pixels using bilinear interpolation.

Quadratic mean
diameter (QMD)

[39] Quadratic mean diameter of all dominant and codominant trees (cm). Derived from 30 x 30-m raster
data resampled to 250 x 250-m pixels using bilinear interpolation.

https://doi.org/10.1371/journal.pone.0179152.t002
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Maxent for feature types (i.e., auto selection of linear, quadratic, product, threshold, and hinge
features), regularization (a parameter that reduces over-fitting [31, 49]), and prevalence (pro-
portion of the landscape occupied by the species [49]).

We used a multi-step process to generate and test Maxent models for each dataset. First, we
randomly selected and set aside 20% of the verifiable fisher occurrence records (n = 25) to be
used as an independent sample for testing the final models generated with each dataset. We
then modeled each dataset (verifiable records n = 100; unscreened records n = 389) using boot-
strapping with 100 replications in Maxent to generate jackknife tests for evaluating covariate
contributions and training gain (a likelihood function). Starting with the full model for each
dataset, we removed the weakest covariate and generated a new model. The weakest covariate
was the one that decreased the training gain by the least amount compared to the full model
when it was excluded from the model. We continued this process, each time removing the
weakest covariate and generating a new model with the remaining covariates until only 1
covariate remained. The strongest model was the one that had the fewest covariates and did
not exhibit a significant decrease in training gain (i.e., resulting 95% confidence intervals over-
lapped) compared to the model with the highest training gain (typically, the full model; [5, 50±
51]). To evaluate model performance, we conducted a final Maxent analysis for each of the
strongest models using the verifiable or unscreened fisher records as the training data, and our
independent sample of 25 verifiable fisher records to test each model. We used several metrics
to evaluate model performance including AUCtest, training and test gains, and omission rate
tests (1-sided tests of the null hypothesis that test localities are predicted no better than ran-
dom). For presence-only data, AUCtest is the probability that a randomly selected presence
location will be ranked higher than a randomly selected background location [6, 31, 49]. Mod-
els with AUCtest values> 0.75 are considered to contain useful information [4].

We used the logistic output in Maxent to produce distribution maps for the fisher in the
Pacific States based on the strongest model from each data set. The logistic output is the rela-
tive probability of species occurrence conditioned on the environmental covariates [49, 52];
i.e., it represents a relative index of habitat quality [4, 31, 48]. To provide the best estimate of
potential fisher distribution for visual interpretation, we created the map for the verifiable
model using the full set of occurrence records (n = 125; see [6]). Our analysis area encom-
passed much of the Pacific States, yet our map pixel was relatively small (0.06 km2). To facili-
tate the interpretation of broad-scale patterns in the SDMs we generated, we pooled relative
habitat quality indices into a small number of bins. Because our study animals and research
objectives were similar and our analysis areas comparable in size, we followed Frey et al. [7]
and binned habitat-quality indices into 4 habitat-quality classes: non-habitat (habitat-quality
index = 0), low-quality habitat (indices > 0±0.2),medium-quality habitat (indices > 0.2±0.5),
and high-quality habitat (indices > 0.5). We imported the logistic output fromMaxent into
ArcGIS to create the final species distribution maps, and to calculate mean values for the con-
tinuous covariates in each of the final models.

Results
Based on our bootstrapping process, the strongest and most parsimonious Maxent model gen-
erated with verifiable fisher occurrence records was a 5-variable model that included SNOW,
VEGCLASS, BIOMASS, AGE, and CANCOV. The removal of TPI from the 6-variable (full)
model did not significantly decrease the training gain, indicating that this covariate contrib-
uted little to model performance. The AUCtest value we generated by running the final 5-vari-
able model with our independent test sample was 0.78, indicating that a random selection of
presence locations would be ranked higher than a random selection of background locations
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78% of the time. Furthermore, the mean likelihood of fisher occurrence (inverse log[training
gain for the final model] or e0.7635) was 2.1 times greater than that of a random background
location. Each of the 5 covariates in the final model contained unique information, especially
SNOW, which resulted in the largest decrease in training gain when it was omitted from the
model (Fig 2). When only 1 covariate was included, VEGCLASS fit the training data best (i.e.,
had the highest gain) followed by BIOMASS, SNOW, CANCOV, and AGE. In addition, our
findings demonstrated that the verifiable model fit the independent test data well (Fig 2). The
relative importance of SNOW in the test gain plot was greater than in the training gain plot,

Fig 2. Results from jackknife tests of regularized training gain (upper graph) and test gain (lower graph) generated by
running the final verifiable fisher distribution model in Maxent with an independent test sample.

https://doi.org/10.1371/journal.pone.0179152.g002
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indicating that SNOW not only contributed the most unique information, but was also the
most useful covariate for predicting the distribution of our test sample. Compared to the train-
ing data, VEGCLASS did not contribute as much to predicting the distribution of the test sam-
ple, whereas the relative importance of remaining covariates was similar between the training
and test datasets. Lastly, binomial omission-rate tests were statistically significant (P� 0.05)
for 3 commonly used cumulative thresholds (1, 5, and 10).

The strongest and most parsimonious model generated with unscreened fisher occurrence
records was a 4-variable model that included SNOW, AGE, VEGCLASS, and TPI. The
removal of BIOMASS and CANCOV from the full model did not significantly decrease the
training gain, indicating that they contributed little to model performance. As in the final veri-
fiable fisher model, SNOWwas the most important covariate in the final unscreened model
(Fig 3). However, the unscreened fisher model had an AUCtest value of 0.62, indicating that it

Fig 3. Results from jackknife tests of regularized training gain (upper graph) and test gain (lower graph) generated by
running the final unscreened fishermodel in Maxent with an independent test sample.

https://doi.org/10.1371/journal.pone.0179152.g003
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did not contain useful information, and the likelihood of fisher occurrence based on the
unscreened model was only 1.2 times greater than that of background locations, indicating fur-
ther that the model was weak and a poor predictor of fisher occurrence. In addition, jackknife
tests for test gain (Fig 3) demonstrated that the unscreened model performed poorly at predict-
ing the distribution of our independent test sample. Although SNOWwas the most important
covariate for predicting the distribution of the unscreened records used for training, it did not
contain any useful information for predicting the distribution of the test data (Fig 3). Lastly, in
contrast to the verifiable fisher model, none of the omission tests for the unscreened model
were statistically significant for cumulative thresholds of 1, 5, or 10.

The fisher distribution map based on the final verifiable fisher model differed substantially
from the distribution map based on the final unscreened fisher model (Fig 4). In the verifiable
fisher map, high-quality habitat comprised 16% of the analysis area and was concentrated pri-
marily in the western Olympic Mountains, the Cascade Range in southern Oregon, the Klam-
ath Mountains in southern Oregon and northern California, and the western Sierra Nevada in
California (Figs 1B and 4A). Medium- and low-quality habitats comprised 28 and 34% of the
analysis area, respectively, and were scattered throughout the area. Non-habitat comprised
22% of the analysis area and was located primarily in interior valleys and at high elevations
(> 1,524 m) in the Olympic Mountains, Cascade Range, and Sierra Nevada. In the unscreened
distribution map, high-quality habitat comprised 30% of the analysis area and was located
primarily at high elevations in the Olympics, Cascades, and Sierra Nevada (Figs 1B and 4B).
Medium-quality habitat had the highest prevalence (65%), low-quality habitat comprised only
5% of the analysis area, and non-habitat was absent altogether.

Mean values for the continuous covariates that were included in both final distribution
models (SNOW and AGE) differed in several ways. In the verifiable distribution map, habitat
quality was inversely related to winter snowfall, and positively associated with stand age, bio-
mass, and canopy cover (Fig 5). In the unscreened distribution map, winter snowfall was high-
est in low-quality habitat (Fig 5), but those habitat conditions represented only 5% of the
analysis area (Fig 4B). For the remaining 95%, habitat quality was positively associated with
winter snowfall. Thus, in the unscreened distribution map, habitat quality was positively asso-
ciated with winter snow and stand age (Fig 5). The relation between habitat quality and topo-
graphic position was unclear, however, due to the poor performance of this model and the
minor importance of this covariate (Figs 3 and 5). The only categorical variable used in our
analyses (VEGCLASS) was included in both final models. For the verifiable model, habitat
quality was positively associated with moderate to closed-canopy (� 40% canopy cover) coni-
fer-dominated forests containing large trees (QMD> 50 cm) and with moderate to closed-
canopy mixed forests (20±65%of basal area composed of hardwoods) with medium-sized
trees (QMD = 25±50 cm). For the unscreened model, habitat quality was positively related to
moderate to closed-canopy conifer-dominated forests with medium-sized trees.

Discussion
Fishers and martens are often confused by observers [21, 25] because they are similar in shape,
color, and size (especially female fishers and male martens), their ranges overlap in some areas,
and both are secretive, semi-arboreal, and occur primarily in densely forested habitats with
high-amounts of residual forest structures that provide denning, resting, and foraging habitat.
In this region, however, fishers typically occur in low- to mid-elevation forests where deep,
soft snow does not accumulate, because it is energetically demanding for them to travel in
such conditions, and they cannot hunt effectively in the subnivean zone [21, 41±42]. Although
remnant marten populations occur in coastal areas of the Pacific States that receive little
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Fig 4. Species distribution maps for the fisher in the Pacific States created using logistic values (relative habitat-
quality indices) generated in Maxent based on (A) the final verifiable fishermodel, and (B) the final unscreened
fishermodel.

https://doi.org/10.1371/journal.pone.0179152.g004
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Fig 5. Mean values for continuous covariates included in the final verifiable and unscreened fisher distribution models
by relative habitat quality classes.Elevation (ELEV) was not included as a covariate in the modeling process, but is presented
here to help elucidate the contribution of SNOW to the final models.

https://doi.org/10.1371/journal.pone.0179152.g005
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snowfall [24], most marten populations are restricted to high-elevation montane forests where
deep snowpacks form. Unlike fishers, martens hunt winter-active small mammals effectively
within the subnivean zone, and their movements are not restricted by snow conditions [24, 30,
53]. Although fishers and martens generally have contrasting relations with elevation and win-
ter snowfall, both species are associated primarily with closed-canopy, conifer-dominated,
mesic forests that contain abundant snags, decadent trees, and logs [54]. Such conditions are
most likely to occur in older forests, as our results indicated for both verifiable and unscreened
models (Fig 5).

The fisher distribution map based on the final verifiable model differed in many substantive
ways from the map based on the final unscreened model (Fig 4). Although it was based on
occurrence records that were limited in geographic extent (Fig 1A), the verifiable fisher model
was statistically strong and produced a compelling species distribution map for the fisher in the
Pacific States (Fig 4A). Relatively large and contiguous areas of high-quality fisher habitat occur
at relatively low elevations (< 915 m) in the western Olympic Mountains in Washington, the
southern Coast Range and western portions of the southern Cascade Range in Oregon, the
Klamath Mountains in Oregon and California, and western portions of the Sierra Nevada in
California (Figs 1B and 4A). These areas correspond closely to the current distribution of fishers
in the Pacific States [23]. In addition, the verifiable fisher model is consistent with previous hab-
itat modeling by the state of Washington, which indicated that the Olympic Mountains con-
tained the largest contiguous blocks of high-quality fisher habitat in western Washington [29].

In the verifiable fisher map, non- and low-quality habitats occur primarily in areas that fish-
ers did not occupy historically, such as high-elevation (> 1,524 m) montane regions, interior
valleys and oak savannas, and areas of human settlement (Figs 1B and 4A) [21, 37]. In other
portions of the analysis area in Washington and Oregon, including many lower elevation for-
ests that supported fishers historically but no longer do [21], the model contains few large,
contiguous areas of high-quality fisher habitat; rather, low- and medium-quality fisher habitats
are common, widespread, and interspersed with relatively small patches of high-quality fisher
habitat. Lastly, as would be expected for a habitat specialist [21, 37], high-quality fisher habitat
is restricted in distribution (16%), and medium- and low-quality fisher habitat increases in
prevalence (28 and 34%, respectively) as habitat quality decreases (Fig 4A).

In contrast, the final unscreened fisher model was statistically weak and the resulting distri-
bution map (Fig 4B) strongly contradicted our understanding of the distribution of fishers in
the Pacific States. In particular, the unscreened distribution map depicts many large, contigu-
ous areas of high-quality habitat at high elevations (> 1,524 m) in the Olympic Mountains,
Cascade Range, and Sierra Nevada (Figs 1B and 4B), including subalpine forests, open park-
lands, and alpine meadows at or above tree line, none of which supported fisher populations
historically [21, 37]. Non-habitat is absent, and low-quality habitat is relatively rare (5%) and
restricted primarily to areas of permanent ice and snow (Fig 4B).

The most influential covariate in both final models was winter snowfall, yet patterns in each
distribution map differed strongly (Fig 5). Although it was not used in the modeling process,
we included mean values for elevation (ELEV) in Fig 5 to help elucidate results for winter
snowfall. In the verifiable distribution map, habitat quality was inversely related to both snow-
fall and elevation, but positively associated with stand age, biomass, and canopy cover (Fig 5).
The most influential vegetation classes were those dominated by large conifers or mixed coni-
fer/hardwood forests with medium-sized trees. Altogether, these patterns conform closely to
our understandings of the fisher's environmental relations in this region [21, 37, 41±42, 53].
In contrast, the best habitat in the unscreened distribution map was located in relatively old
(> 140 yr), conifer-dominated forests at high elevations (mean = 1,412 m) where deep snow-
packs form (Fig 5).
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In addition to being more spatially extensive, the unscreened occurrence records have a
broader temporal range than the verifiable records (1954±1993 and 1989±2001, respectively;
Table 1), which could have confounded our interpretations. During the second half of the 20th

century, most low-elevation forests with high productivity in this region were modified by
human activities or natural disturbances. However, the association between habitat quality
and stand age was similar in both distribution maps. Thus, alterations in low-elevation forests
from logging, agricultural conversion, urbanization, or natural disturbances do not appear to
be an important source of between-model differences. Based on our knowledge of the fisher's
ecological relations, abiotic associations, and current distribution in this region, the verifiable
distribution map represents an accurate and reliable assessment of the status of fisher habitat
at the regional scale in the Pacific States. The unscreened fisher distribution map does not fit
these patterns; rather, it primarily reflects our expectations regarding the distribution of Pacific
martens in the analysis area.

Accordingly, we believe the differences in these distribution maps result primarily from a
high proportion of misidentifications of martens in the unscreened dataset. Standardized
remote-camera surveys targeting fishers were conducted throughout their historical range in
the Pacific States during the 1990s (see Fig 2b in [16]). These surveys only detected fishers in
southwestern Oregon, and northwestern and southern California; i.e., the areas represented by
verifiable occurrence records in Fig 1A. Misidentifications are common in anecdotal occur-
rence records, because they are often based on fleeting glimpses made by individuals who are
unfamiliar with the animal they claim to have seen; in such cases, species identifications are
usually determined using a field guide and the process of elimination ([15]; K. Aubry, unpub-
lished data). Because the unscreened model was statistically weak, devoid of non-habitat, and
contained substantially larger areas of medium- and high-quality habitat than the verifiable
model, it is likely that the unscreened dataset was also contaminated with misidentifications of
other forest carnivores, especially the American mink (Mustela vison) and northern river otter
(Lontra canadensis) [21], which occupy a much broader range of elevations and forest condi-
tions than the fisher or Pacific marten.

The occurrence records we used to build our verifiable fisher model contained few (if any)
misidentifications, but were limited in geographic extent (Fig 1A). Nonetheless, those data
generated a strong species distribution model for the fisher throughout the Pacific States that
aligned closely with our understandings of their current distribution and environmental rela-
tions in this region. Accordingly, our findings provide additional evidence that fisher habitat
relations are driven largely by forest structural conditions and are strikingly consistent
throughout their range in the Pacific States, as Aubry et al. [38] reported. Consequently, accu-
rate species identifications are far more important than representative sampling for generating
reliable distribution models for the fisher in the Pacific States. Although the verifiable fisher
model we generated is both statistically and biologically strong, it was developed to depict
broad-scale patterns in fisher habitat quality throughout the Pacific States. Accordingly, it is
not appropriate to use our verifiable fisher map to evaluate patterns in potential fisher habitat
at finer spatial scales.

Our findings demonstrate that for rare, elusive, and cryptic species that are easily con-
fused with more common and broadly distributed species, it is essential practitioners ensure
that misidentifications are rare or non-existent when generating species distribution models
from occurrence records. Such misidentifications are particularly insidious in a conserva-
tion context, because as the target species declines in abundance relative to the contaminat-
ing species, the proportion of false positives will increase [17]. We strongly believe that
anecdotal occurrence records should not be used to generate species distribution models,
but if such data are used in modeling efforts, resulting models should be tested with
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verifiable occurrence records to ensure that the dataset has not been contaminated with mis-
identifications of other species.

Supporting information
S1 Appendix. Geographic coordinates (Albers, NAD 1983) of verifiable and unscreened
fisher occurrence records from the Pacific coastal states (1954±2001) used in our analyses.
(XLSX)
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