Shape selection in Landsat time series: a tool for monitoring forest dynamics

GRETCHEN G. MOISEN1, MARY C. MEYER2, TODD A. SCHROEDER1,3, XIYUE LIAO2, KAREN G. SCHLEEWEIS1, ELIZABETH A. FREEMAN1 and CHRIS TONEY1

1Rocky Mountain Research Station, US Forest Service, 507 25th Street, Ogden, UT 84401, USA, 2Department of Statistics, Colorado State University, 212 Statistics Building, Fort Collins, CO 80523-1877, USA, 3ASRC Federal InuTeq, U.S. Geological Survey, Earth Resources Observation and Science Center, Sioux Falls, SD 57198, USA

Abstract

We present a new methodology for fitting nonparametric shape-restricted regression splines to time series of Landsat imagery for the purpose of modeling, mapping, and monitoring annual forest disturbance dynamics over nearly three decades. For each pixel and spectral band or index of choice in temporal Landsat data, our method delivers a smoothed rendition of the trajectory constrained to behave in an ecologically sensible manner, reflecting one of seven possible ‘shapes’. It also provides parameters summarizing the patterns of each change including year of onset, duration, magnitude, and pre- and postchange rates of growth or recovery. Through a case study featuring fire, harvest, and bark beetle outbreak, we illustrate how resultant fitted values and parameters can be fed into empirical models to map disturbance causal agent and tree canopy cover changes coincident with disturbance events through time. We provide our code in the R package ShapeSelectForest on the Comprehensive R Archival Network and describe our computational approaches for running the method over large geographic areas. We also discuss how this methodology is currently being used for forest disturbance and attribute mapping across the conterminous United States.

Keywords: attribution, canopy change activities, change agents, forest disturbance, landcover change, R package, regression splines, tree canopy cover

Received 16 January 2016; revised version received 15 April 2016 and accepted 28 April 2016

Introduction

Understanding trends in forest disturbance and their effects on forest parameters such as tree canopy cover and biomass is important for carbon assessments, as well as for forest management decisions and scientific investigations across the globe. Data from the Landsat suite of remote sensing satellites offer a historically robust collection of earth observations which can be used to understand forest dynamics at a variety of spatial and temporal scales. Collected across many parts of the globe at least every 16 days, Landsat offers both the spatial (30 m pixels) and spectral capabilities (seven reflectance bands covering the visible, near-infrared, and shortwave-infrared wavelengths) necessary to effectively study vegetation disturbance and recovery dynamics (Goward et al., 2008; Cohen et al., 2016). Starting in 2008, the longest continuous record of medium resolution (<50 m) satellite images became freely available to the scientific community (Woodcock et al., 2008). This free, temporally dense data from Landsat (and other new Landsat-like sensors, e.g., Sentinel 2A, Drusch et al., 2012) opens the door for dramatic new analyses of land use land cover change that are affecting this planet (Wulder et al., 2012; Kennedy et al., 2014).

Tremendous progress has been made to process and analyze forest dynamics using time series of Landsat imagery. Recent work uses annual observations of Landsat bands or indices to identify anomalies or disturbances in normal growth patterns of forests, either through fitting the trajectories directly, or through the application of thresholding approaches. Some widely used algorithms include the following: the Vegetation Change Tracker (VCT) (Huang et al., 2010a), Vegetation Continuous Fields (VCT) (Potapov et al., 2012), LandTrendr (Kennedy et al., 2010), Continuous Change Detection and Classification (CCDC) (Zhu et al., 2012), Multi-Index Integrated Change Algorithm (MIICA) (Fry et al., 2011), a Fourier regression algorithm (Brooks et al., 2014), and a gradual ecosystem change algorithm (Vogelmann et al., 2012).

Here we present a new method based on the nonparametric statistical literature (Meyer, 2008, 2013b) to objectively fit Landsat trajectories developed with four
different spectral indices. The method was developed for the conterminous United States as part of the North American Forest Dynamic project (Goward et al., 2008; Masek et al., 2013). Through exploration of data collected in diverse pilot scenes, seven possible ‘shapes’ were identified to represent common spectral responses to different disturbances occurring in various forest ecosystems throughout the country. The algorithm picks the optimal shape based on goodness of fit and a penalty for model complexity. Output from this algorithm is not intended as a final change detection map. Rather, the ‘shapes’ and their associated metrics can be used as predictor variables for modeling and mapping a large suite of both continuous and discrete forest attributes, as well as ancillary data to improve precision in estimates of forest attributes through time.

In this manuscript, we outline the preprocessing steps for developing the Landsat trajectories, give details of the shape selection algorithm, then provide a simple case study to illustrate how the shape selection output can be used to map forest disturbance agents (discrete) and tree canopy cover (continuous) through time in a Landsat scene located in the central Rocky Mountains of Colorado, USA. We also discuss how this methodology is currently being applied for forest disturbance and attribute mapping across the conterminous United States.

Materials and methods

Landsat data
Preparation Landsat time series for input into the shapes algorithm requires four steps. First, a near cloud free image is selected during peak growing season for each year in the time series (1984–2010 in this case study). Second, the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) (Masek et al., 2006) is run to atmospherically correct the images and convert them from digital numbers to earth’s surface reflectance. Third, a clear view compositing algorithm is run to replace any pixels with bad data, cloud, or shadow with clear pixels from peak green growing season imagery within the same year (Huang et al., 2010b). Pixel values in image years where a clear view is not obtainable are linearly interpolated from their nearest temporal neighbors in the Landsat scene. Fourth, Band 5 (B5; short-wave infrared) is used directly, along with three vegetation indices including: the forestness index (FI) (Huang et al., 2008, 2009) derived as an integrated z-score from the visible and short-wave IR bands, the normalized burn ratio (NBR) (Key & Benson, 2005) derived from the near-infrared and short-wave bands, and the normalized difference vegetation index (NDVI) (Rouse et al., 1973) derived from the visible and near-infrared bands.

We then run the shape selection algorithm on each pixel’s spectral trajectory over the 26-year time series for each of the four chosen indices. Using multiple indices helps improve detection of the wide range of disturbance agents which occur in forested ecosystems (Schroeder et al., 2011). For example, short-wave infrared data (e.g., B5, FI, and NBR) are sensitive to changes in leaf moisture content and shadowing, and near-infrared vegetation indices (e.g., NDVI and NBR) are sensitive to changes in plant vigor and canopy density. In order for these indices to respond to disturbance in a similar numerical direction, NBR and NDVI were multiplied by −1 and increased by a constant large enough to ensure all values were positive. The shapes algorithm can be applied to any other metrics whose temporal patterns are described by the seven possible shapes, such as tasseled cap indices (Crist & Cicone, 1984).

Shape selection
We have a scatterplot of Landsat band or index measurements y_i against times t_i, for $i = 1, \ldots, n$, where it is assumed that the measurements are signal plus noise, that is,

$$ y_i = f(t_i) + e_i, $$

where f is the trend over time and e_i is random error. We assume that the trend functions represent various possible phenomena captured by Landsat trajectories (based on B5, FI, NDVI, and –NBR measures) on a single pixel through time.

Seven trend patterns (‘shapes’) were identified to reflect the behavior of these forested Landsat pixel trajectories under a range of disturbance scenarios (Fig. 1). A flat shape indicates a forest in a relatively stable condition. A decreasing (decr) shape indicates a forest accumulating biomass, potentially in a recovery or young growth stage. A sudden jump (2jump) is indicative of a change in forest canopy or structure that happens over a relatively short period of time, typical of a harvest or fire pattern. A double jump (1jump) is indicative of two distinct disturbance events, such as two harvests over short rotation periods, or a fire followed by a salvage harvest. A vee indicates a forest that is, at first, growing or stable, but then encounters a slow disturbance mechanism that results in a gradual increase in reflectance or values of the vegetation indices common in forest cover loss. Conversely, an inverted vee (inve) illustrates a spectral signature of a forest in gradual decline, followed by a gradual recovery. Finally, an increase (1inve) is a linear pattern that reflects instances where a disturbance may have occurred very early in (or before) the time series of imagery began, then shows signs of increasing spectral bands/indices related to slowly declining canopy. Because of the random errors, the measurements will not exactly follow any of these trend functions, and the goal of our shapes algorithm is to determine which of the shapes best describes the underlying phenomenon in each trajectory. Below we describe details on how we fit all shapes to each scatterplot (bands/index values through time on a single pixel) and apply an information criterion to choose which shape fits best.

For all shapes, we assume the trend is ‘smooth’, that is, the first derivative is continuous (except for jumps within the jump and 2jump shapes). Quadratic regression spline functions are flexible smooth curves appropriate for estimating these trends. These are linear combinations of the smooth basis functions in Fig. 2a, with knots ξ_1, \ldots, ξ_k marked as x...
(the times t_i are scaled to be in [0,1]). Between each pair of knots, each basis function is a piece of a parabola, and these parabolas are pieced together smoothly so that the first derivative is continuous and piecewise linear (Fig. 2a).

Let $d_j(t); j = 1, \ldots, m$ be the basis functions (m is the number k of knots, plus one). Then, a ‘spline function’ with these knots is

$$f(t) = \sum_{j=1}^{m} b_j d_j(t),$$

and this is guaranteed to be smooth because its components are. Now given our scatterplot, we can find $b = (b_1, \ldots, b_m)$ to minimize

$$\text{SSE} = \sum_{i=1}^{n} \left[y_i - \sum_{j=1}^{m} b_j d_j(t_i) \right]^2.$$

This is the unconstrained spline fit and is shown as the blue curve on the scatterplot of observations in Fig. 2b. The

Fig. 1 Seven possible ‘shapes’ describing temporal patterns in Landsat bands and indices. Flat and decreasing shapes are often associated with stable or growing forest conditions. Jumps and inverted vee’s often reflect a rapid reduction in forest canopy due to events like harvest and fire. Vee’s and increasing shapes often capture slow onset disturbances such as insect and disease or drought. A double jump enables capture of two disturbance events in one trajectory.

Fig. 2 The building blocks for many nonparametric fits to scatterplots are spline basis functions, shown on the left in (a). An unconstrained regression spline will piece together basis functions to form a very erratic fit [blue line on the right in (b)]. Newly developed constrained regression splines (Meyer 2013) force the fits to behave in a certain way. The black line on the right is an example of a regression spline constrained to always be decreasing.

Published 2016.
This article is a U.S. Government work and is in the public domain in the USA, Global Change Biology, doi: 10.1111/gcb.13358
We can constrain the fit to be decreasing on \([0, c]\) for some \(c \in (0, 1)\), and subsequently increasing on \([c, 1]\) (the \(\text{vee}\) shape) by swapping the sign of the last rows of \(S\), corresponding to the knots to the right of \(c\). The \(\text{inv}\) shape is increasing and then decreasing. The \(\text{jump}\) shape is decreasing, then has a discontinuity or jump, then is decreasing again. We can again define a matrix to constrain the spline coefficients \(b\) to produce such a jump. The \(2\text{jump}\) shape follows the decreasing patterns from the end of the \(\text{jump}\) shape with a second discontinuity, again ending with a decreasing trend. The best ‘change point’, or point of discontinuity, has to be estimated for the \(\text{vee}\), \(\text{inv}\), and \(\text{jump}\). To do this, we fit the scatterplot \(k - 1\) times with \(c\) in between the observed knot points, and we choose the change point that minimizes the SSE over all fits. Two change points have to be estimated for the \(2\text{jump}\) shape which involves fitting the scatter plot \(n-3\) choose two times, requiring change points to be at least 2 years apart.

For each trajectory, the algorithm fits all seven shapes, finding the best change point(s) for the \(\text{vee}\), \(\text{inv}\), \(\text{jump}\), and \(2\text{jump}\) shapes. The information criterion used to choose between the fits is the SSE penalized by adding a measure of model complexity that is a function of the degrees of freedom of the model. For the unconstrained spline, the degrees of freedom are the number of spline basis functions; the eight degrees of freedom in the above example make the fit quite flexible; in fact, it ‘over-fits’ by following the wiggles in the scatterplot caused by the error rather than the underlying trend. The decreasing fit sets some of the slopes at the knots to zero, thus ‘using’ fewer degrees of freedom. Unlike in the unconstrained case, the degrees of freedom for the constrained models are a random variable (Meyer, 2008), taking integer values that can be as small as zero or as large as the number of basis functions. We use the null expected degrees of freedom as a measure of model complexity. For a given shape, this is computed by generating many data sets from a trend, and taking the average of the used degrees of freedom of the fits. The null expected degrees of freedom is determined by the shape, basis function specification, and sample size. For the change-point models, we start with the degrees of freedom for the best SSE change point and add one degree of freedom for each change point in the shape. The \(\text{flat}\) shape only uses one degree of freedom because it is essentially a linear model with a slope of 0. The \(\text{incr}\) shape uses only 1.5 degrees of freedom because it is a linear model where the slope is estimated, but is constrained to be >0. For more information about computing constrained fits and degrees of freedom, see Meyer (2013a). For each trajectory, all the shapes are fit and an information criterion (IC) is computed for each fit. The smallest information criterion is the

![Fig. 3 Landsat path 32 row 35, shown in black, is located in the mountains of northern Colorado near Steamboat Springs. The red box indicates a small clip of this scene used in several of the mapping illustrations.](image)

Table 1 Number of training plots by disturbance causal agent used in the forest disturbance model. Plots in the row labeled ‘Probabilistic’ were collected under a stratified random design. Plots in the row labeled ‘Purposive’ were selected to ensure each agent class had a sufficient number of plots for training the empirical model.

<table>
<thead>
<tr>
<th></th>
<th>Conversion</th>
<th>Fire</th>
<th>Harvest</th>
<th>Stress</th>
<th>Stable</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probabilistic</td>
<td>0</td>
<td>25</td>
<td>14</td>
<td>76</td>
<td>114</td>
<td>229</td>
</tr>
<tr>
<td>Purposive</td>
<td>14</td>
<td>58</td>
<td>18</td>
<td>14</td>
<td>8</td>
<td>112</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>83</td>
<td>32</td>
<td>90</td>
<td>122</td>
<td>341</td>
</tr>
</tbody>
</table>
winner. Two options for the information criteria are considered. One is the standard Bayesian Information Criteria,

$$IC_{BIC} = -n \log(SSE) + \log(n) \times edf_0$$

The other is the Cone Information Criterion (Meyer, 2008) which tends to provide greater sensitivity to choosing shapes with change points,

$$IC_{CIC} = - \log(SSE) + \log \left(\frac{2 \times (edf_0 + 1)}{(n - 1 - 1.5 \times edf_0) + 1} \right)$$

Once the best shape is chosen for each pixel, a number of parameters are derived from the model fit that summarize information about the pattern of that trajectory. These parameters include the winning shape, year(s) of change point(s), two measures of magnitude for each change point (i.e., absolute and relative magnitude), duration (i.e., the number of years or image intervals that the spectral change occurs), annual rate of growth prior to change point(s), and annual recovery rate after the change point(s) (Appendix S1). Another useful set of outputs from the shape selection process is the predicted values from the fitted trajectories which provide a smoothed representation of the spectral pattern found at each pixel.

Case study

As an example, we apply the shape-fitting routine to one Landsat scene (path32 row35), located in the mountains of northern Colorado, USA, near Steamboat Springs (Fig. 3). Forests dominate the landscape with approximately 80% of the area occupied by spruce/fir, aspen, and lodgepole pine types. Pinyon juniper and oak woodlands occupy more xeric sites on the fringe of the rangelands. The region is interesting for its complex mix of forest disturbance regimes and presence of large wildfires, harvesting activities, as well as beetle outbreak (labeled here as ‘stress’). Although this method is currently being applied nationally, this single scene is used to illustrate the use of outputs from the shapes algorithm in two different applications.

Disturbance attribution maps

Our first application illustrates how to map forest disturbance attribution classes at 30 m resolution annually (1984–2010) in the Colorado scene. Attribution classes included disturbance from fire, harvest, stress (i.e., subtle change brought on by insects, disease, and drought), and stable forest (or no disturbance). The target population is defined by a temporal forest mask layer produced by the VCT disturbance mapping algorithm (Huang et al., 2010a). This mask was also used to form two prestratification classes which included persistent forest and disturbed forest. Training data consisted of a stratified random sample of 229 plots (50% in the disturbed forest stratum, and 50% in the persistent forest stratum) collected using human interpretations made on sample plots using annual Landsat imagery, visualizations of spectral trajectories, and aerial photography through an interpretation tool, TimeSync (Cohen et al., 2010). An additional 112 plots were purposively sampled to augment training data for modeling. Excluding the samples for recovering forests, the number of plots by disturbance causal agent and sampling scheme is given in Table 1.
Modeling disturbance causal agent through time was a two-step process we call ‘flat-to-annual’. First, we built a temporally indifferent (flattened through time) disturbance attribution model where the relationship between the first disturbance on the plots was modeled empirically as a function of a set of spatially explicit predictor variables through Random Forests (Breiman, 2001) using the R package MODELMAP (Freeman et al., 2009). Temporally dynamic predictor variables from the shape selection process included shape, magnitude, duration, pre-, and postdisturbance growth/recovery rates from each of the four spectral bands/indices. Temporally static predictor variables included elevation, forest type derived from Ruefenacht et al. (2008), and sine and consign of aspect. Second, the year of a predicted disturbance was modeled using rules applied to shape parameters involving shape, disturbance year, and duration (Fig. 4) through the flat2parameters function in the ShapeSelectForest package (Meyer et al., 2015).

Validation of the attribution model included examining the out-of-bag contingency table, and estimates of the errors of omission and commission using only the probabilistic training plots weighted appropriately to account for the prestratified design. For the year assignment, the percentage of plots whose disturbance was within specified time intervals of the truth (±0 years, 1 year, 2–5 years, 5–10 years, and >10 years) were computed.

Mapping tree canopy cover

In our second application, we illustrate how to use shapes output to map tree canopy cover through time. Tree canopy cover is a continuous variable ranging from 0% to 100% within the same forested target population as above. Training data consisted of a systematic sample of 326 plots collected by the US Forest Service, Forest Inventory and Analysis (FIA) program (Reams et al., 2005) ranging in date from 2000 to 2010.

Fig. 5 The shapes algorithm produces dramatically different spatial patterns using different spectral bands/indices for the same small geographic area in the Colorado scene.
Predictor variables included both the ‘raw’ and ‘smoothed’ spectral values from each of the four bands/indices at the date corresponding to the year a particular plot was visited in the field. ‘Raw’ refers to values prior to smoothing from the shapes algorithm, ‘smoothed’ the converse. Additional static predictor layers included those used in the disturbance mapping above and in Freeman et al. (2015). We developed a single random forest model using the training data from 2000 to 2010, then applied that model to predict tree canopy cover for all 26 images (1984–2010) in the Colorado time series.

Out-of-bag RMSE and Spearman and Pearson correlation coefficients were used to validate the models and compare performance using both the smoothed and raw spectral values, with, and without static variables.

Results and discussion

Disturbance attribution maps

The shapes output for each of the four bands/indices produced dramatically different spatial patterns (Fig. 5). Figure 6 illustrates the distribution of disturbance agents within the winning shapes by band. Together, these figures illustrate how the shapes algorithm provides unique spatial and temporal information from the bands/indices to help the empirical Random Forests model distinguish between disturbance agents.

The first model in this application, the flat-to-annual disturbance attribution model, predicted the disturbance agent at each Landsat pixel in the scene regardless of year. Table 2 illustrates out-of-bag accuracies obtained by disturbance agent through the entire time series. Here, we have partitioned the contribution of the shapes parameters by running the model with static variables alone, dynamic (shapes) variables, and the two groups combined, illustrating accuracies obtained under each scenario.

The second model in this application annualized the temporally flattened prediction, assigning a date. The majority of the disturbed plots (71.4%) were given the exact year of disturbance. Another 19.5% of the plot predictions fell within 1–3 years of the correct date; 2.6% were within 4–6 years; another 2.6% off by 7–9 years; and finally 3.9% fell 10 years or greater beyond the true date from the reference plots. Figure 7 illustrates patterns of disturbance for a sample of years in the time series, showing the progression of insect disturbance throughout the scene. It should be noted that in this scene, 97% of the training plots had only one disturbance. In other parts of the country dominated by frequent harvests, or where substantially more training data are collected, multiple disturbances could be handled using this same methodology, but adding new classes like ‘Harvest–Harvest’, ‘Fire–Harvest’, and ‘Stress–Fire’. The behavior of the shapes algorithm for a few instances where we had training data with multiple disturbances is illustrated in Appendix S2.

Modeling disturbance in two steps allows for the capture of disturbance events whose detection in the training data does not coincide exactly with the timing of detection using the shapes algorithm on the spectral data. It is the convergence of evidence in space that

Fig. 6 Distribution of disturbance agent within the selected shapes expressed as percent of training plots. This figure illustrates that the shape parameters for each band contributes different information to the empirical models of forest disturbance. For all four bands, the FLAT, DECR, and INCR shapes are dominated first by stable conditions then by the difficult to decipher stress. VEE’s are predominantly stress. JUMP’s and INV’s are dominated by fire in this particular landscape, but still carry a large proportion of stable as well as the other disturbance agents.
gives power to the disturbance agent model, while assigning the timing of disturbance through a rule-based approach allows the inclusion of human logic.

Table 2 Errors of omission and commission using only the data from the probabilistic sample, accounting for the stratum weights and including an estimate of standard error, are shown for three model runs using: static predictors only, dynamic predictors only, and all the predictor variables together. The decrease in errors of omission and commission illustrate the relative contribution of these predictor sets to classifying agents of change.

<table>
<thead>
<tr>
<th>Agent</th>
<th>Commission error (SE)</th>
<th>Omission error (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Static variables</td>
<td>Dynamic variables</td>
</tr>
<tr>
<td>Fire</td>
<td>0.751 (0.064)</td>
<td>0.522 (0.091)</td>
</tr>
<tr>
<td>Harvest</td>
<td>0.773 (0.153)</td>
<td>0.364 (0.146)</td>
</tr>
<tr>
<td>Stable</td>
<td>0.431 (0.049)</td>
<td>0.346 (0.047)</td>
</tr>
<tr>
<td>Stress</td>
<td>0.459 (0.071)</td>
<td>0.354 (0.066)</td>
</tr>
</tbody>
</table>

Table 3 Out-of-bag RMSE, Spearman, and Pearson correlation coefficients obtained using the raw spectral values, raw combined with static predictors, smoothed spectral values, and smoothed combined with static predictors. Little was gained in terms of these accuracy metrics using the smoothed over the raw spectral predictors, but adding static predictors to the spectral data did improve the model outcomes.

<table>
<thead>
<tr>
<th>Model</th>
<th>RMSE</th>
<th>Spearman</th>
<th>Pearson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw</td>
<td>21.68</td>
<td>0.48</td>
<td>0.52</td>
</tr>
<tr>
<td>Raw + static</td>
<td>19.15</td>
<td>0.61</td>
<td>0.65</td>
</tr>
<tr>
<td>Smoothed</td>
<td>20.88</td>
<td>0.54</td>
<td>0.56</td>
</tr>
<tr>
<td>Smoothed + static</td>
<td>19.17</td>
<td>0.63</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Tree canopy cover map

Fitted values can also be used to empirically model and map tree canopy cover through the duration of the Landsat time series. This allows the tracking of forest attributes and their changes coincident with disturbance events. We compare the out-of-bag accuracy metrics from models built using combinations of raw, smoothed, and static predictor variables in Table 3. While using smoothed values from the shapes instead of raw values does not markedly improve the accuracy metrics, it does stabilize the temporal pattern considerably, preventing tree canopy cover from jumping erratically through time (Fig. 8). Further, raw predictions themselves could be run through the shapes algorithm, similar in spirit to approaches invoked by (Powell et al., 2010; Pflugmacher et al., 2012, 2014).
The shapes algorithm described here is available as the ShapeSelectForest package (Meyer et al., 2015) on the CRAN. The package currently consists of three major sets of functions. First, the shape function fits all shapes and chooses the winning shape for each trajectory. Second,
the shapetparams function derives parameters for empirical models from the shape selection output. Third, a suite of ‘flat-to-annual’ functions annualize the spatial predictions of forest disturbance agent by deriving a year and duration of disturbance.

Using the NASA Earth Exchange (NEX) computing environment (Nemani et al., 2011), we have implemented shapes algorithm on 434 Landsat scenes covering the conterminous United States with 28 years of imagery at 30 m resolution. For national runs, each scene was processed in parallel, using R’s SNOW package, across 434 nodes with 16 cores for a total national run time of approximately 21 h, excluding the double jump. Scene-level trials with the double jump option suggest a fivefold increase in computing time over forests if all seven shapes are fit at once. However, computational time for double jumps can be reduced by first filtering out areas with flat, decreasing, or increasing patterns.

US applications

This paper documents methods currently being applied across the conterminous United States using the Landsat data record and forest history metrics from the shapes parameters coupled with information from VCT to map the location and timing of harvest, fire, stress, wind, and conversion events on forest land cover between 1985 and 2010 (Moisen et al., 2012). Work is underway to classify and date two sequential disturbance agents through the double jump and subtle inflections in other shapes. Parameters from the shapes algorithm are being tested for their contributions to mapping changes in tree canopy cover in the next round of the National Land Cover Database (Coulston et al., 2012). The Landscape Change Monitoring System (LCMS) (Masek & Healey, 2012) is also leveraging the diversity of forest dynamics information derived from multiple algorithms including shapes, LandTrendr, VCT, CCDC, MIICA, and others through an empirical modeling approach to disturbance mapping in the United States, ultimately over the full Landsat data record (1972—Current). As part of this effort, the shapes algorithm will be implemented in Google Earth Engine in 2016, providing shapes parameters and fitted trajectories for use in other disturbance, tree canopy cover, and biomass mapping projects.

Acknowledgements

The authors would like to thank NASA’s Carbon Cycle and Applied Science programs (grant numbers NNX11AJ78G and NNH14AY63I) as well as the very talented scientists and staff at NASA’s Earth Exchange, University of Maryland, and the US Forest Service, FIA Program. Thanks also go out to the members of the LCMS team for their efforts pushing change mapping forward in the US. In addition, we are grateful to the anonymous reviewers whose thoughtful comments helped in our revisions.

References

Key C, Benson N (2005) Landscape assessment: remote sensing of severity, the normalized burn ratio and ground measure of severity, the composite burn index. FIREMON: Fire effects monitoring and inventory system Ogden, Utah: USDA Forest Service, Rocky Mountain Res. Station.

Published 2016.

This article is a U.S. Government work and is in the public domain in the USA, Global Change Biology, doi: 10.1111/gcb.13358

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Appendix S1. Details on parameters derived from the shapes algorithm.

Appendix S2. Examples of the behavior of the shapes algorithm in the presence of two disturbances through time.