
TECHN ICAL ADVANCE

Shape selection in Landsat time series: a tool for
monitoring forest dynamics
GRETCHEN G . MOI SEN 1 , MARY C . MEYER 2 , TODD A . SCHROEDER 1 , 3 , X I YUE L IAO 2 ,

KAREN G . SCHLEEWE I S 1 , E L I ZABETH A . FREEMAN1 and CHRIS TONEY1

1Rocky Mountain Research Station, US Forest Service, 507 25th Street, Ogden, UT 84401, USA, 2Department of Statistics,

Colorado State University, 212 Statistics Building, Fort Collins, CO 80523-1877, USA, 3ASRC Federal InuTeq, U.S. Geological

Survey, Earth Resources Observation and Science Center, Sioux Falls, SD 57198, USA

Abstract

We present a new methodology for fitting nonparametric shape-restricted regression splines to time series of Landsat

imagery for the purpose of modeling, mapping, and monitoring annual forest disturbance dynamics over nearly

three decades. For each pixel and spectral band or index of choice in temporal Landsat data, our method delivers a

smoothed rendition of the trajectory constrained to behave in an ecologically sensible manner, reflecting one of seven

possible ‘shapes’. It also provides parameters summarizing the patterns of each change including year of onset, dura-

tion, magnitude, and pre- and postchange rates of growth or recovery. Through a case study featuring fire, harvest,

and bark beetle outbreak, we illustrate how resultant fitted values and parameters can be fed into empirical models

to map disturbance causal agent and tree canopy cover changes coincident with disturbance events through time. We

provide our code in the R package ShapeSelectForest on the Comprehensive R Archival Network and describe our

computational approaches for running the method over large geographic areas. We also discuss how this methodol-

ogy is currently being used for forest disturbance and attribute mapping across the conterminous United States.
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Introduction

Understanding trends in forest disturbance and their

effects on forest parameters such as tree canopy cover

and biomass is important for carbon assessments, as

well as for forest management decisions and scientific

investigations across the globe. Data from the Landsat

suite of remote sensing satellites offer a historically

robust collection of earth observations which can be

used to understand forest dynamics at a variety of spa-

tial and temporal scales. Collected across many parts of

the globe at least every 16 days, Landsat offers both the

spatial (30 m pixels) and spectral capabilities (seven

reflectance bands covering the visible, near-infrared,

and shortwave-infrared wavelengths) necessary to

effectively study vegetation disturbance and recovery

dynamics (Goward et al., 2008; Cohen et al., 2016).

Starting in 2008, the longest continuous record of med-

ium resolution (<50 m) satellite images became freely

available to the scientific community (Woodcock et al.,

2008). This free, temporally dense data from Landsat

(and other new Landsat-like sensors, e.g., Sentinel 2A,

Drusch et al., 2012) opens the door for dramatic new

analyses of land use land cover change that are affect-

ing this planet (Wulder et al., 2012; Kennedy et al.,

2014).

Tremendous progress has been made to process and

analyze forest dynamics using time series of Landsat

imagery. Recent work uses annual observations of

Landsat bands or indices to identify anomalies or dis-

turbances in normal growth patterns of forests, either

through fitting the trajectories directly, or through the

application of thresholding approaches. Some widely

used algorithms include the following: the Vegetation

Change Tracker (VCT) (Huang et al., 2010a), Vegetation

Continuous Fields (VCT) (Potapov et al., 2012), Land-

Trendr (Kennedy et al., 2010), Continuous Change

Detection and Classification (CCDC) (Zhu et al., 2012),

Multi-Index Integrated Change Algorithm (MIICA)

(Fry et al., 2011), a Fourier regression algorithm (Brooks

et al., 2014), and a gradual ecosystem change algorithm

(Vogelmann et al., 2012).

Here we present a new method based on the non-

parametric statistical literature (Meyer, 2008, 2013b) to

objectively fit Landsat trajectories developed with four
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different spectral indices. The method was developed

for the conterminous United States as part of the North

American Forest Dynamic project (Goward et al., 2008;

Masek et al., 2013). Through exploration of data col-

lected in diverse pilot scenes, seven possible ‘shapes’

were identified to represent common spectral responses

to different disturbances occurring in various forest

ecosystems throughout the country. The algorithm

picks the optimal shape based on goodness of fit and a

penalty for model complexity. Output from this algo-

rithm is not intended as a final change detection map.

Rather, the ‘shapes’ and their associated metrics can be

used as predictor variables for modeling and mapping

a large suite of both continuous and discrete forest attri-

butes, as well as ancillary data to improve precision in

estimates of forest attributes through time.

In this manuscript, we outline the preprocessing

steps for developing the Landsat trajectories, give

details of the shape selection algorithm, then provide a

simple case study to illustrate how the shape selection

output can be used to map forest disturbance agents

(discrete) and tree canopy cover (continuous) through

time in a Landsat scene located in the central Rocky

Mountains of Colorado, USA. We also discuss how this

methodology is currently being applied for forest dis-

turbance and attribute mapping across the contermi-

nous United States.

Materials and methods

Landsat data

Preparing Landsat time series for input into the shapes algo-

rithm requires four steps. First, a near cloud free image is

selected during peak growing season for each year in the time

series (1984–2010 in this case study). Second, the Landsat

Ecosystem Disturbance Adaptive Processing System

(LEDAPS) (Masek et al., 2006) is run to atmospherically correct

the images and convert them from digital numbers to earth’s

surface reflectance. Third, a clear view compositing algorithm

is run to replace any pixels with bad data, cloud, or shadow

with clear pixels from peak green growing season imagery

within the same year (Huang et al., 2010b). Pixel values in

image years where a clear view is not obtainable are linearly

interpolated from their nearest temporal neighbors in the

Landsat time series. Fourth, Band 5 (B5; shortwave infrared) is

used directly, along with three vegetation indices including:

the forestness index (FI) (Huang et al., 2008, 2009) derived as

an integrated z-score from the visible and short-wave IR

bands, the normalized burn ratio (NBR) (Key & Benson, 2005)

derived from the near-infrared and short-wave bands, and the

normalized difference vegetation index (NDVI) (Rouse et al.,

1973) derived from the visible and near-infrared bands.

We then run the shape selection algorithm on each pixel’s

spectral trajectory over the 26-year time series for each of the

four chosen indices. Using multiple indices helps improve

detection of the wide range of disturbance agents which occur

in forested ecosystems (Schroeder et al., 2011). For example,

short-wave infrared data (e.g., B5, FI, and NBR) are sensitive to

changes in leaf moisture content and shadowing, and near-

infrared vegetation indices (e.g., NDVI and NBR) are sensitive

to changes in plant vigor and canopy density. In order for these

indices to respond to disturbance in a similar numerical direc-

tion, NBR and NDVI were multiplied by �1 and increased by a

constant large enough to ensure all values were positive. The

shapes algorithm can be applied to any other metrics whose

temporal patterns are described by the seven possible shapes,

such as tasseled cap indices (Crist & Cicone, 1984).

Shape selection

We have a scatterplot of Landsat band or index measurements

yi against times ti, for i = 1, . . . n, where it is assumed that the

measurements are signal plus noise, that is,

yi ¼ fðtiÞ þ ei;

where f is the trend over time and ɛi is random error. We

assume that the trend functions represent various possible

phenomena captured by Landsat trajectories (based on B5, FI,

-NDVI, and –NBR measures) on a single pixel through time.

Seven trend patterns (‘shapes’) were identified to reflect the

behavior of these forested Landsat pixel trajectories under a

range of disturbance scenarios (Fig. 1). A flat shape indicates a

forest in a relatively stable condition. A decreasing (decr)

shape indicates a forest accumulating biomass, potentially in a

recovery or young growth stage. A sudden jump is indicative

of a change in forest canopy or structure that happens over a

relatively short period of time, typical of a harvest or fire pat-

tern. A double jump (2jump) is indicative of two distinct dis-

turbance events, such as two harvests over short rotation

periods, or a fire followed by a salvage harvest. A vee indicates

a forest that is, at first, growing or stable, but then encounters

a slow disturbance mechanism that results in a gradual

increase in reflectance or values of the vegetation indices com-

mon in forest cover loss. Conversely, an inverted vee (inv)

illustrates a spectral signature of a forest in gradual decline,

followed by a gradual recovery. Finally, an increase (incr) is a

linear pattern that reflects instances where a disturbance may

have occurred very early in (or before) the time series of ima-

gery began, then shows signs of increasing spectral bands/

indices related to slowly declining canopy. Because of the ran-

dom errors, the measurements will not exactly follow any of

these trend functions, and the goal of our shapes algorithm is

to determine which of the shapes best describes the underly-

ing phenomenon in each trajectory. Below we describe details

on how we fit all shapes to each scatterplot (bands/index val-

ues through time on a single pixel) and apply an information

criterion to choose which shape fits best.

For all shapes, we assume the trend is ‘smooth’, that is, the

first derivative is continuous (except for jumps within the

jump and 2jump shapes). Quadratic regression spline functions

are flexible smooth curves appropriate for estimating these

trends. These are linear combinations of the smooth

basis functions in Fig. 2a, with knots n1; . . .; nk marked as x
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(the times ti are scaled to be in [0,1]). Between each pair of

knots, each basis function is a piece of a parabola, and these

parabolas are pieced together smoothly so that the first deriva-

tive is continuous and piecewise linear (Fig. 2a).

Let djðtÞ; j ¼ 1; . . .;m be the basis functions (m is the number

k of knots, plus one). Then, a ‘spline function’ with these knots

is

fðtÞ ¼
Xm
j¼1

bjdjðtÞ;

and this is guaranteed to be smooth because its components

are. Now given our scatterplot, we can find b ¼ ðb1; . . .; bmÞ to
minimize

SSE ¼
Xn

i¼1
yi �

Xm
j¼1

bjdjðtiÞ
2
4

3
5
2

This is the unconstrained spline fit and is shown as the blue

curve on the scatterplot of observations in Fig. 2b. The
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Fig. 1 Seven possible ‘shapes’ describing temporal patterns in Landsat bands and indices. Flat and decreasing shapes are often asso-

ciated with stable or growing forest conditions. Jumps and inverted vee’s often reflect a rapid reduction in forest canopy due to events

like harvest and fire. Vee’s and increasing shapes often capture slow onset disturbances such as insect and disease or drought. A double

jump enables capture of two disturbance events in one trajectory.
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Fig. 2 The building blocks for many nonparametric fits to scatterplots are spline basis functions, shown on the left in (a). An uncon-

strained regression spline will piece together basis functions to form a very erratic fit [blue line on the right in (b)]. Newly developed

constrained regression splines (Meyer 2013) force the fits to behave in a certain way. The black line on the right is an example of a

regression spline constrained to always be decreasing.
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unconstrained fit is obtained by the usual least squares proce-

dures, that is,

b̂ ¼ BðB0BÞ�1B0y;

where the matrix B contains the spline basis functions evalu-

ated at the time points, that is Bij ¼ djðtiÞ. If the underlying

trend is actually decreasing, the fit can also be constrained to

be decreasing; this is shown as the black curve in Fig. 2b.

Because the derivative of a piecewise quadratic function is

piecewise linear, if we constrain the slope of the spline

function to be negative at the knots, then the spline function

will be decreasing over the entire range. Therefore, we define a

k 9 m matrix S of slopes at the knots, that is, Sij ¼ djðniÞ where

n1; . . .; nk are the knots. The slope of the spline function at the

ith knot is
Pm
j¼1

bjd
0
jðniÞ, so a vector of slopes at the knots is Sb.

To obtain the constrained least squares fit, we find b 2 Rm

to minimize the SSE in (1) subject to the linear inequality con-

straints Sb� 0. This is a quadratic programming problem that

is easily solved with the R package CONEPROJ (Liao & Meyer,

2014). To ensure computational efficiency, the main routines

in coneproj were written and compiled in C++ and called

using the package RCPP, which allows seamless integration of R

and C++.

We can constrain the fit to be decreasing on ½0; cÞ for some

c 2 ð0; 1Þ, and subsequently increasing on ðc; 1� (the vee shape)

by swapping the sign of the last rows of S, corresponding to

the knots to the right of c. The inv shape is increasing and then

decreasing. The jump shape is decreasing, then has a disconti-

nuity or jump, then is decreasing again. We can again define a

matrix to constrain the spline coefficients b to produce such a

jump. The 2jump shape follows the decreasing patterns from

the end of the jump shape with a second discontinuity, again

ending with a decreasing trend. The best ‘change point’, or

point of discontinuity, has to be estimated for the vee, inv, and

jump. To do this, we fit the scatterplot k� 1 times with c in

between the observed knot points, and we choose the change

point that minimizes the SSE over all fits. Two change points

have to be estimated for the 2jump shape which involves fit-

ting the scatter plot n-3 choose two times, requiring change

points to be at least 2 years apart.

For each trajectory, the algorithm fits all seven shapes, find-

ing the best change point(s) for the vee, inv, jump, and 2jump

shapes. The information criterion used to choose between the

fits is the SSE penalized by adding a measure of model com-

plexity that is a function of the degrees of freedom of the

model. For the unconstrained spline, the degrees of freedom

are the number of spline basis functions; the eight degrees of

freedom in the above example make the fit quite flexible; in

fact, it ‘over-fits’ by following the wiggles in the scatterplot

caused by the error rather than the underlying trend. The

decreasing fit sets some of the slopes at the knots to zero, thus

‘using’ fewer degrees of freedom. Unlike in the unconstrained

case, the degrees of freedom for the constrained models are a

random variable (Meyer, 2008), taking integer values that can

be as small as zero or as large as the number of basis func-

tions. We use the null expected degrees of freedom as a mea-

sure of model complexity. For a given shape, this is computed

by generating many data sets from a trend, and taking the

average of the used degrees of freedom of the fits. The null

expected degrees of freedom is determined by the shape, basis

function specification, and sample size. For the change-point

models, we start with the degrees of freedom for the best SSE

change point and add one degree of freedom for each change

point in the shape. The flat shape only uses one degree of free-

dom because it is essentially a linear model with a slope of 0.

The incr shape uses only 1.5 degrees of freedom because it is a

linear model where the slope is estimated, but is constrained

to be >0. For more information about computing constrained

fits and degrees of freedom, see Meyer (2013a). For each trajec-

tory, all the shapes are fit and an information criterion (IC) is

computed for each fit. The smallest information criterion is the

Fig. 3 Landsat path 32 row 35, shown in black, is located in the

mountains of northern Colorado near Steamboat Springs. The

red box indicates a small clip of this scene used in several of the

mapping illustrations.

Table 1 Number of training plots by disturbance causal agent used in the forest disturbance model. Plots in the row labeled ‘Prob-

abilistic’ were collected under a stratified random design. Plots in the row labeled ‘Purposive’ were selected to ensure each agent

class had a sufficient number of plots for training the empirical model

Conversion Fire Harvest Stress Stable Total

Probabilistic 0 25 14 76 114 229

Purposive 14 58 18 14 8 112

Total 14 83 32 90 122 341
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winner. Two options for the information criteria are consid-

ered. One is the standard Bayesian Information Criteria,

ICBIC ¼ �n logðSSEÞ þ logðnÞ � edf0

The other is the Cone Information Criterion (Meyer, 2008)

which tends to provide greater sensitivity to choosing shapes

with change points,

ICCIC ¼ � logðSSEÞ þ log 2 � ðedf0þ 1Þ
ðn� 1� 1:5 � edf0Þ þ 1

� �

Once the best shape is chosen for each pixel, a number of

parameters are derived from the model fit that summarize

information about the pattern of that trajectory. These param-

eters include the winning shape, year(s) of change point(s),

two measures of magnitude for each change point (i.e., abso-

lute and relative magnitude), duration (i.e., the number of

years or image intervals that the spectral change occurs),

annual rate of growth prior to change point(s), and annual

recovery rate after the change point(s) (Appendix S1).

Another useful set of outputs from the shape selection pro-

cess is the predicted values from the fitted trajectories which

provide a smoothed representation of the spectral pattern

found at each pixel.

Case study

As an example, we apply the shape-fitting routine to one

Landsat scene (path32 row35), located in the mountains of

northern Colorado, USA, near Steamboat Springs (Fig. 3). For-

ests dominate the landscape with approximately 80% of the

area occupied by spruce/fir, aspen, and lodgepole pine types.

Pinyon juniper and oak woodlands occupy more xeric sites on

the fringe of the rangelands. The region is interesting for its

complex mix of forest disturbance regimes and presence of

large wildfires, harvesting activities, as well as beetle outbreak

(labeled here as ‘stress’). Although this method is currently

being applied nationally, this single scene is used to illustrate

the use of outputs from the shapes algorithm in two different

applications.

Disturbance attribution maps

Our first application illustrates how to map forest disturbance

attribution classes at 30 m resolution annually (1984–2010) in
the Colorado scene. Attribution classes included disturbance

from fire, harvest, stress (i.e., subtle change brought on by

insects, disease, and drought), and stable forest (or no distur-

bance). The target population is defined by a temporal forest

mask layer produced by the VCT disturbance mapping algo-

rithm (Huang et al., 2010a). This mask was also used to form

two prestratification classes which included persistent forest

and disturbed forest. Training data consisted of a stratified

random sample of 229 plots (50% in the disturbed forest stra-

tum, and 50% in the persistent forest stratum) collected using

human interpretations made on sample plots using annual

Landsat imagery, visualizations of spectral trajectories, and

aerial photography through an interpretation tool, TimeSync

(Cohen et al., 2010). An additional 112 plots were purposively

sampled to augment training data for modeling. Excluding

the samples for recovering forests, the number of plots by

disturbance causal agent and sampling scheme is given in

Table 1.

Stable 
Recovery

or 
Unclassified

No Disturbance
All Variables = 0

Yes

Yes

Yes

Yes

No

No

No

All Shapes
Flat or Decreasing

Stress
Duration and Year are

median of all shapes not
Flat/Dec

At least one Jump
Duration and Year

are median 
of all Jump Shapes

Duration and Year
are median of 

Vee/InV/Inc Shapes

Fig. 4 Flow chart for combing the shape parameters and pre-

dicted causal agent to determine year of disturbance and dura-

tion. If the predicted causal agent is ‘None’, the assigned year

and duration are both zero. If the predicted causal agent is

something other than ‘None’, but shapes from all four spectral

bands are either flat or decreasing, year and duration are coded

zero and the predicted causal agent converted to ‘None’. If the

predicted causal agent is ‘Stress’, the duration and year are the

median of associated band parameters not assigned a flat or

decreasing shape. For causal agents other than ‘None’ or ‘Stress’

where at least one band or index produces a jump, the assigned

year and duration are the median of associated band parameters

not assigned a jump shape.
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Modeling disturbance causal agent through time was a

two-step process we call ‘flat-to-annual’. First, we built a tem-

porally indifferent (flattened through time) disturbance attri-

bution model where the relationship between the first

disturbance on the plots was modeled empirically as a func-

tion of a set of spatially explicit predictor variables through

Random Forests (Breiman, 2001) using the R package MOD-

ELMAP (Freeman et al., 2009). Temporally dynamic predictor

variables from the shape selection process included shape,

magnitude, duration, pre-, and postdisturbance growth/

recovery rates from each of the four spectral bands/indices.

Temporally static predictor variables included elevation, for-

est type derived from Ruefenacht et al. (2008), and sine and

cosign of aspect. Second, the year of a predicted disturbance

was modeled using rules applied to shape parameters involv-

ing shape, disturbance year, and duration (Fig. 4) through the

flat2parameters function in the ShapeSelectForest package

(Meyer et al., 2015).

Validation of the attribution model included examining the

out-of-bag contingency table, and estimates of the errors of

omission and commission using only the probabilistic training

plots weighted appropriately to account for the prestratified

design. For the year assignment, the percentage of plots whose

disturbance was within specified time intervals of the truth

(�0 years, 1 year, 2–5 years, 5–10 years, and >10 years) were

computed.

Mapping tree canopy cover

In our second application, we illustrate how to use shapes out-

put to map tree canopy cover through time. Tree canopy cover

is a continuous variable ranging from 0% to 100% within the

same forested target population as above. Training data con-

sisted of a systematic sample of 326 plots collected by the US

Forest Service, Forest Inventory and Analysis (FIA) program

(Reams et al., 2005) ranging in date from 2000 to 2010.

Fig. 5 The shapes algorithm produces dramatically different spatial patterns using different spectral bands/indices for the same small

geographic area in the Colorado scene.
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Predictor variables included both the ‘raw’ and ‘smoothed’

spectral values from each of the four bands/indices at the date

corresponding to the year a particular plot was visited in the

field. ‘Raw’ refers to values prior to smoothing from the

shapes algorithm, ‘smoothed’ the converse. Additional static

predictor layers included those used in the disturbance map-

ping above and in Freeman et al. (2015). We developed a

single random forest model using the training data from 2000

to 2010, then applied that model to predict tree canopy cover

for all 26 images (1984–2010) in the Colorado time series.

Out-of-bag RMSE and Spearmen and Pearson correlation coef-

ficients were used to validate the models and compare perfor-

mance using both the smoothed and raw spectral values,

with, and without static variables.

Results and discussion

Disturbance attribution maps

The shapes output for each of the four bands/indices

produced dramatically different spatial patterns

(Fig. 5). Figure 6 illustrates the distribution of distur-

bance agents within the winning shapes by band.

Together, these figures illustrate how the shapes

algorithm provides unique spatial and temporal

information from the bands/indices to help the empiri-

cal Random Forests model distinguish between

disturbance agents.

The first model in this application, the flat-to-annual

disturbance attribution model, predicted the distur-

bance agent at each Landsat pixel in the scene regard-

less of year. Table 2 illustrates out-of-bag accuracies

obtained by disturbance agent through the entire time

series. Here, we have partitioned the contribution of

the shapes parameters by running the model with static

variables alone, dynamic (shapes) variables, and the

two groups combined, illustrating accuracies obtained

under each scenario.

The second model in this application annualized

the temporally flattened prediction, assigning a date.

The majority of the disturbed plots (71.4%) were given

the exact year of disturbance. Another 19.5% of the

plot predictions fell within 1–3 years of the correct

date; 2.6% were within 4–6 years; another 2.6% off by

7–9 years; and finally 3.9% fell 10 years or greater

beyond the true date from the reference plots. Figure 7

illustrates patterns of disturbance for a sample of years

in the time series, showing the progression of insect

disturbance throughout the scene. It should be noted

that in this scene, 97% of the training plots had only

one disturbance. In other parts of the country domi-

nated by frequent harvests, or where substantially

more training data are collected, multiple disturbances

could be handled using this same methodology, but

adding new classes like ‘Harvest–Harvest’, ‘Fire–Har-

vest’, and ‘Stress–Fire’. The behavior of the shapes

algorithm for a few instances where we had training

data with multiple disturbances is illustrated in

Appendix S2.

Modeling disturbance in two steps allows for the cap-

ture of disturbance events whose detection in the train-

ing data does not coincide exactly with the timing of

detection using the shapes algorithm on the spectral

data. It is the convergence of evidence in space that
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Fig. 6 Distribution of disturbance agent within the selected

shapes expressed as percent of training plots. This figure illus-

trates that the shape parameters for each band contributes dif-

ferent information to the empirical models of forest disturbance.

For all four bands, the FLAT, DECR, and INCR shapes are

dominated first by stable conditions then by the difficult to deci-

pher stress. VEE’s are predominantly stress. JUMP’s and INV’s

are dominated by fire in this particular landscape, but still carry

a large proportion of stable as well as the other disturbance

agents.
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gives power to the disturbance agent model, while

assigning the timing of disturbance through a rule-

based approach allows the inclusion of human logic.

Tree canopy cover map

Fitted values can also be used to empirically model and

map tree canopy cover through the duration of the

Landsat time series. This allows the tracking of forest

attributes and their changes coincident with distur-

bance events. We compare the out-of-bag accuracy met-

rics from models built using combinations of raw,

smoothed, and static predictor variables in Table 3.

While using smoothed values from the shapes instead

of raw values does not markedly improve the accuracy

metrics, it does stabilize the temporal pattern consider-

ably, preventing tree canopy cover from jumping errati-

cally through time (Fig. 8). Further, raw predictions

themselves could be run through the shapes algorithm,

similar in spirit to approaches invoked by (Powell et al.,

2010; Pflugmacher et al., 2012, 2014).

Fig. 7 Predicted disturbance agent over the small clip for a sample of 3 years in the time series, illustrating the progression of beetle

outbreak, harvest and fire events. Multiple disturbances such as “Stress – Fire” or “Stress – Harvest” were not modeled here because of

insufficient training data in these classes. Appendix S2 illustrates the inflections detected by the shapes algorithm in several of these

instances in the Colorado scene.

Table 2 Errors of omission and commission using only the data from the probabilistic sample, accounting for the stratum weights

and including an estimate of standard error, are shown for three model runs using: static predictors only, dynamic predictors only,

and all the predictor variables together. The decrease in errors of omission and commission illustrate the relative contribution of

these predictor sets to classifying agents of change.

Agent

Commission error (SE) Omission error (SE)

Static variables

Dynamic

variables All variables Static variables

Dynamic

variables All variables

Fire 0.751 (0.064) 0.522 (0.091) 0.387 (0.088) 0.440 (0.100) 0.280 (0.090) 0.240 (0.086)

Harvest 0.773 (0.153) 0.364 (0.146) 0.182 (0.117) 0.857 (0.094) 0.500 (0.134) 0.357 (0.129)

Stable 0.431 (0.049) 0.346 (0.047) 0.328 (0.046) 0.389 (0.050) 0.269 (0.045) 0.227 (0.041)

Stress 0.459 (0.071) 0.354 (0.066) 0.344 (0.063) 0.598 (0.061) 0.494 (0.062) 0.488 (0.062)

Table 3 Out-of-bag RMSE, Spearman, and Pearson correla-

tion coefficients obtained using the raw spectral values, raw

combined with static predictors, smoothed spectral values,

and smoothed combined with static predictors. Little was

gained in terms of these accuracy metrics using the smoothed

over the raw spectral predictors, but adding static predictors

to the spectral data did improve the model outcomes

Model RMSE Spearman Pearson

Raw 21.68 0.48 0.52

Raw + static 19.15 0.61 0.65

Smoothed 20.88 0.54 0.56

Smoothed + static 19.17 0.63 0.65
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R package and computational issues

The shapes algorithm described here is available as the

ShapeSelectForest package (Meyer et al., 2015) on the

CRAN. The package currently consists of three major sets

of functions. First, the shape function fits all shapes and

chooses the winning shape for each trajectory. Second,
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Fig. 8 Predicted tree canopy cover through time for five different disturbance agents (columns). Models using raw spectral values

(dark green pattern top row) and shape-smoothed spectral values (light green pattern second row) differ in terms of predictive smooth-

ness through time. Smoothing improves ecologically feasibility of tree canopy cover behavior. The last four rows depict corresponding

predictor variables (both raw and smoothed) from each of the four bands/indices.
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the shapeparams function derives parameters for

empirical models from the shape selection output.

Third, a suite of ‘flat-to-annual’ functions annualize the

spatial predictions of forest disturbance agent by deriv-

ing a year and duration of disturbance.

Using the NASA Earth Exchange (NEX) computing

environment (Nemani et al., 2011), we have imple-

mented shapes algorithm on 434 Landsat scenes cover-

ing the conterminous United States with 28 years of

imagery at 30 m resolution. For national runs, each

scene was processed in parallel, using R’s SNOW pack-

age, across 434 nodes with 16 cores for a total national

run time of approximately 21 h, excluding the double

jump. Scene-level trials with the double jump option

suggest a fivefold increase in computing time over for-

ests if all seven shapes are fit at once. However, compu-

tational time for double jumps can be reduced by first

filtering out areas with flat, decreasing, or increasing

patterns.

US applications

This paper documents methods currently being applied

across the conterminous United States using the Land-

sat data record and forest history metrics from the

shapes parameters coupled with information from VCT

to map the location and timing of harvest, fire, stress,

wind, and conversion events on forest land cover

between 1985 and 2010 (Moisen et al., 2012). Work is

underway to classify and date two sequential distur-

bance agents through the double jump and subtle

inflections in other shapes. Parameters from the shapes

algorithm are being tested for their contributions to

mapping changes in tree canopy cover in the next

round of the National Land Cover Database (Coulston

et al., 2012). The Landscape Change Monitoring System

(LCMS) (Masek & Healey, 2012) is also leveraging the

diversity of forest dynamics information derived from

multiple algorithms including shapes, LandTrendr,

VCT, CCDC, MIICA, and others through an empirical

modeling approach to disturbance mapping in the Uni-

ted States, ultimately over the full Landsat data record

(1972—Current). As part of this effort, the shapes algo-

rithm will be implemented in Google Earth Engine in

2016, providing shapes parameters and fitted trajecto-

ries for use in other disturbance, tree canopy cover, and

biomass mapping projects.
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