Abstract

Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) seedlings from three nurseries in the Pacific Northwest United States were lifted on five dates from mid-October through mid-December 2006. Each nursery provided seedlings from a low- and a high-elevation seed lot. Photoperiod and accumulated chilling hours (calculated using two methods) were evaluated throughout the lifting period. Seedlings had typical patterns of fall cold hardiness development, with some indication that the high-elevation lot at each nursery was hardier than the low-elevation lot. Photosynthetic yield measured on seedlings from one of the nurseries decreased with decreasing temperatures, thereby corresponding well to levels of tissue damage at each freezing test temperature over time. Seedlings were either cold- or freezer-stored until February 2007, then tested for physiological quality and planted into a garden plot. Overall, seedlings from earlier lift dates tended to perform poorly in all attributes compared with those from later lift dates. Low-elevation seedlings tended to have lower root growth potential after storage and also reduced survival and longer bud break in the garden plot compared with high-elevation seedlings, although low-elevation seedlings tended to have more height and stem-diameter growth. Freezer-stored seedlings tended to have greater survival compared with cold-stored seedlings, although storage type did not influence growth. This study exemplifies the many influencing factors that growers must consider when determining lift dates. This paper was presented at a joint meeting of the Western Forest and Conservation Nursery Association, the Intermountain Container Seedling Growers Association, and the Intertribal Nursery Council (Boise, ID, September 9–11, 2014).

Introduction

In temperate conifer species, the growth and dormancy cycle is an adaptation to prevent shoot growth during winter, when freezing temperatures would injure such growth. These phenological patterns are influenced by species, genetics, plant vigor, and environment. As winter approaches, plants respond to cues of decreasing photoperiod (daylength) and temperature by ceasing growth, setting buds (for determinant species), and developing the ability to withstand subfreezing temperatures with little or no damage (Bigras et al. 2001, Haase 2011). This development of cold hardiness involves several physical and chemical changes within the plant tissues that enable plants to resist freezing damage (Öquist et al. 2001).

Cold hardiness is defined as a minimum temperature at which a certain percentage of a random plant population will survive or will sustain a given level of damage (Ritchie 1984a). Hardiness is most commonly quantified as LT50 (lethal temperature for 50 percent of a population). Seedling cold hardiness in the nursery is also an indicator of overall resistance to stresses such as those associated with lifting, packing, storing, and outplanting (Burr et al. 1990, Faulconer 1988, Ritchie 2000). Cold hardiness has also been linked to subsequent survival and growth (Simpson 1990, van den Driessche 1977) and is therefore a useful seedling-quality test (Haase 2008).

In the northern hemisphere, temperate conifer seedlings typically achieve peak dormancy in October or November. Dormancy is quantified as the length of time before plants will resume growth in the spring; it is not the same thing as cold hardiness, which commonly peaks in January (Haase 2011, Timmis et al. 1994). Seedlings require a period of chilling to complete their dormancy cycle before they will resume growth in response to longer photoperiods and favorable spring temperatures. The chilling requirement for Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) is 1,200 to 2,000
hours (Bailey and Harrington 2006, van den Driessche 1975). If not totally fulfilled by the time of lifting from the nursery, the chilling requirement may be met in cold storage (van den Driessche 1977); temperatures in freezer storage, however, are below optimum for accumulation of chilling to meet dormancy release requirements (Ritchie 1984b).

While the chilling requirement for bud break in Douglas-fir has been well documented, this information does little to assist with the more practical application of using chilling accumulation to determine the optimum timing for lifting, storing, and outplanting. For Pacific Northwest nursery applications, the typical target for Douglas-fir is a minimum of 300 to 400 chilling hours before lift and storage for optimum stress resistance. Very little research has been done, however, to verify the relationship between chilling hours and subsequent seedling quality and vigor, nor is adequate information available regarding other influencing and confounding factors. Similar questions have arisen regarding which factors are most useful for determining when to lift southern pine species (South 2013).

Various methods can be used to quantify chilling. The most common method used in forestry nurseries is the number of hours below 5 °C (41 °F). Another method, used in the fruit-tree industry, is the Richardson method (Richardson et al. 1974), which is more complex because it includes relative chilling effectiveness and variable chilling accumulation depending on temperature.

In a preliminary trial (fall 2005) to examine the relationship between shoot cold hardiness and accumulated chilling hours, Douglas-fir seedlings from six seed lots were frozen and evaluated for tissue damage and mortality every 2 weeks from mid-October to mid-December. As chilling hours accumulated from approximately 35 hours in mid-October to more than 150 hours in mid-November, the LT₅₀ for all lots decreased (i.e., the seedlings became more cold hardy). When a rapid rise in chilling from 150 to more than 400 hours occurred during the 2-week period from November 17 to December 1, however, no corresponding rise in cold hardiness was observed for any of the lots. A model of the preliminary data showed that calendar date was the most significant factor related to seedling cold hardiness—more so than either chilling hours or seed lot (NTC 2006). Based on the results of that preliminary trial, this study was conducted in 2006 with the objective to further examine relationships among seed lot, chilling hours, daylength, lift date, and storage and their subsequent influence on cold hardiness, bud break, growth, and survival. Understanding these relationships can assist with nursery lifting and storage decisions to optimize seedlings’ stress resistance and outplanting performance.

Materials and Methods

Seedlings, Sampling, and Storage

Three nurseries (A, B, and C) in Washington, United States, participated in the study; each chose two Douglas-fir seed lots (low and high elevations) to include in the study based on expected differences in cold hardiness (table 1). Seedlings from all nurseries were lifted every 2 weeks from mid-October through mid-December 2006 on the following five dates:

1. October 16
2. October 30
3. November 13
4. November 27
5. December 11

<table>
<thead>
<tr>
<th>Seed lot</th>
<th>Stocktype</th>
<th>Seed zone<sup>a</sup> (State)</th>
<th>Elevation<sup>c</sup> (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nursery A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>2+0 bareroot</td>
<td>042 (WA)</td>
<td>1,000</td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>631 (WA)</td>
<td>3,500</td>
</tr>
<tr>
<td>Nursery B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>Outside-grown container, plug-to-plug transplant, 21 in³ (344 cm³) plug</td>
<td>051 (OR)</td>
<td>1,000</td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>452 (OR)</td>
<td>2,200</td>
</tr>
<tr>
<td>Nursery C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>1+0 bareroot (for transplant)</td>
<td>262 (OR)</td>
<td>500</td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>262 (OR)</td>
<td>2,000</td>
</tr>
</tbody>
</table>

^a Washington seed zones from Randall and Berrang (2002). ^b Oregon seed zones from Randall (1996). ^c 1,000 ft = 305 m.
On each lift date at each nursery, 260 seedlings from each seed lot were lifted (figure 1). A sample of 60 seedlings was designated for cold hardiness assessment and the rest were placed in storage at Nursery A’s facility. Samples of 100 seedlings of each lot were placed in cold storage (1 to 3 °C [34 to 37 °F]) and in freezer storage (-1 to 0 °C [30 to 32 °F]).

Environmental Factors

Temperature sensors were installed at each nursery to monitor soil and air temperatures until all seedlings had been lifted. Data from these sensors were used to calculate chill hours over time, using both the standard method (total hours below 5 °C [41 °F]) and the Richardson method (table 2). Photoperiod (daylength) was determined using an online calculator (http://herbert.wikispaces.com/length+of+day), using each nursery’s latitude coordinates.

Seedling Physiology at the Time of Lifting

At each lift date, cold hardiness was evaluated using the whole plant freezer test (WPFT) (Haase 2011, Tanaka et al. 1997). A sample of 60 seedlings from each nursery/seed lot was randomly divided into four groups of 15 seedlings each and randomly assigned a target freeze temperature. Four target temperatures were chosen at each lift date based on their expected ability to bracket the LT50. Each group was placed into a programmable chest freezer in which the temperature was lowered from room temperature to 0 °C (32 °F) at a rate of 20 °C (36 °F) per hour, then decreased to the target temperature at a rate of 5 °C (9 °F) per hour, held at the target temperature for 2 hours, then raised back to 0 °C (32 °F) at a rate of 20 °C (36 °F) per hour (figure 2a). Due to resource limitations, each WPFT freezing

Table 2. Quantification of chilling hours using the Richardson method.

<table>
<thead>
<tr>
<th>°C</th>
<th>°F</th>
<th>Chill hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2</td>
<td>< 35.6</td>
<td>= 0.0</td>
</tr>
<tr>
<td>2.0 to 3.0</td>
<td>35.6 to 37.4</td>
<td>= 0.5</td>
</tr>
<tr>
<td>3.0 to 9.0</td>
<td>37.4 to 48.2</td>
<td>= 1.0</td>
</tr>
<tr>
<td>1 hour at: 9.0 to 12.0</td>
<td>48.2 to 53.6</td>
<td>= 0.5</td>
</tr>
<tr>
<td>12.0 to 15.0</td>
<td>53.6 to 59.0</td>
<td>= 0.0</td>
</tr>
<tr>
<td>15.0 to 18.0</td>
<td>59.0 to 64.4</td>
<td>= −0.5</td>
</tr>
<tr>
<td>> 18.0</td>
<td>> 64.4</td>
<td>= −1.0</td>
</tr>
</tbody>
</table>

Source: Richardson et al. (1974).
lots on each lift date (figure 5) and sent for NSure genetic
marker assessment, a molecular test for assessing cold
tolerance in conifer seedlings developed at the Wageningen
University and Research Centre in the Netherlands where
researchers found that gene expression may be correlated
with cold hardiness (Balk et al. 2007a, Joosen et al. 2006,
Landis and van Wordragen 2006). The test is based on
measuring the activity level of a selected set of genes.

Seedling Physiology and Performance
After Storage

From late January through mid-February, seedlings were
removed from storage (all seedlings from one nursery at
a time). One week before removal from storage, those in
freezer storage were moved to cooler storage to allow for

temperature was run only once per sample date in the pro-
grammable freezer; because seedling response to freezing
stress is well documented and reproducible, however, we
expected that the resulting analyses would be very similar if
additional freezers had been available.

After freezing, seedlings were placed into a greenhouse with
adequate moisture, ambient photoperiod, and an average
temperature of 20 °C (68 °F) (figure 2b). Six days after
freezing, bud damage was determined by sectioning 5 to 10
randomly selected buds from throughout each seedling shoot
and examining for evidence of browning (figure 3a). If more
than 50 percent of the buds were damaged, then the seedling
was considered nonviable. Cambial damage was evaluated by
scratching the bark along the stem (figure 3b) and examining
for browning (figure 3c). If the cambium was brown in the
lower half of the shoot, the seedling was considered nonviable.

Percent foliar damage (visual estimate) was a determining
factor only when cambium or bud damage was borderline. The
LT_{10} and LT_{50} for each seedling group on each date were then
determined by plotting percent survival against temperature and
assuming a linear relationship.

Chlorophyll fluorescence and genetic markers were also
measured on seedlings from Nursery A. Due to labor-
intensive sampling, only one nursery could be included
for these measurements; Nursery A was chosen because
the two seed sources were expected to have the greatest
difference in cold hardiness. Approximately 24 hours after
freezing in the WPFT procedure, chlorophyll fluorescence
was measured on a single needle collected from 8 seedlings
from each seed source and freezing temperature. Needles
were exposed to a 3-second pulse of saturating light using a
fluorometer (Model O5S-FL, Opti-Sciences, Inc.) (figure 4).
The steady state (Fs) and maximal (Fms) fluorescence were
determined and used to calculate photosynthetic yield (Y).

Needle and bud tissue from Nursery A seedlings (not frozen
in the WPFT) were collected and processed from both seed

Figure 3. Six days after freezing, seedlings were evaluated for damage by examining (a) bud and (b and c) cambium tissues for browning. (Photos by Diane L. Haase, 2006)

Figure 4. After freezing, chlorophyll fluorescence was measured on needles from Nursery A by exposing needles to a pulse of saturating light using a fluorometer. (Photo by Diane L. Haase, 2006)
A sample of 60 seedlings from each nursery/seed lot/lift date/storage treatment was immediately evaluated for cold hardiness using the WPFT. Because some groups sustained damage of more than 50 percent for all test temperatures, LT$_{10}$ and LT$_{50}$ could not be calculated. Thus, percent mortality at -9 °C (15.8 °F) is reported.

Root growth potential (RGP) was evaluated on a sample of 20 seedlings from each nursery/seed lot/lift date/storage treatment. Each sample was potted into 19-L (5-gal) pots (5 per pot) containing a peat-based growing medium and randomly placed in a warm greenhouse environment where they were kept well watered for 3 weeks. Seedlings were then removed from the pots and new root growth was quantified based on the following index (Burdett 1979).

<table>
<thead>
<tr>
<th>RGP index</th>
<th>Description (1 cm = 0.4 in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No new root growth</td>
</tr>
<tr>
<td>1</td>
<td>Some new roots but none longer than 2 cm</td>
</tr>
<tr>
<td>2</td>
<td>1–3 new roots longer than 1 cm</td>
</tr>
<tr>
<td>3</td>
<td>4–10 new roots longer than 1 cm</td>
</tr>
<tr>
<td>4</td>
<td>11–30 new roots longer than 1 cm</td>
</tr>
<tr>
<td>5</td>
<td>More than 30 new roots longer than 1 cm</td>
</tr>
</tbody>
</table>

The remaining 20 seedlings from each nursery/seed lot/lift date/storage treatment were randomly assigned to four replications (5 seedlings per treatment group) and planted into a garden plot at Nursery A for assessment of field vigor (figure 6). Seedling treatment groups were assessed weekly for percent bud break until late spring, when no further bud break was anticipated. In early March 2007 (before bud break), all seedlings were measured for initial height and stem diameter. In October 2007 (after bud set), seedlings were measured again for height and stem diameter and also for survival. Height and stem-diameter growth were calculated by subtracting initial values.

Statistical Analyses

Chlorophyll fluorescence yield data from Nursery A seedlings were analyzed for each sample date by analysis of variance (ANOVA) using the PROC GLM procedure of SAS software (SAS Institute Inc., Cary, NC) to determine significant differences between seed lots and among freezing temperatures.

RGP, bud break, height growth, stem-diameter growth, and survival data were all analyzed using ANOVA (PROC GLM, SAS Institute, Inc.) for a randomized complete block to determine differences among lift dates, seed lot, and storage type. Data from each nursery were analyzed separately. Fisher’s Protected Least Significant Difference procedure was used to determine significant differences among treatment groups at the α ≤ 0.05 level. Tests for normality, linearity, and constant variance of the residuals were performed to ensure the validity of these assumptions on each dataset; no data transformations were deemed necessary.

In addition, probit regression was used to determine the predictive relationship of chilling hours (calculated using

![Figure 5. Needle and bud tissue from Nursery A seedlings (not frozen) were collected and processed from both seed lots on each lift date and assessed for genetic markers associated with cold hardiness. (Photo by Diane L. Haase, 2006)](image)

![Figure 6. After storage, samples of seedlings from each nursery, lift date, seed lot, and storage type were planted into a garden plot at Nursery A for evaluation of bud break, survival, and growth. (Photo by Nabil Khadduri, 2007)](image)
either the Richardson or conventional methods) and calendar date (quantified as number of days since October 15) on seedling mortality at various freezing temperatures.

Results

Environmental Factors

Photoperiod patterns were nearly identical for Nurseries B and C, which are located at similar latitudes. Nursery A is located approximately 129 km (80 mi) north of the other two nurseries and had slightly shorter photoperiods (by approximately 3 to 9 min) from October 15 through December 20 (figure 7). Based on air temperature readings at each nursery (figure 8), calculations using the Richardson method resulted in a more rapid accumulation of chill hours as compared with the conventional method (figure 9).

Seedling Physiology at the Time of Lifting

Seedlings had typical patterns of fall cold hardiness development with some indication that the seedlings in the high-elevation lot at each nursery were hardier than those in the low-elevation lot (figure 10).

The NSure assay on needle tissue from Nursery A did not correspond to data from the WPFT test. The NSure assay on bud tissue from Nursery A, however, distinguished three stages of cold hardiness, which correlated with WPFT values as previously reported (Balk et al. 2007b) and summarized on the following page.
NSure phase 0: No frost tolerance observed

NSure phase 1:
 \(LT_{50}\) value between -5 and -10 °C (23 and 14 °F)
 \(LT_{10}\) value between -1 and -5 °C (30 and 23 °F)

NSure phase 2:
 \(LT_{50}\) value below -10 °C (14 °F)
 \(LT_{10}\) value below -5 °C (23 °F)

Photosynthetic yield measured via chlorophyll fluorescence on Nursery A seedlings decreased with decreasing temperatures, thereby corresponding well to levels of damage from the WPFT at each freezing test temperature over time (figure 11). Seed lot affected photosynthetic yield on the October 17 sampling date (higher elevation lots had greater yield at all temperatures) and the November 28 sampling date (higher elevation lots had greater yield at all temperatures except -6.0 °C [21.2 °F]).

Seedling Physiology and Performance After Storage

Statistical analyses indicated multiple interactions among seed lot, lift date, and storage type at each nursery. In general, however, lift date had the greatest influence (based on magnitude of the F-value) on all variables for seedlings from Nursery B and Nursery C. Lift date also had the greatest influence on growth and RGP for Nursery A, but elevation had an even greater influence on survival and bud break. Overall, earlier lift dates tended to perform poorly in all attributes compared with those from later lift dates (table 3, figure 12). Seedlings

Figure 10. Cold hardiness was estimated for each seed lot from each nursery on each lift date.

Figure 11. Yield was calculated from chlorophyll fluorescence measurements of needles from Nursery A seedlings frozen to different temperatures on each lift date. Note: A significant interaction between temperature and seed lot was observed on November 28 (needles from the high-elevation lot had greater yield than those from the low-elevation lot at all temperatures except -6.0 °C [21.2 °F]).
Figure 12. Lift date had a significant influence on poststorage seedling performance in the garden plot.

Table 3. Poststorage physiology for seedlings from each nursery group. Because, for all three nurseries, seed lot, lift date, and/or storage type significantly interacted, only means are presented here.

<table>
<thead>
<tr>
<th>Seed lot elevation</th>
<th>Index of root growth potential</th>
<th>Percent mortality at –9.0 °C (15.8 °F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Storage Type</td>
<td>Cooler</td>
<td>Freezer</td>
</tr>
<tr>
<td>Lift Date</td>
<td>Nursery A (2+0)</td>
<td>Nursery B (large plugs)</td>
</tr>
<tr>
<td>Oct. 16</td>
<td>0.65</td>
<td>0.60</td>
</tr>
<tr>
<td>Oct. 30</td>
<td>3.25</td>
<td>2.44</td>
</tr>
<tr>
<td>Nov. 13</td>
<td>3.10</td>
<td>2.95</td>
</tr>
<tr>
<td>Nov. 27</td>
<td>3.25</td>
<td>2.40</td>
</tr>
<tr>
<td>Dec. 11</td>
<td>2.83</td>
<td>3.00</td>
</tr>
<tr>
<td>Lift Date</td>
<td>Nursery A (2+0)</td>
<td>Nursery B (large plugs)</td>
</tr>
<tr>
<td>Oct. 16</td>
<td>0.05</td>
<td>0.20</td>
</tr>
<tr>
<td>Oct. 30</td>
<td>0.33</td>
<td>2.11</td>
</tr>
<tr>
<td>Nov. 13</td>
<td>1.42</td>
<td>2.45</td>
</tr>
<tr>
<td>Nov. 27</td>
<td>2.35</td>
<td>3.35</td>
</tr>
<tr>
<td>Dec. 11</td>
<td>3.10</td>
<td>3.74</td>
</tr>
</tbody>
</table>

Table 3. Poststorage physiology for seedlings from each nursery group. Because, for all three nurseries, seed lot, lift date, and/or storage type significantly interacted, only means are presented here.
from the low-elevation seed lots tended to have lower RGP following storage (table 3) and lower survival and longer bud break in the garden plot compared with seedlings from the high-elevation seed lots, although seedlings from the low-elevation lots also tended to have more height and stem-diameter growth in the garden plot than those from the high-elevation lots (data not shown). Freezer-stored seedlings from Nursery B and Nursery C tended to have greater RGP compared with cold-stored seedlings, whereas the reverse was true for Nursery A seedlings (table 3). Freezer-stored seedlings also tended to have greater survival for all nurseries and seed lots in the garden plot compared with cold-stored seedlings, although storage type did not influence growth (data not shown).

Environmental Influences on Seedling Physiology

Probit analyses determined that chilling hours calculated with the Richardson method had the best fit for predicting mortality by freezing temperature (figure 13). Richardson chill hours were only a slightly better predictor of mortality than days since October 15 (data not shown); the two models did not differ significantly. Chill hours calculated with the conventional method (hours below 5 °C [41 °F]), however, provided a significantly worse fit compared with Richardson chill hours or days since October 15.

Discussion

For the 2006–07 fall–winter season, Douglas-fir seedlings from the lots studied followed typical hardening and dehardening patterns (Haase 2011, Timmis et al. 1994). Photosynthetic yield also reflected damage levels seen in the cold hardiness test. Conifer species in northern latitudes, such as white spruce (Picea glauca [Moench] Voss), must achieve complete photosynthetic inactivation for protection against winter cold (Binder and Fielder 1996). Because Douglas-fir’s relatively milder geographic range does not require a complete shutdown of photosynthesis, chlorophyll fluorescence is not well correlated with cold hardiness in nonfrozen seedlings (Rose and Haase 2002). Similar to results in this study, however, chlorophyll fluorescence has been shown to be well correlated with foliar damage following freeze stressing (Adams and Perkins 1993, Fisker et al. 1995), thereby serving as a quantitative and objective tool for rapid assessment of seedling vigor following freezing, although variations among tissues in freezing damage susceptibilities during the winter must be considered (Rose and Haase 2002).

Chilling hours and calendar date (days since October 15) had the strongest relationship with freeze damage at the time of lifting. Understanding the relative contributions of each factor to Douglas-fir seedling phenology, however, is nearly impossible, given that daylight, chilling hour accumulation, and calendar date are intrinsically confounded (Campbell and Sugano 1975, Fuchigami and Nee 1987). Furthermore, chilling hour accumulation varies with annual temperature patterns and by calculation method, and seedling phenology is influenced by stocktype, seed source, and nursery cultural practices. Faulconer (1988) noted several disadvantages for relying solely on chilling hour accumulation for determining seedling condition, including variations in hardiness among seedling lots, temperature changes from year to year, and uncertainties regarding the best method to quantify chilling. In an early study with several Douglas-fir seed sources, Campbell and Sugano (1975) noted that the effects of chilling, photoperiod, and temperature on subsequent bud break were highly interdependent. South (2013) also commented on confounding among multiple factors associated with chilling hours and seedling quality. While it may be possible to separate the varying factors in controlled laboratory studies, such an endeavor would not be representative of actual nursery and field conditions and would therefore be problematic to apply operationally (Haase 2014). Rather, as demonstrated by this study, it is important to consider all influences when determining lift date.

Similar to cold hardiness at lifting, poststorage RGP, cold hardiness, bud break, growth, and survival were strongly influenced by lift date (which, as described previously, is confounded with chilling hours and photoperiod). Some studies indicate that chill hours can be partially satisfied in cold storage (Carlson 1985, Ritchie 1989, van den Driessche 1977). Our study found, however, that those seedlings lifted on the earliest lift date performed poorly after outplanting. This finding indicates that seedlings require adequate time in ambient conditions to reach a certain chilling and accompanying photoperiod threshold, along with diurnal and nocturnal fluctuations, before lifting and storage, after which seedlings are less susceptible to handling stresses.

In addition to being influenced by lift date, seedling attributes were influenced by seed source. RGP after storage and also survival, bud break, height growth, and stem-diameter growth tended to differ between the low-elevation and high-elevation seedlings from each nursery. St. Clair et al. (2005) evaluated Douglas-fir seedlings from more than 1,000 locations in western Oregon and Washington and found that populations differed
considerably for adaptive traits; bud phenology, in particular, was strongly influenced by elevation and temperature. Freezer-stored seedlings tended to have greater survival compared with cold-stored seedlings. Carbohydrate reserves tend to decrease in cold storage more rapidly than in freezer storage (Ritchie 1982), which may have been a contributing factor.

In the Pacific Northwest, Douglas-fir bareroot and container seedling growers have established annual lifting and storage schedules based on factors specific to their nursery environment, weather patterns, and customer demands and also on each crop’s stocktype and genetics. These decisions are based on science and experience. As temperatures increase due to

Figure 13. Probit analyses determined that chilling hours calculated with the Richardson method had the best fit for predicting mortality by freezing temperature. Days since October 15 (data not shown) also had a strong predictive fit, whereas the conventional method for calculating chill hours (hours below 5 ºC [41 ºF]) provided a significantly worse fit.
expected climate changes, however, winter temperature patterns will provide fewer annual chilling hours in temperate latitudes. This warming could affect Douglas-fir bud development and bud break. Douglas-fir seedlings grown in elevated temperature conditions had delayed cold hardening in the autumn and slowed dehardening in the spring and also had reduced maximum cold hardiness, reduced bud break, and reduced growth compared with those grown in ambient temperatures (Guak et al. 1998). In the near future, nursery managers may need to adjust their cultural practices, target species and seed sources, and lifting and storage schedules as they strive to maintain optimum seedling phenology (Tepe and Meretsky 2011, Williams and Dumroese 2014).

Address correspondence to—
Diane L. Haase, Western Nursery Specialist, U.S. Department of Agriculture, Forest Service, P.O. Box 3623, Portland, OR 97208; email: DLHaase@fs.fed.us; phone: 503–808–2349.

Acknowledgments
This research was supported by the Nursery Technology Cooperative (NTC) in the Department of Forest Science at Oregon State University (OSU) (led by Dr. Robin Rose) and the USDA Forest Service National Center for Reforestation, Nurseries, and Genetic Resources. We recognize members of the NTC for their financial and technical input, especially Bob Moore (Lewis River Reforestation) and Raúl Moreno (Microseed Nursery). We also thank OSU students Michelle Scanlan and Grant Garoutte for their many hours of work on this project.

REFERENCES

