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Abstract

Background Applications of entropy and the second

law of thermodynamics in landscape ecology are rare

and poorly developed. This is a fundamental limitation

given the centrally important role the second law plays

in all physical and biological processes. A critical first

step to exploring the utility of thermodynamics in

landscape ecology is to define the configurational

entropy of a landscape mosaic. In this paper I attempt

to link landscape ecology to the second law of

thermodynamics and the entropy concept by showing

how the configurational entropy of a landscape mosaic

may be calculated.

Result I begin by drawing parallels between the

configuration of a categorical landscape mosaic and

the mixing of ideal gases. I propose that the idea of the

thermodynamic microstate can be expressed as unique

configurations of a landscape mosaic, and posit that

the landscape metric Total Edge length is an effective

measure of configuration for purposes of calculating

configurational entropy.

Conclusions I propose that the entropy of a given

landscape configuration can be calculated using the

Boltzmann equation. Specifically, the configurational

entropy can be defined as the logarithm of the number

of ways a landscape of a given dimensionality, number

of classes and proportionality can be arranged (mi-

crostates) that produce the observed amount of total

edge (macrostate).

Keywords Entropy � Landscape � Configuration �
Composition � Thermodynamics

Introduction

Entropy and the second law of thermodynamics are

central organizing principles of nature, but are poorly

developed and integrated in the landscape ecology

literature (but see Li 2000, 2002; Vranken et al. 2014).

Descriptions of landscape patterns, processes of

landscape change, and propagation of pattern-process

relationships across scale and through time are all

governed and constrained by the second law of

thermodynamics (Cushman 2015). This direct linkage

to thermodynamics and entropy was noted in several

of the pioneering works in the field of landscape

ecology (e.g. Forman and Godron 1986; O’neill et al.

1989). Yet in the subsequent decades our field has

largely failed to embrace and utilize these relation-

ships and concepts.

Vranken et al. (2014) presented an overview of the

use of entropy in landscape ecology and identified

three main uses of the entropy concept in past

landscape ecology research, including spatial hetero-

geneity, unpredictability of pattern dynamics, and
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pattern dependence on scale. They conclude from their

review that thermodynamic interpretations of spatial

heterogeneity in the literature are not relevant, that

thermodynamic interpretations related to scale depen-

dence are highly questionable, and that, of all appli-

cations of entropy in landscape ecology, only

unpredictability could be thermodynamically relevant

if appropriate measurements were performed to test it.

In an editorial that was published concurrently to

the Vranken et al. (2014) paper, I noted that the near

absence of thermodynamic focus from the landscape

ecology literature is particularly strange given the

focus of landscape ecology on understanding pattern

process relationships across scale and through time

and the fundamental importance of entropy and the

second law of thermodynamics to understanding in

natural sciences (e.g. Atkins 1992; Craig 1992). Every

interaction between entities leads to irreversible

change which increases the entropy and decreases

the free energy of the closed system in which they

reside and descriptions of landscape patterns, pro-

cesses of landscape change, propagation of pattern-

process relationships across scale and through time are

all governed, constrained, and in large part directed by

thermodynamics. This direct linkage to thermody-

namics and entropy was noted in several of the

pioneering works in the field of landscape ecology

(e.g. Forman and Godron 1986; O’neill et al. 1989),

but in the subsequent decades research has largely

abandoned this framework and focus, as demonstrated

by the Vranken et al. (2014) review (but see Li 2000,

2002; Zaccarelli et al. 2013).

Given how central entropy and the second law of

thermodynamics are to understanding nature, land-

scape ecologists should strenuously explore the con-

nections between landscape ecological concepts,

theories and methods and entropy (Cushman 2015).

In particular, there is a critical need to define the

configurational entropy of landscape mosaics to define

a benchmark with which to compare changes in

landscape patterns and to associate these patterns with

processes across space and time.

In this paper I attempt small step in linking

landscape ecology to the second law of thermody-

namics and the entropy concept by showing how the

configurational entropy of a landscape mosaic may be

calculated. I begin by drawing parallels between the

configuration of a categorical landscape mosaic and

the mixing of ideal gases. I propose that the idea of the

thermodynamic microstate can be expressed as unique

configurations of a landscape mosaic, and propose that

the landscape metric Total Edge length is an appro-

priate measurement with which to define thermody-

namic microstates of a landscape mosaic. I posit that

the entropy of a given landscape configuration can be

calculated using Boltzmann’s equation for entropy

once the number of ways a landscape of that dimen-

sionality, number of classes and proportionality can be

arranged (microstates) that produce the observed

amount of total edge (macrostate).

Landscape configurations and entropy

There are n! unique ways to arrange the cells of a

landscape represented as a lattice of n cells. This does

not mean, however, that there will be n! unique

landscape configurations. For example, if the land-

scape is all of one class there is only 1 possible

configuration, because every one of the n! arrange-

ments of the cells produce the same landscape pattern

of a single uniform patch of class 1. In a two class

landscape with class 1 amounting to proportion p and

class 2 proportion q of the landscape, there will be n!/

((np)!(nq)!) unique configurations of the landscape

pattern. Each of these unique configurations will occur

(np)!(nq)! times. This can be generalized to a

landscape of any number of classes by adding (nxi)!

terms for each additional class where xi is the

proportion of the landscape in the ith class.

The most basic measure of the entropy of a

landscape could be called the ‘‘compositional

entropy’’ which is equivalent to the entropy of mixing

ideal gases (Craig 1992). Boltzmann entropy defines

entropy of a system as the natural logarithm of the

number of microstates in that macrostate multiplied by

the Boltzmann constant, which scales the relationship

to the ideal gas laws, giving units of Joules per Kelvin.

A classic example is temperature gradients in a fluid

causing heat to flow from hotter regions to colder ones,

by the random movement of particles. In the modern

literature the concept embodied in Boltzmann entropy

is often used in a more general sense and refers to any

kinetic equation that describes the change of a

macroscopic quantity in a thermodynamic system,

such as energy, charge or particle number. In

landscape ecology this macroscopic could be defined

as the arrangement of the cells of a landscape mosaic.
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In calculating the entropy of a landscape no scaling

constant is needed, since the system is not an ideal gas,

and entropy may be calculated as simply the natural

logarithm of the number of microstates in a given

macrostate, producing a unitless measure of entropy

(Eq. 1). Thus the entropy of a landscape is defined as:

Sland ¼ ln Wð Þ; ð1Þ

whereW is the number of arrangements of a landscape

(microstates) with the dimensionality, number of

classes and proportionality of the focal landscape that

produce the same value for the macrostate. Number of

arrangements in this case refers to the number of ways

the cells of a given dimensionality can be arranged.

Dimensionality of a landscape refers to the number of

cells in that landscape. Number of classes refers to the

number of different types, or classes of cells, such as

cover types in a land cover mosaic.

Given this definition of compositional entropy of a

landscape we can readily calculate the entropy of

landscapes of different dimensions, numbers of

classes and different proportions of each class

(Eq. 1). We can imagine the compositional entropy

as a function of the number of microstates in a

macrostate defined by the dimensionality of a land-

scape, the number of classes of a landscape and the

proportion of e ach class. For example, one could

define compositional entropy using the classic formula

for combinations. Specifically, compositional entropy

can be calculated:

lnðn!= np!ð Þ nq!ð Þ. . .nxi!ð Þ; ð2Þ

where n is the number of cells in the landscape, p is the

proportion of cells belonging to the first class, q the

proportion of cells belonging to the second class and x

the proportion of cells belonging to the ith class (Craig

1992). Figure 1 shows calculated compositional

entropy for maps of different dimensionality (3 9 3

to 12 9 12 cells in extent), different number of classes

(2, 3, 4, 5) and different proportion of area in each

class (equal amounts in each class Fig. 1a and 90 % in

one class with equal amounts in the remaining classes

Fig. 1b). Compositional entropy increases nonlinearly

with increasing dimensionality, increases with

increasing number of classes in the landscape, and

increases with increasing evenness of proportionality

among classes.

This way of thinking about the entropy of a

landscape is directly analogous to the way that the

entropy of mixtures of ideal gasses is calculated (Craig

1992). In the case of ideal gases one can know the

proportions of each molecular species in the mixture,

but it is infeasible to measure the unique states of

arrangement themselves (positions and velocities of

the individual gas molecules). As such, the entropy

equation measures the disorder of the system given a

particular number and proportion of different molec-

ular species.

Calculating the configurational entropy

of a landscape mosaic

In contrast to gaseous mixtures, it is readily possible to

measure the characteristics of particular landscape

configurations. That is the purpose of landscape pattern

analysis and there are an array of landscape metrics

available to quantify the configurational characteristics

of landscape mosaics (e.g. Neel et al. 2004; Cushman

et al. 2008). Quantitative measurement of landscape

configuration enables us to define additional macro-

states corresponding to unique landscape configura-

tions. Indeed, distinguishing the patterns of different

landscapes and understanding the implications of these

patterns for particular ecological processes is the

central focus of landscape ecology as a discipline.

Thus, the ‘‘compositional’’ entropy defined above does

not provide a definition that is sufficiently useful to

landscape ecologists. What would be more useful is a

way to measure the entropy of different landscape

configurations at a particular level of dimensionality,

number of classes, and proportionality of cover.

At any particular level of dimensionality, number

of classes and proportionality there will be some

arrangements that produce highly likely landscape

configurations, while others will produce highly

unlikely arrangements. For example, consider a two

class landscape consisting of a 3 9 3 lattice with 5

cells of class 1 and 4 cells of class 2. There are 9! ways

to arrange the cells of this landscape, and there are 126

unique configurations, each of which occurs 2880

times among the 9! arrangements. Based on the

compositional entropy idea developed above (Eq. 2),

all landscapes with this dimensionality, number of

classes and proportionality would have an entropy of

ln(9!/(5!4!)) = 4.836.

Intuition tells us, however, that there are substantial

differences in the disorder of different particular
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arrangements of this lattice. For example, placing cells

in a maximally dispersed checkerboard (Fig. 2a)

would seem to have less disorder and more organiza-

tion than placing cells ‘‘at random’’. When placed at

random it would be likely that cells would be more

frequently adjacent to cells of the same type than in the

checkerboard (where no like cells are adjacent;

Fig. 2b). This higher frequency of adjacency in the

random map would indicate more disorder than in the

case of the checkerboard, and thus higher entropy.

Conversely, when the cells are placed in a maximally

clumped manner (e.g. Fig. 2c) the number of shared

edges between cells of different classes will be fewer

than expected by chance and would indicate a higher

order and lower entropy than the random map.

There are few ways to arrange the cells which

produce the maximal edge (Fig. 2a), few ways to

produce the minimal edge (Fig. 2c) and relatively

more ways to produce configurations with intermedi-

ate edge (Fig. 2b). Thus one can use the landscape

metric Total Edge (McGarigal et al. 2012, which

measures the total amount of edges between different

cover classes in a landscape, to define a macrostate for

a particular landscape in terms of that amount of edge

(e.g. 12 units of edge, or 8 units of edge, or 4 units of

edge). The entropy of a given landscape configuration

Fig. 1 Plots showing how the compositional entropy of a

landscape changes as functions of map dimension (x-axis),

number of classes (2, 3, 4 or 5 shown as lines on each plot), and

evenness of proportion of each class a even proportion in each

class, b 90 % in one class and the remainder divided equally in

the remaining classes

Fig. 2 Three possible configurations of a landscape mosaic

with dimensions 3 9 3, two classes, 5 cells of class 1 and 4 cells

of class 2. In its maximally dispersed state a there are 12 units of

edge between cells of different class, while in its maximally

aggregated sate, c there are only 4 units of edge. In one random
permutation there were 8 units of edge (b)
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would be calculated therefore as ln(W) where W is the

number of microstates (unique landscape configura-

tions) that produce a given value of the macrostate

(length of total edge). This is conceptually very similar

to the concept of ‘‘conditional entropy’’ as described in

Vranken et al. (2014).

Using this logic, I calculated the entropy for all the

different macrostates possible in a 3 9 3 landscape

mosaic with two classes of 5 and 4 cells respectively.

For this example landscape there are 126 unique

configurations, and the total edge of these configura-

tions ranges from 4 to 12 units (cell sides; Table 1).

There is only one way to obtain the maximum edge of

12 (the perfect checkerboard pattern), and there are

relatively few ways (12) to obtain the least edge of 4.

In contrast, there are relatively many ways to arrange

the mosaic to produce intermediate amounts of edge

(e.g., 36 ways to produce Total Edge length of 6 or 7;

Table 1). The natural logarithm of W, the number of

unique arrangements (microstates) that produce a

particular edge length (macrostate), is the configura-

tional entropy of a given landscape configuration of a

landscape with this dimensionality (3 9 3), two

classes and this proportional area.

Discussion

In the sections above I propose that the configurational

entropy of a landscape mosaic can be calculated using

the equation for Boltzmann entropy, with entropy

equal to the natural logarithm of the number of unique

configurations of a landscape (microstates) that

produce the same Total Edge length (macrostate) as

the focal landscape. I showed using a simple example

of a two class landscape of 3 9 3 cells in dimension-

ality that entropy is very low when a landscape is

maximally dispersed (producing very few arrange-

ments with maximal edge length) and is low when a

landscape is maximally aggregated (producing few

arrangements with minimal edge length). The entropy

equation provides a means to quantitatively compare

the order and disorder of any arrangement of a

landscape in an explicitly thermodynamic framework.

This definition of the configurational entropy of

landscape mosaics can serve as measuring stick which

subsequently can be used to quantify entropy changes

in dynamic landscape and the interactions of patterns

and processes across scales of space and time, which

are recognized as important issues in integrating

thermodynamics with landscape ecology (Vranken

et al. 2014). Specifically, ecological systems are

driven by continual inflow of energy from the sun

which enables photosynthesis to drive ecosystem

energetics ‘‘uphill’’ against the current of entropy,

with ecological food webs then providing a ‘‘cascade’’

back down the free energy ladder, reducing free

energy and increasing thermodynamic disorder. Land-

scape ecologists should more formally associate

landscape dynamics with changes in entropy and

quantify the function of ecological dissipative struc-

tures (Cushman 2015) and a formal means to calculate

the configurational entropy of landscape mosaics is

essential to coherently investigate these processes.

A formal definition of configurational landscape

entropy may be useful for addressing several addi-

tional topics. For example linking the scale depen-

dence of landscape dynamics to thermodynamic

constraints across different ecosystem types, and

linkage of the second law of thermodynamics and

the entropy principle with the concepts of resistance,

resilience and recovery would be facilitated by a

formal definition of landscape entropy. In addition, all

increases in entropy result in increasing disorder and

lower potential energy in the closed system. This

decreases predictability, as there are more ways to be

disordered than ordered and more ways to have

dissipated energy than ‘‘concentrated’’ energy. Thus

linking landscape structure, dynamics, predictability

and entropy would be a fruitful enterprise. Attention

should also be given to linkages between entropy,

complexity theory and the organization of ecological

Table 1 Total edge length (TE, macrostate), number of

unique arrangements having that value of Total Edge (W,

microstate), and the entropy of that macrostate (lnW) for a

landscape mosaic of dimensionality 3 9 3, comprised of two

class, with 5 and 4 cells in each class, respectively

TE W lnW

4 12 2.484907

5 12 2.484907

6 36 3.583519

7 36 3.583519

8 13 2.564949

9 12 2.484907

10 4 1.386294

12 1 0
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systems as a multi-level or multi-scale systems of

dissipative structures. The application of thermody-

namic entropy concepts in landscape ecology has been

limited by failure to measure energy transformations,

changes in free energy, and changes in configurational

entropy of landscape mosaics (Vranken et al. 2014),

and as a result there has been a nebulous and

inconsistent application and interpretation of these

ideas in the field. It is my hope that a simple means to

quantify the entropy of landscape mosaics could be a

first step toward a broad exploration of the linkages

between entropy, the second law of thermodynamics

and the interaction of pattern process relationships

across scales of space and time.

The definition of configurational entropy proposed

here clarifies a debate in the landscape ecology

literature regarding the relationship between entropy

and landscape configuration. Vranken et al. (2014)

note that the few authors who see a physical

correspondence between heterogeneity and entropy

presented two opposed interpretations. The first, based

on information theory, is that higher heterogeneity

would mean higher entropy (Bogaert et al. 2005).

Conversely, some authors proposed that higher

entropy corresponds to higher homogeneity, such as

an extensive patch covering the full landscape (e.g.

Forman and Godron 1986; Benson 1996; Harte 2011).

The example presented here shows that neither

conception is correct, and rather that entropy is low

both in cases of maximally interspersed cells (maxi-

mum heterogeneity) and in cases of maximally

aggregated cells (maximum homogeneity) and is

highest at intermediate levels of aggregation and

interspersion (the highest likelihood of random con-

figurations) using the adaptation of the Boltzmann

equation. An analogous idea in probability theory and

statistics is the index of dispersion, which is a

normalized measure of the dispersion of a probability

distribution. It is used to quantify whether a set of

observed occurrences are clustered or dispersed com-

pared to a standard statistical model. In plant ecology

the variance/mean ratio (a form of index of dispersion)

has long been used to quantify non-random spatial

patterning of plants (e.g. Dale 2000). In plant ecology

dispersed patterns are considered ‘‘highly structured’’

and a result of competition leading to ‘‘regular

spacing’’. Likewise aggregated patterns of plants are

also ‘‘highly structured’’ as a result of conspecific

association, leading to ‘‘spatial clustering’’. The same

is true in landscapes. Patterns that are spatially random

have high entropy, but patterns that are maximally

clumped and patterns that are maximally dispersed

have low entropy and high order.

Challenges in applying configurational entropy

to landscapes

The example presented above was of a very simple

landscape. Showing the linkages between landscape

configuration and entropy on simple example land-

scapes such as this is useful to illustrate complex ideas

in the most perspicuous ways. However, some chal-

lenges appear when one anticipates applying the

method of calculating configurational entropy pro-

posed here to landscapes of more realistic dimension-

ality. For example, the example landscape was only

3 9 3 cells, but produced 362,880 unique permuta-

tions of the landscape mosaic and 126 unique land-

scape configurations in the two class example. As the

dimensionality and number of classes increases the

number of configurations rapidly becomes intractably

large. Given that calculating the entropy of a land-

scape is based on calculating the number of micro-

states in a given macrostate, this would seem to be a

fundamental challenge. For example, as the dimen-

sionality increases to 10 9 10 from 3 9 3 the number

different permutations of the landscape lattice

increases to 9.3326e?157 and the number of unique

configurations for a two class landscape with equal

proportionality increases to 9.2502e?128. A similar

challenge was noted by Childress et al. (1996) in a

paper about assessing rules to specify grid-based

automata models, who noted that the number of

‘‘neighbhorhood states’’ increases dramatically as a

function of both the number of dimensions of the grid

and the number of states each cell could take. They

suggested using voting rather than unique neighbor

transition rules, reducing the number of possible

states, and implementing ecologically-based heuris-

tics to simplify the transition rule table. These

recommendations for cellular automata models don’t

seem to apply to the simpler case of calculating

configurational entropy of a landscape mosaic, which

simply requires measurement of the number of

microstates (configurations) in a macrostate (edge

length) and application of the Boltzmann equation to

quantify the entropy of that configuration.
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The vast number of unique configurations makes it

impossible, as presented here, to formally calculate

each possible unique configuration and calculate the

Total Edge length to quantify the number of micro-

states in a given macrostate. However, the effectively

infinite number of unique configurations in landscapes

of relatively realistic dimensionality also means that

one can use neutral models such as QRULE (Gardner

1999) to generate spatially random maps to produce a

large sample of the configurational distribution that

can then be used to infer the number of microstates in a

given macrostate.

In addition, as the dimensionality and number of

classes in a landscape mosaic increase, the number of

potential macrostates also increases extremely rapidly

(Eq. 2). In the simple example presented there were

only 8 possible macrostates defined by total edge

length. As the dimensionality increases the number of

possible values for the variable Total Edge length

increases astronomically such that the chance that a

particular randomized map has the same value as the

observed focal landscape becomes vanishingly small.

The same phenomenon occurs in physics when

applying the second law of thermodynamics to such

system properties which vary continuously. The

solution is to define a meaningful increment over

which to partition macrostates into a tractably small

number of units (Craig 1992). The same thing can be

done in landscape ecology, defining macrostates as

bins that range between given values of the variable

Total Edge length.

Next steps in applying configurational entropy

in landscape ecology

This paper takes an initial step toward applying

configurational entropy in landscape ecology by

showing how configurational entropy may be mea-

sured and proposing how it may be applied in

landscapes of larger dimensionality and more cover

types. Several additional explorations might be fruitful

as next steps. As I suggest above, it would be

interesting to explore the use of neutral models to

sample the permutation space for landscapes of larger

dimensionality to develop distributions of microstate

values. In addition, it would be valuable to explore

how changing the definition of the macrostate, in

terms of bin width, would affect the calculation of

configurational entropy. Furthermore, meaningful

application of entropy measurements in comparative

analysis would depend on understanding how config-

urational entropy would change with dimensionality,

number of classes, proportion of each class in the

landscape, and the effects of resampling to coarser and

finer grain.

Another area that deserves attention is how the

entropy of landscapes that are not represented as raster

lattices can be calculated. The patterns that are

relevant to ecologists are often not best represented

by categorical patch mosaics, and often gradient or

point patterns are more appropriate (McGarigal and

Cushman 2005; Cushman et al. 2010a). The entropy of

a point pattern can be calculated in a similar way to the

configurational entropy of a categorical mosaic land-

scape, but instead of drawing a large sample of random

landscapes using a neutral model and then calculating

the total edge length for each of these one could draw

large samples of random point patterns with the same

number of points and extent and calculate the point

density of each within a tesselated grid of cells.

Likewise, the entropy of a continuous landscape

surface could be calculated by randomizing the

surface by shuffling rows and columns a large number

of times to produce a distribution of microstates with

which to compare with the observed value of the focal

landscape. Something of this kind was proposed by

Cushman et al. (2010b).

One interesting extension of the approach I describe

here would be to generalize calculating of landscape

entropy to address nonequilibrium stationary states.

For example, Li (2000) explored the mathematical

formulation of the part–whole relation in ecological

systems and showed analytically why the ecological

system cannot be understood by reducing it to its parts.

Specifically, using Prigogine’s self-organization the-

ory and Haken’s synergetics, Li (2000) illustrated the

necessity of such a holistic approach to study how the

interaction of subsystems leads to the emergence of

spatial, temporal and functional structures on macro-

scopic scales. This paper focuses on calculating the

configurational entropy of a raster mosaic, with fixed

dimensionality and number of map classes. In such

cases, Li (2000) notes that stable states can be

distinguished in a definite way, for example the

amount of edge length in a raster of a given

dimensionality and number of classes. However, it

would be interesting to explore generalizing these
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ideas in systems of nonequilibrium stationary states

where free energy need not have a minimum nor the

entropy a maximum (Li 2000). One interesting

application of this idea was presented by Li et al.

(2000) who explored the theoretical thermodynamic

basis for the self-thinning -3/2 power law in plant

communities and used ecological field theory and

showed how the stochastic nature of ecological

interactions among individuals leads to self-thinning

at the macroscopic level. Another interesting example

of application of non-equilibrium thermodynamics in

landscape ecological analysis was Li (2002) who

described a theoretical framework of ecological phase

transitions for modeling tree-grass dyanmics which

combined percolation theory, fractal geometry, phase

transition theory and Markov non-equilibrium ther-

modynamic stability theory. In a final example of

applying non-equilibrium thermodynamic approaches

in ecology, Zaccarelli et al. (2013) developed an

entropy related index to measure the structural com-

plexity of ecological time series and applied it to

estimate spatio-temporal complexity of ecological

systems.

Another key area of work will be to investigate

whether the application of Boltzmann’s entropy to

landscape mosaics is more than just a convenient

analogy providing an absolute measure of mosaic

disorder, of if there is actually a true thermodynamic

relationship between landscape configuration and

entropy, per se. In physics W is the number of

possible positions and momenta to the various

molecules that can produce the macroscopic state

of a system, such as the temperature or pressure of a

gas. The Boltzmann constant, k, is used to translate

the entropy into units of joules per Kelvin. There is

a direct analogy in the calculation of entropy of a

landscape mosaic in which we measure the number

of ways (W) that a given macrostate (Edge Density)

can be obtained. The usage proposed in this paper is

unitless (not Joules per Kelvin) and so is not

formally equivalent to true thermodynamic entropy.

However, the usage of the entropy formula in the

context of landscape pattern analysis is directly

analogous to Boltzmann’ entropy and, if not

formally equivalent, provides an absolute measure

of disorder of a landscape mosaic which is a

theoretically important step forward from the merely

relative measures of landscape structure previously

employed in landscape pattern analysis.
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