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Abstract. Methods characterizing fine-scale fuels and plant diversity can advance understanding of plant-fire interactions across
scales and help in efforts to monitor important ecosystems such as longleaf pine (Pinus palustrisMill.) forests of the southeastern
United States. Here, we evaluate the utility of close-range photogrammetry for measuring fuels and plant diversity at fine scales
(submeter) in a longleaf pine forest. We gathered point-intercept data of understory plants and fuels on nine 3-m2 plots at a 10-cm
resolution. For these same plots, we used close-range photogrammetry to derive 3-dimensional (3D) point clouds representing
understory plant height and color. Point clouds were summarized into distributional height and density metrics. We grouped
100 cm2 cells into fuel types, using cluster analysis. Comparison of photogrammetry heights with point-intercept measurements
showed that photogrammetry points were weakly to moderately correlated to plant and fuel heights (r = 0.19–0.53). Mann–
Whitney pairwise tests evaluating separability of fuel types, species, and plant types in terms of photogrammetry metrics were
significant 44%, 41%, and 54% of the time, respectively. Overall accuracies using photogrammetry metrics to classify fuel types,
species, and plant types were 44%, 39%, and 44%, respectively. This research introduces a new methodology for characterizing
fine-scale 3D surface vegetation and fuels.

Résumé.. Les méthodes caractérisant les combustibles et la diversité végétale à fine échelle peuvent faire progresser la compréhen-
sion des interactions plantes-feux à plusieurs échelles et contribuer aux efforts pour surveiller les écosystèmes importants tels que
les forêts de pin des marais (Pinus palustris Mill.) du sud-est des États-Unis. Ici, nous évaluons l’utilité de la photogrammétrie à
courte distance pour mesurer les combustibles et la diversité des plantes à des échelles fines (de moins d’un mètre) dans une forêt
de pins des marais. Nous avons recueilli des données de points d’interception des plantes de sous-bois et des combustibles sur 9
parcelles de 3 m2 à une résolution de 10 cm. Pour ces mêmes parcelles, nous avons utilisé la photogrammétrie à courte distance
pour dériver des nuages de points en 3 dimensions (3D) qui représentent la hauteur et la couleur des plantes de sous-bois. Les
nuages de points ont été synthétisés en mesures simples pour les distributions de la hauteur et de la densité. Nous avons regroupé
les cellules de 100 cm2 en types de combustibles grâce à l’analyse par regroupement. La comparaison des hauteurs provenant de
la photogrammétrie avec des mesures de points d’interception a montré que les points photogrammétriques étaient faiblement
à modérément corrélés à la hauteur des plantes et des combustibles (r = 0,19 à 0,53). Les tests de Mann–Whitney par paire qui
évaluent la séparabilité des types de combustibles, des espèces et des types de plantes en termes de mesures de photogrammétrie
étaient significatifs 44%, 41%, et 54 % du temps, respectivement. Les précisions globales en utilisant les mesures de photogram-
métrie pour classer les types de combustibles, les espèces et les types de plantes étaient de 44%, 39%, et 44%, respectivement. Ces
recherches présentent une nouvelle méthodologie pour la caractérisation de la végétation et des combustibles de surface à l’échelle
fine en 3D.

INTRODUCTION
Quantifying the spatial structure and composition of forests

has been vital for forestry and ecological applications through-
out the last century. Data across large forested landscapes
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(10s km2 to 1,000s km2) are analyzed for wildlife habi-
tat quality (Vierling et al. 2008; Smart et al. 2012), timber
volume and yield (Murphy 2008), carbon quantification
(Hudak et al. 2012), inputs to fire behavior models (Riano
et al. 2003; Seielstad and Queen 2003; Mutlu, Popescu,
Stripling, et al. 2008; Mutlu, Popescu, and Zhao 2008),
and natural resource management in general (Hudak et al.
2009).

460

http://dx.doi.org/10.1080/07038992.2016.1229598
mailto:benjamincbright@fs.fed.us


VOL. 42, NO. 5, OCTOBER/OCTOBRE 2016 461

More recently, quantifying the structure of under- and mid-
story vegetation has been of interest, given that heterogeneity in
surface fuels, fire behavior, and plant community composition
occurs at similarly fine scales (within a few meters; Kirkman
et al. 2001; Loudermilk et al. 2012).Within longleaf pine (Pinus
palustris Mill.) forests of the southeastern United States, mea-
surement scale and feedbacks on multiscale community dynam-
ics is critical (Mitchell et al. 2009). Here, the fire regime is of
high frequency and low intensity where the understory, i.e., sur-
face fuels, determine fire behavior patterns and processes (Hiers
et al. 2009; Loudermilk et al. 2012), which is ultimately guided
by the structure of the overstory (O’Brien et al. 2008; Mitchell
et al. 2009) in determining fire effects on understory plant com-
munity assembly (Wiggers et al. 2013).

Quantifying and modeling vegetation or fuels at this fine
scale is inherently difficult and prone to human error (Keane
2013). In the past, photogrammetry (using aerial imagery; Spurr
1960; United States Forest Service 1975), and more recently
airborne laser scanning (ALS) have been used to quantify
canopy structure (e.g., Andersen et al. 2005; Hudak et al. 2008),
although less attention has been directed toward finer-scale
understory data. Recently, Riano et al. (2007) estimated shrub
height with ALS and infrared orthoimagery; Martinuzzi et al.
(2009) classified shrub cover with ALS; and Hudak et al. (2015)
predicted surface fuel loads with ALS. Although these studies
have demonstrated the utility of ALS for predicting understory
fuel and vegetation attributes, the spatial resolution of such esti-
mates are coarser than submeter and can suffer from canopy
obstruction or insufficient horizontal resolution (Slatton et al.
2004; Hudak et al. 2015).

Terrestrial laser scanning (TLS), for which the laser scanning
instrument is positioned under the tree canopy, has provided
a means for estimating fine-scale (cm3) structure of individual
understory plants (< 1 m height) and relating these estimates to
their leaf area, biomass, and fuel type (Loudermilk et al. 2009;
Rowell and Seielstad 2012). Furthermore, surface fuelbed
structural characteristics have been used to predict submeter
fire behavior measurements with high accuracy (R2 = 0.78–
0.88; Loudermilk et al. 2012), which was not formerly possible
when using traditional fuel measurement techniques.

Although TLS instruments produce invaluable information,
the instruments, processing time, and required peripherals are
expensive and laborious (Dassot et al. 2011). The field of pho-
togrammetry, developed in the 1930s, uses overlapping (aerial)
photographs to create “stereophotos” that are 3-dimensional
(3D). Photogrammetry has been employed throughout the last
century for timber cruising (Spurr 1960; Slama et al. 1980),
mapping land use and land cover change (Miller et al. 2000),
and estimating tree and stand characteristics (Næsset 2002;
Zagalikis et al. 2005). As ALS became more affordable and
accessible around the turn of the century, it quickly took the
place of photogrammetry. This high-accuracy laser technology,
when flown over large (1,000s km2) landscapes, provides
unrivaled topographic maps and estimates of forest metrics

that trump those of the traditional and ostensibly arduous
photogrammetry techniques (Lefsky et al. 2002; Paine and
Kiser 2012). Photogrammetry has, however, recently advanced
(Miller et al. 2000; Zagalikis et al. 2005); digital imagery and
photogrammetric software or workstations have replaced hard
copy photographs and stereoscopes. Furthermore, photogram-
metry has recently become competitive with ALS, producing
high-quality 3D measurements of urban and forest structures,
and for a fraction of the cost (Baltsavias 1999; Leberl et al.
2010; Bohlin et al. 2012; Dandois and Ellis 2013). Although the
characterization of a heterogeneous surface fuelbed with TLS
has been demonstrated (Loudermilk et al. 2009; Loudermilk
et al. 2012; Rowell and Seielstad 2012), there is no previously
known documentation of measuring surface fuels at fine scales
using close-range photogrammetry.

Our objectives were to introduce and describe a close-range
photogrammetric approach to measuring the 3D structure of
understory vegetation and woody debris and to test the util-
ity of photogrammetric points for distinguishing and predicting
understory fuels and plant diversity. More specifically, we com-
pared height data derived from close-range photogrammetry and
field measurements of fuelbed depth and evaluated the utility of
photogrammetry-derived data for separating and classifying 10-
cm scale fuel types, plant species, and plant types.

METHODS

Study Area
The study area is located in Eglin Air Force Base (AFB) in

northwestern Florida, where frequent prescribed surface fire has
allowed longleaf pine forest to persist (Figure 1). Temperatures
average 24°C and range from 5°C to 32°C. Annual rainfall aver-
ages 157 cm and falls mainly in summer. Topography is flat and

FIG. 1. Study plot locations and longleaf pine extent in Eglin
Air Force Base (AFB), which is located in northwestern Florida
(Ruefenacht et al. 2008).
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FIG. 2. Example of plot setup using strong ties, nails, and photogrammetry software printed (circular) targets. The yellow rectangle
represents the approximate (1 m × 3 m) area that was cropped in the photogrammetry software for creating the stereo model.

soils are generally sandy (United States Air Force 2010). Eglin
AFB sandhills are characterized as high pine byMyers and Ewel
(1990) referring to the hilly undulating terrain dominated by an
open longleaf pine canopy with a hardwood midstory made up
of turkey oak (Quercus laevis Walter), blue jack oak (Quercus
incanaW. Bartram), and persimmon (Diospyros virginiana L.).
Groundcover species in the study area are dominated by grasses
broom sedge (Andropogon virginicus L.), and little bluestem
(Schizachyrium scoparium (Michx.) Nash). Our particular study
area within Eglin AFB had not burned in 2 years.

Field Observations
Vegetation and fuel characteristics were gathered in 9 plots

located in longleaf pine sandhill habitat at Eglin AFB in Febru-
ary 2014 (Figure 1). For consistency in the influence of over-
story canopy structure on fuels, the plots were placed < 5 m
away from one adult (> 10 cm DBH) pine, but more than 5 m
away from any other adult pine. Pinecones were placed in plots
for a different study. Plots measured 1 m by 3m in size and were
gridded into cells measuring 10 cm by 10 cm, so that each of the
9 rectangular plots contained 300 cells. Each plot has permanent
monuments so that an aluminum frame with steel rods can be
placed to delineate all 300 cells. For each cell, point intercept
measurements of plant species and fuels were taken at a sin-
gle point in the center of each cell by using a probe. Fuel mea-
surements included fuel and litter depths (cm), and presence or
absence of any fuel categories (Table 2) that came into contact
with the probe. All individuals by species were recorded within
each cell. A total of 57 different species were observed, with
an average of 19 species per plot and a standard deviation of 6
species across plots.

Photogrammetry Data and Processing
We used a photogrammetry technique to characterize the

understory fuelbed within each plot. The technique produces a
3D point cloud by creating a stereo model from 2 overlapping

digital photographs. To achieve this, we first carefully aligned 8
strong ties (15 cm in length) 1 m apart along the outside border
of each plot and secured these ties in the ground using 60d 15-
cm nails (Figure 2). This allowed for the clear identification of
plot edges and cropping of images; it served the added purpose
of recording fire intensity with infrared cameras (see O’Brien
et al. this issue). Bulls-eye-shaped targets created and printed
from the photogrammetry software (below) were color-coded
and placed along the border of each plot on the strong ties for
referencing during the photogrammetric processing (Figure 2).
These targets are specifically designed for use in the software
to ensure pairing photos with high accuracy. Typically, 3 refer-
ence targets were sufficient to scale and orient the photos, but
additional targets were useful to double check distances and
angles within each plot. Paired near-nadir-angle photographs
were taken above each plot, using a Nikon D3200 camera with
an 18-mm lens angle. The camera was mounted on a bar on an
extendable pole stand for optimum camera placement above the
plot. To capture the entire plot within each image, the cameras
were extended to approximately 4 m. Ground sampling distance
at this range was approximately 1 cm–4 cm. The camera stand
was physicallymoved over about 40 cm to 50 cm to take a paired
photo, while taking care to include the entire plot in each photo.
Photographs were taken during even lighting conditions, typi-
cally on cloudy days with calm winds, or at dusk or dawn.

Digital imagery was processed with photogrammetry soft-
ware PhotoModeler Scanner.1 Using the “SmartMatch” feature-
based method in the software, stereo pairs were created by auto-
matically detecting and matching pixels of similar texture and
color between overlapping paired images. Bundle adjustment
was then performed to optimize stereo pairs for the creation
of final stereo models. The targets placed along the plot bor-
ders were used to scale stereo models to real units. Then, 3D
points were extracted from each stereo model at a mean point
spacing of 5 mm–10 mm (except for Plot 1, where the defined

1Eos Systems, Inc., Vancouver, British Columbia, 2015.
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TABLE 1
Photogrammetry metric names and descriptions, and the number and percentage of times (given in parentheses) each metric was

significantly different between fuel types, species, and plant types, as determined by Mann–Whitney tests

Metric Name Description Fuel Type Species Plant Type

R_avg Average red value 21 (27) 13 (62) 3 (30)
G_avg Average green value 35 (45) 10 (48) 6 (60)
B_avg Average blue value 36 (46) 6 (29) 8 (80)
min Minimum height 23 (29) 7 (33) 3 (30)
max Maximum height 54 (69) 9 (43) 8 (80)
avg Average height 48 (62) 12 (57) 8 (80)
std Standard deviation of height 48 (62) 8 (38) 7 (70)
ske Skewness of heights 3 (4) 2 (10) 1 (10)
kur Kurtosis of heights 3 (4) 0 (0) 1 (10)
p10 10th percentile of heights 40 (51) 12 (57) 7 (70)
p25 25th percentile of heights 47 (60) 13 (62) 7 (70)
p50 50th percentile of heights 47 (60) 13 (62) 8 (80)
p75 75th percentile of heights 47 (60) 12 (57) 8 (80)
p90 90th percentile of heights 50 (64) 9 (43) 8 (80)
d00 Percentage of returns 0 cm–1 cm in height 24 (31) 10 (48) 5 (50)
d01 Percentage of returns 1 cm–3 cm in height 36 (46) 9 (43) 4 (40)
d02 Percentage of returns 3 cm–5 cm in height 16 (21) 9 (43) 2 (20)
d03 Percentage of returns 5 cm–10 cm in height 26 (33) 7 (33) 2 (20)
d04 Percentage of returns 10 cm–20 cm in height 43 (55) 9 (43) 5 (50)
d05 Percentage of returns 20 cm–30 cm in height 45 (58) 9 (43) 7 (70)
d06 Percentage of returns 30 cm–50 cm in height 28 (36) 2 (10) 6 (60)

point spacing was much greater) to create a point cloud for each
plot. Red-green-blue (RGB) values from oriented photographs
were assigned to points; if the angle between the point normal
and the camera view vector was < 90° (i.e., if the point was
visible on the oriented photograph), then the RGB value of the
photograph was included in the mean RGB calculation of that
point. No interpolation was performed. Occlusion was not an
issue as first, the vegetation and debris (leaf litter, woody mate-
rial) were sparse (e.g., Fig. 2) due to frequent consumption by
prescribed fire. This particular area had 2 years of regrowth and
debris accumulation since the last burn. Next, the height data
were downsampled to 10 cm × 10 cm for comparison with field
data, where any issues of occlusion were absent or minimal.

Points were classified as ground or nonground, and normal-
ized to heights above ground with LAStools software (Isenburg
2015). The lasground tool uses an unsupervised iterative algo-
rithm to classify points and has demonstrated good performance
for ALS in natural environments (Isenburg 2015). Although
unsupervised, the user can adjust step size, terrain, and air-
borne parameters that affect how ground points are classified.
We tested parameter sensitivity by experimenting with different
combinations of the mentioned lasground parameters. Because
we had no way of validating which points were ground, param-
eter sensitivity was tested by comparing how different param-
eters affected the fit between photogrammetric maximum fuel
heights and field-measured fuelbed depths. Fit wasmeasured via

correlation, mean bias error, and root mean squared error; we
chose final lasground parameters that maximized correlation
and minimized mean bias error and root mean squared error
between field-measured fuelbed depth and photogrammetric
maximum fuel heights. The same lasground parameters were
used for all plots.

The lascanopy tool was then used to generate 21 metrics for
each 10 cm by 10 cm cell (Table 1). Metric cells were coincident
with point-intercept cells characterized in the field as described
in the previous section.

Cluster Analysis to Define Fuel Types
Following the methodology of Dimitrakopoulos (2002) and

Hiers et al. (2009), who defined fuel types via cluster analysis,
a grouping of cells into fuel types by cluster analysis was per-
formed. Because our point-intercept fuel data were both con-
tinuous (fuel and litter depth) and binary (presence/absence of
fuels), we chose Gower’s distance, which allows for the inclu-
sion of both continuous and binary variables, to create the dis-
similaritymatrix for the cluster analysis (Gower 1971). To deter-
mine the best number of clusters, the NbClust package in R was
used (Charrad et al. 2014; R Core Team 2014). When compu-
tationally expensive indices are excluded, the NbClust routine
calculates the best number of clusters, based on 26 different
indices, and recommends using the number of clusters that the
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majority of the indices indicate. We determined the best number
of clusters in which to group observations into fuel types with
the “variance ratio criterion” of Caliński and Harabasz (1974).

Statistical and Classification Analysis
We tested if photogrammetry metrics were able to distin-

guish the clustered fuel types, the 7 most abundant species
(Andropogon virginicus L. (ANDVIR), Aristida mohrii Nash
(ARIMOH), Chrysopsis gossypina (Michx.) Elliott (CHR-
GOS), Licania michauxii Prance (LICMIC), Pityopsis aspera
(Shuttlw. ex Small) Small (PITASP), Schizachyrium scopar-
ium (Michx.) Nash (SCHSCO), and Schizachyrium tenerum
Nees (SCHTEN)), and plant types (forb, grass, ground cover,
shrub, and seedling) by performing Kruskal–Wallis and Mann–
Whitney rank sum tests, using R software. Significant Kruskal–
Wallis tests indicated that, for a given metric, a distribution
of at least 1 group was significantly different from distribu-
tions of the other groups. Mann–Whitney tests gave more spe-
cific information about which fuel types, species, and plant
types varied significantly for which metrics, indicating whether
2 metric distributions came from different population distri-
butions. We applied Bonferroni corrections to Mann–Whitney
tests to control for Type 1 error. Cells that contained more than
1 species were excluded from species and plant type analyses,
which eliminated 40% of the data. Because significant Kruskal–
Wallis and Mann–Whitney tests showed that photogrammetry
metrics differed among fuel types, species, and plant types, we
tested how effectively photogrammetry metrics could classify
fuel types, species, and plant types by using Random Forest
(version 4.6–10) classification in R (Breiman 2001). Random
Forest classification analyses grew 500 trees and selected 4 vari-
ables at each node. Overall classification accuracy was com-
puted as 100 minus the out-of-bag estimate of error rate. Overall
quantity and allocation difference were calculated using the dif-
feR package in R (Pontius and Santacruz 2015).

RESULTS

Comparison of Field-Measured and Photogrammetric
Heights

Data from 3D photogrammetry resulted in an average point
density of 11,765 points m−2 and ranged from 10,839 points
m−2−12,692 points m−2, with the exception of Plot 1, where
point density was 67,776 points m−2 due to a difference in the
defined point extraction density. We found that the fit between
photogrammetric and field-measured heights was insensitive to
lasground parameters. Correlation, mean bias error, root mean
squared error, and relative root mean squared error between
field-measured fuelbed depth and photogrammetric maximum
fuel heights ranged from 0.19–0.53, −3.56 cm–1.22 cm,
6.70 cm–25.56 cm, and 99%–152%, respectively (Figure 3).
Field-measured fuelbed depth and photogrammetric maximum

height patterns and distributions matched well (Figures 3 and
4), although systematic discrepancies were apparent. Field-
measured heights were often much greater than photogrammet-
ric heights, especially in Plots 1, 2, and 3 (Figure 3). Field-
measured height distributions had a greater frequency of lower
heights than photogrammetric height distributions in Plots 1, 2,
4, 5, 6, and 7 (Figure 4).

Statistical and Classification Analyses
A majority of indices in the NbClust routine selected 13 as

the best number of clusters to divide the fuel data into (Table 2).
Grass and longleaf pine litter were the most common fuels. The
majority of the cells were classified as either “sparse vegetation
and litter” (41%) or “sparse vegetation and perched pine litter”
(18%; perchedmeaning pine litter is resting on vegetation rather
than the ground).

Every Kruskal–Wallis test, except that testing whether kurto-
sis of heights varied significantly between species, was signifi-
cant. Mann–Whitney tests revealed 720 of 1638 possible (44%)
significant differences in metric distributions between fuel types
(Tables 1 and 3). Maximum, mean, and standard deviation of
photogrammetry heights; height percentile metrics; and upper
strata density metrics (d04, d05) were most often significantly
different between fuel types (Table 1). Fuel types often varied
significantly for>10 metrics, but were occasionally inseparable
from one another. Fuel Type 8, defined as “sparse vegetation and
litter,” the most abundant fuel type, was the most separable. Fuel
Type 12, defined as “grass and pine litter,” was less separable
than other fuel types.

Between species, 181 of 441 possible (41%) significant dif-
ferences in metric distributions existed (Tables 1 and 4). Mean
height, height percentile, and mean red value were most fre-
quently significantly different between species (Table 1). AND-
VIR was the most separable species, being highly separable
from every other species. ARIMOHwas the least separable, and
was nearly or completely inseparable from PITASP, SCHSCO,
and SCHTEN (Table 4). Other species were moderately sepa-
rable, being separable from some species but inseparable from
others. For example, CHRGOS was fairly separable from every
other species except LICMIC.

For plant type, 114 of 210 possible (54%) significant dif-
ferences in metric distributions were found (Tables 1 and 5).
Similar to fuel types, maximum, mean, and standard devia-
tion of photogrammetry heights; height percentile metrics; and
d05 were most often significantly different between plant types
(Table 1). Less separable plant type pairs included forb and
ground species, grass and seedlings, and shrubs and seedlings
(Table 5).

Despite significant Kruskal–Wallis tests and the large num-
ber of significant Mann–Whitney tests, fuel types, species, and
plant types were fairly confused when all 21 photogramme-
try metrics were used as predictors in classification analyses.
Overall classification accuracies of fuel type, species, and plant
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FIG. 3. Comparisons of true-color photographs, field-measured fuelbed depth, photogrammetric maximum fuel height for each
plot, and the difference (field-measured fuelbed depths minus photogrammetric maximum fuel heights).

type classifications were 44%, 39%, and 44%, respectively
(Tables 6–8). Confusion between classes revealed by Mann–
Whitney tests were reflected in classification analyses, although
the number of observations of each fuel type, species, and plant
type had a large influence on classification accuracy that fur-
thered confusion; commission errors were greater and omission
errors were fewer for fuel types, species, and plant types with
more observations, and vice versa. For example, the most abun-
dant species, LICMIC, had the smallest omission error rate,
34%, but the largest commission error rate, 86%. Although
Mann–Whitney tests showed that ANDVIR was highly separa-
ble from all other classes, it was frequently classified as LICMIC
simply because of the large number of observations of LICMIC
(Table 7). For the fuel type classification, the most abundant fuel

types, 8 and 9, were also themost separable as determined by the
Mann–Whitney test. However, because they were much more
abundant than other classes, they still had the highest commis-
sion error rates, 61% and 72%, respectively (Table 6).

DISCUSSION
We found that photogrammetry is applicable for character-

izing surface fuelbeds and predicting plant types. Although
photogrammetry has been used for 3D depiction of overstory
trees (Dandois and Ellis 2013; Lisein et al. 2013), this is the
first demonstration of using photogrammetry for characteriza-
tion of fine-scale understory fuels and plants. Loudermilk et al.
(2009) showed that fine-scale TLS metrics were correlated with
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FIG. 4. Distributions of 300 photogrammetricmaximumheights and 300 fuelbed depths derived from point-interceptmeasurements
for each plot.

understory biomass and captured understory height variation
better than point-intercept sampling; Loudermilk et al. (2012)
found that height metrics generated from TLS could be used
to predict fire behavior at fine scales. Fine-scale height met-
rics produced using photogrammetry, such as those produced
here, might also be effective predictors of fire behavior; future
research could evaluate this capability.

To evaluate the ability of photogrammetry to approximate
point-intercept data, we compared point-intercept measure-
ments of fuelbed depth to maximum photogrammetry height
because this metric was the best approximation of measured
fuelbed depth. In our case, parameters for normalizing point-
cloud heights that we optimized based on field measurements
were insensitive, and normalizing point-cloud heights using the
default lasground parameters yielded nearly identical results.
Thus, our approach does not necessitate the inclusion of field-
measured height information for parameterization of point-
cloud height normalization. Still, we recommend taking some
field height measurements so that accurate height normalization

can be verified. Point-intercept data is not necessarily the best or
most accurate representation of understory fuels and plants. In
fact, photogrammetry and TLS yield much more height infor-
mation than traditional point-intercept measurements, thereby
capturing height variation at finer scales than point-intercept
measurements are able to capture. We were able to take 300
point-intercept measurements of fuelbed depth for each plot,
whereas photogrammetry resulted in tens of thousands of height
measurements for each plot. Photogrammetry and TLS height
information is also less subjective and less prone to human error
than point-intercept measurements.

Patterns and distributions of point-intercept measurements of
fuelbed depth and photogrammetric maximum height were sim-
ilar, but there were discrepancies (Figures 3 and 4). Some spa-
tial registration differences existed between the 2 datasets, i.e.,
a notable point-intercept measurement for celli,j was located at
times in an adjacent cell in the photogrammetry dataset. Some
differences existed because point-intercept measurements and
photogrammetry data were acquired at different times, so that
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TABLE 3
Number and percentage of significant pairwise differences, as determined by Mann–Whitney tests, between fuel types in terms of
photogrammetry metrics. A Bonferroni correction was applied to significance tests, so that p-values < 0.0038 (0.05/13) were

considered significant. See Table 2 for fuel type descriptions

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

1.
2. 17 (81)
3. 1 (5) 14 (67)
4. 14 (67) 11 (52) 1 (5)
5. 8 (38) 16 (76) 0 (0) 5 (24)
6. 14 (67) 9 (43) 4 (19) 0 (0) 8 (38)
7. 14 (67) 11 (52) 2 (10) 0 (0) 1 (5) 0 (0)
8. 18 (86) 19 (90) 17 (81) 19 (90) 19 (90) 19 (90) 19 (90)
9. 17 (81) 2 (10) 15 (71) 11 (52) 14 (67) 12 (57) 12 (57) 18 (86)
10. 10 (48) 16 (76) 4 (19) 7 (33) 4 (19) 7 (33) 5 (24) 20 (95) 18 (86)
11. 16 (76) 4 (19) 12 (57) 7 (33) 16 (76) 2 (10) 8 (38) 18 (86) 9 (43) 15 (71)
12. 11 (52) 10 (48) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 18 (86) 12 (57) 4 (19) 6 (29)
13. 1 (5) 13 (62) 0 (0) 7 (33) 0 (0) 8 (38) 3 (14) 15 (71) 13 (62) 6 (29) 11 (52) 0 (0)

TABLE 4
Number and percentage of significant pairwise differences, as determined by Mann–Whitney tests, between species in terms of
photogrammetry metrics. A Bonferroni correction was applied to significance tests, so that p-values < 0.00714 (0.05/7) were

more conservatively considered significant

ANDVIR ARIMOH CHRGOS LICMIC PITASP SCHSCO

ANDVIR
ARIMOH 12 (57)
CHRGOS 14 (67) 10 (48)
LICMIC 18 (86) 5 (24) 3 (14)
PITASP 14 (67) 0 (0) 7 (33) 5 (24)
SCHSCO 17 (81) 2 (10) 16 (76) 7 (33) 7 (33)
SCHTEN 11 (52) 1 (5) 11 (52) 8 (38) 9 (43) 4 (19)

physical changes in fuels and plants (e.g., growth, trampled by
fauna, wind, or other weather) could have occurred during that
time. For some cells, photogrammetry maximum heights were
much lower than point-intercept fuelbed depths (Plots 1–3 in

TABLE 5
Number and percentage of significant pairwise differences, as
determined by Mann–Whitney tests, between plant types in
terms of photogrammetry metrics. A Bonferroni correction
was applied to significance tests, so that p-values < 0.01
(0.05/5) were more conservatively considered significant

Forb Grass Ground Shrub

Forb
Grass 14 (67)
Ground 3 (14) 17 (81)
Shrub 15 (71) 14 (67) 16 (76)
Seedling 13 (62) 2 (10) 12 (57) 8 (38)

Figure 3); in these cases, photogrammetry was unable to capture
the heights of tall grass stems, which are arguably of little over-
all importance to understory fuels and resulting fire behavior.
Photogrammetry can also suffer from occlusion, where objects
block those underlying them.

We have incorporated a recent advancement to the design
(after this study) by using two identical cameras mounted about
50 cm apart on a parallax bar. Here, one can take 2 simultaneous
photos in exactly the same lighting conditions to minimize veg-
etation change (mainly fromwind) between photos. Although in
pilot work capturing portions (0.5m2−1m2) of the plot from dif-
ferent angles and distances from nadir was explored (Westoby
et al. 2012; James and Robson 2013; Nouwakpo et al. 2015), we
found that taking 2 photographs at nadir of the entire plot was
important for reconstructing these fuels by standardizing light
conditions, vegetation positions, and topography across the plot.
Taking multiple pictures around the plot increased discrepan-
cies of lighting between photos and created issues with merging
data across the plot, where even slight (e.g., 1 cm) differences
in topography or shifts in vegetation (from wind) could lower
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TABLE 6
Confusion matrix of fuel type classification. Fuel types generated from cluster analysis were classified by using photogrammetry

metrics. Overall accuracy, quantity difference, and allocation difference were 44%, 18%, and 38%, respectively

Classification

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. Total Comm. Error (%)

Cluster
Analysis

1. 6 1 0 1 0 1 2 0 2 0 1 1 0 15 40
2. 0 67 1 1 0 6 2 162 65 10 21 1 0 336 51
3. 0 1 0 1 1 5 0 5 6 1 2 0 0 22 23
4. 1 10 1 4 0 11 3 29 23 9 12 1 0 104 29
5. 1 3 1 1 3 1 1 6 12 5 6 1 0 41 32
6. 1 13 1 9 0 8 3 47 25 8 4 0 0 119 39
7. 0 5 1 6 0 3 8 31 12 6 6 4 1 83 29
8. 1 51 0 1 2 5 3 898 106 5 14 2 0 1088 61
9. 0 45 0 3 2 2 1 246 152 14 18 1 0 484 72
10. 1 11 0 2 3 5 2 22 37 29 11 0 0 123 60
11. 0 29 0 3 1 4 1 97 47 11 13 2 0 208 48
12. 0 1 0 1 3 1 4 14 11 1 4 0 0 40 33
13. 1 0 0 1 1 3 2 1 2 4 1 0 0 16 6
Total 12 237 5 34 16 55 32 1558 500 103 113 13 1 2679
Omis. Error (%) 60 80 100 96 92 93 90 17 69 76 93 100 100

quality of merged results. Although cloudy or dawn and dusk
conditions are best, one can use a tarp or other method to create
shade or even lighting conditions in full-sunlight conditions.

Our cluster analysis indicated that understory fuels were best
separated into 13 classes; similarly, Hiers et al. (2009) found that
15 different fuel types provided a good representation of under-
story fuels in a similar longleaf pine ecosystem. Several of our
fuel types correspond to those described in Hiers et al. (2009):
flat pine and oak litter with pinecone (Fuel Type 2); grass and
pine litter (Fuel Types 5 and 12); shrubs, grass and litter (Fuel
Types 6 and 7); sparse vegetation and perched pine litter (Fuel

Type 9); and shrubs and perched pine litter (Fuel Type 10).
Forbs were more abundant on the plots of Hiers et al. (2009).
Pinecones were artificially placed in our plots, and were there-
fore more prevalent in our plots than those of Hiers et al. (2009).
Absent on our plots but fairly abundant in the plots of Hiers et al.
(2009) was wiregrass (Aristida stricta Michx., A. beyrichiana
Trin. & Rupr.). Wiregrass is more prevalent in the more pro-
ductive longleaf pine forests of southwestern Georgia, where
Hiers et al. (2009) worked, than at Eglin AFB (Noss 1989).

We found that metrics derived from photogrammetry data
differed significantly among different fuel types, species, and

TABLE 7
Confusion matrix of species classification. Species measured in the field were classified using photogrammetry metrics. Overall

accuracy, quantity difference, and allocation difference were 39%, 17%, and 44%, respectively

Classification

ANDVIR ARIMOH CHRGOS LICMIC PITASP SCHSCO SCHTEN Total
Comm.
Error (%)

Ground
Observation

ANDVIR 33 0 1 31 5 10 3 83 47
ARIMOH 3 4 1 27 17 6 2 60 17
CHRGOS 7 1 3 39 22 5 0 77 38
LICMIC 13 2 10 189 23 45 5 287 86
PITASP 4 4 11 44 47 31 4 145 68
SCHSCO 5 2 5 90 17 55 2 176 64
SCHTEN 7 1 1 15 14 2 7 47 34
Total 72 14 32 435 145 154 23 875
Omis. Error (%) 60 93 96 34 68 69 85



470 CANADIAN JOURNAL OF REMOTE SENSING/JOURNAL CANADIEN DE TÉLÉDÉTECTION

TABLE 8
Confusion matrix of plant type classification. Plant types measured in the field were classified using photogrammetry metrics.

Overall accuracy, quantity difference, and allocation difference were 44%, 6%, and 50%, respectively

Classification

Forb Grass Ground Shrub Seedling Total
Comm.
Error (%)

Ground
Observation

Forb 178 141 75 0 0 394 58
Grass 130 211 77 1 1 420 64
Ground 89 111 120 0 0 320 50
Shrub 0 6 1 1 0 8 13
Seedling 8 11 6 0 0 25 4
Total 405 480 279 2 1 1167
Omis. Error (%) 55 50 63 88 100

plant types within a longleaf pine forest. However, despite sig-
nificant differences, using photogrammetry metrics for classi-
fication analysis was less successful. Fuel types, species, and
plant types were less confused when differences detectable by
photogrammetry existed. For example, sparse vegetation and lit-
ter fuel types (Fuel Types 8 and 9), the most abundant fuel types,
were relatively more separable than other fuel types, as indi-
cated by higher numbers of significant pairwise Mann–Whitney
tests (Table 5); greater separability was caused by the relatively
shallower fuelbed depths of these fuel types (Table 2), which
were successfully detected by photogrammetry. ANDVIR was
more separable than other species (Tables 4 and 7) because pho-
togrammetric points and derived metrics of ANDVIR tended to
be higher than those of other species. Similarly, photogrammet-
ric points and derived metrics from shrubs tended to be higher
than those of other plant types. Species and plant types might
have been better separated if data had been gathered at a dif-
ferent time of year that maximized species uniqueness in mor-
phology and color, i.e., in the spring and fall when most flower-
ing occurs in these systems. Producing metrics from RGB val-
ues of the 2D digital photographs, opposed to using RGB val-
ues at photogrammetric points as we did here, might provide
additional information that could potentially increase separabil-
ity among fuel types, species, and plant types, and is a possible
consideration for future research.

CONCLUSION
Our results indicate that close-range photogrammetry has

potential for yielding fine-scale measurements of understory
fuels and plants; however, disagreement between photogram-
metry and point-intercept height data and low overall classifi-
cation accuracies leave room for improvement. We found poor
to moderate agreement between close-range photogrammetry
heights and field-measured fuelbed depths. Fuel types, plant
species, and plant types were often separable in terms of
photogrammetry-derived metrics; however, overall accuracies

were poor, although better than random, when classifying
fuel types, plant species, and plant types using the same
metrics.

Close-range photogrammetry has the potential to improve
on point-intercept techniques by generating more and less sub-
jective height measurements. Other advantages of close-range
photogrammetry are the ability to create a permanent record
of understory vegetation and fuels that would support retro-
spect analyses and for the calibration of human interpreters. As
such, photogrammetry might be a highly feasible alternative to
point-intercept techniques for characterizing fine-scale under-
story fuels and plants and should be explored further.
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