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A Chance-Constrained Programming Model to
Allocate Wildfire Initial Attack Resources for a Fire
Season
Yu Wei, Michael Bevers, Erin Belval, and Benjamin Bird

This research developed a chance-constrained two-stage stochastic programming model to support wildfire initial attack resource acquisition and location on a planning
unit for a fire season. Fire growth constraints account for the interaction between fire perimeter growth and construction to prevent overestimation of resource
requirements. We used this model to examine daily resource stationing budget requirements and suppression resource types and deployments within a fire planning
unit. A chance constraint ensures the conditional probability of one or more fire escapes on days with ignitions below a predefined threshold. This chance-constrained
approach recognizes that funding for local resources is unlikely to be sufficient for containing all fires in initial attack. For test cases, we used 1,655 fires occurring
over 935 historical fire days from the Black Hills Fire Planning Unit in South Dakota. We tested our model under a variety of fire suppression assumptions to estimate
appropriate daily stationing budget levels and resource allocations.
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Increased wildfire activity has been observed in the United States
(Westerling et al. 2006) and Canada (Podur et al. 2002) in the
past century. This upward trend is likely to continue owing to

changing weather conditions associated with climate change (Wot-
ton et al. 2003, Westerling et al. 2006) and development at the
wildland urban interface (Snyder 1999, Radeloff et al. 2005). As
suppression expenditures continue to rise, government agencies in
the United States are seeking economically efficient wildfire man-
agement approaches and budget allocation strategies (Venn and
Calkin 2011, Petrovic et al. 2012). One aspect of wildfire manage-
ment that has been studied in this regard is initial attack (IA).

IA includes strategic decisions of deploying resources at fire sta-
tions and tactical decisions in dispatching resources to fires (Martell
1982, Ntaimo et al. 2012). Objectives for IA may include but are
not limited to minimizing the area burned or suppression cost
(Parks 1964, Cumming 2005). The US land management agencies
historically have provided effective IA. For example, the US Depart-
ment of Agriculture (USDA) Forest Service suppressed approxi-
mately 98% of all ignitions between 1970 and 2002 before fire sizes
exceeded about 121 ha (Calkin et al. 2005). Despite the success of
IA on federal lands in the United States, the overall impacts of fires

are dominated by the infrequent large events instead of typical me-
dium-sized events (Petrovic et al. 2012). The USDA Forest Service
fires that did escape IA represented more than 97% of the total
burned area for that agency (Calkin et al. 2005).

Optimization models with different structures and fire contain-
ment rules have been developed to improve IA efficiency. Wiitala
(1999) converted a mixed-integer nonlinear programming formu-
lation of IA dispatching decisions into a dynamic programming
model. This model searches for the lowest cost combination of
resources to build enough fire line to contain a fire at a predefined
time. Donovan and Rideout (2003) developed a deterministic
mixed-integer linear programming (MILP) model to dispatch fire-
fighting resources to a fire across multiple time steps. Kirsch and
Rideout (2005) and Rideout et al. (2011) extended this MILP
model to address competing IA requirements arising from multiple
wildfire ignitions. Containment rules in each of these models com-
pare the total fire line constructed with predicted fire perimeter at
each time step while ignoring the possibility that line constructed in
earlier periods could retard fire growth in future periods. That is, a
free-burning fire is assumed in these models (Wiitala 1999, Dono-
van and Rideout 2003, Kirsch and Rideout 2005, Rideout et al.
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2011). Fried and Fried (1996) suggested that modeling suppression
based on free-burning fire growth can substantially overestimate
final fire sizes and fire line construction resource requirements. Wei
et al. (2011) developed an MILP model to allocate control locations
on a fire by modeling the interaction between fire spread and line
construction across time. Instead of modeling containment, this
model minimizes the fire size (or loss) after a predefined period of
time.

All of the models introduced above are deterministic. In reality,
suppression decisions are made with limited time and information;
thus, uncertainty is a crucial component of wildland fire manage-
ment. Sources of uncertainty include fire weather, fire behavior,
inaccurate data, the value of resources at risk, and operational effec-
tiveness (Thompson and Calkin 2011). Stochastic programming
models containing multiple fire samples or scenarios have been used
to address some of these uncertainties. Haight and Fried (2007)
developed a scenario-based two-stage MILP model to position 22
engines among 15 stations to minimize the number of suppression
resources deployed and the expected daily number of fires that do
not receive a standard response, defined as the “desired number of
resources that can reach the fire within a specified response time.”
The standard response to each fire is derived from the maximum
burning index of the fire day and needs to be applied to a fire within
30 minutes after a fire report. This MILP model does not directly
model fire containment. Instead, a simulation model CFES2 (Fried
and Gilless 1999) was used to evaluate the fire escape probability
from engine deployments recommended by the MILP solution.
Ntaimo et al. (2012) developed a two-stage stochastic programming
model using the sample average approximation approach. Test cases
presented in their study deploy 28 dozers to 8 bases in the first stage
and dispatch them to each fire at representative fire locations to
cover the length of the free-burning fire perimeter for containment
at the end of the 6-hour standard response period. Time-specific fire
growth (e.g., hour-by-hour) was not modeled in their mathematical
formulation. The objective of their model is to minimize the sum of
fixed deployment costs and the expected value of suppression cost
and net value change. In a following study, Ntaimo et al. (2013)
enhanced their model to compare fire line construction and fire
perimeter in each fire spread period, declaring containment if the
constructed fire line attains a user-defined percentage of the free-
burning fire perimeter. Similar types of models can be found for
other emergency response systems to deal with risks and solve loca-
tion and allocation problems, e.g., emergency medical services (for a
review, see Li et al. 2011).

The Fire Program Analysis (FPA) system1 was developed by the
USDA Forest Service and the US Department of Interior for mod-
eling federal budget allocation strategies that include the numbers
and base locations of various IA resources for a fire season. FPA
contains a suite of simulation models to estimate the effects on
several performance measures of predefined budget allocations and
staffing strategies for 133 fire planning units (FPUs) across the
United States. A goal programming model is then used to suggest
funding levels and staffing for FPUs based on various sets of national
performance measure weights and budget constraints. Within FPA,
the Initial Response Simulator models IA on fires for numerous
randomly generated fire seasons to estimate containment success
and related measures for each budget allocation and staffing strategy
in each FPU. The Initial Response Simulator uses the Fried and
Fried (1996) method to model containment, which accounts for the

interaction between the containment line and a fire’s capacity to
spread, thereby reducing fire growth.

In this article, we introduce a two-stage stochastic MILP model
to station and dispatch hand crews and engines in an FPU. Solutions
from the model identify the minimum required resource stationing
budget, the number of crews and engines to employ for each fire
season, and the fire station assignments for selected resources so as to
limit the conditional probability of one or more fire escapes on days
with ignitions. We define containment failures here as those fires
that are not contained within a prespecified time after ignition. The
probability of IA failure is modeled as a chance-constrained program
using simulated historical fire events. Our model addresses situa-
tions when limited fire resources must be allocated among multiple
co-occurring fires (e.g., Arienti et al. 2006), which can increase the
likelihood that fires escape IA.

We use a test case from the Black Hills Fire Planning Unit
(BHFPU) in South Dakota to test our model under a number of fire
suppression assumptions. We parameterized our test model using
historic fire ignition records from FireFamilyPlus (Bradshaw and
McCormick 2000) and historic daily and hourly fire weather data
from multiple remote automated weather stations (RAWS). We
simulated each historic fire at its original location and under associ-
ated weather in FARSITE (Finney 2004) on a rasterized heteroge-
neous landscape from LANDFIRE (Rollins and Frame 2006). Sim-
ulated hourly free-burning fire perimeters and the average distances
between adjacent perimeters are built into mathematical program-
ming equations to track how fire line constructed at earlier hours
reduces the length of actively spreading fire perimeters during later
hours. This model allows users to adjust how fire line could be built
progressively to connect and contain hourly footprints of a free-
burning fire. It compares the amount of fire line constructed during
each hour with the uncontained fire perimeter to determine con-
tainment. Parameters in the model can be set to vary travel time to
fires and to account for delays in dispatching IA resources, which can
result in dramatic increases in fire loss (MacLellan and Martell
1996) and greater demand for resources (Petrovic et al. 2012). Like-
wise, the model accounts for changes in the spread rate of fires,
which can influence IA success (Haight and Fried 2007), and vari-
ations in crew productivity defined as the rate (meters per hour) at
which firefighters construct fire line (Hirsch and Martell 1996).

Methods
Birge and Louveaux (1997, p. 84) define a two-stage stochastic

linear programming problem as

Minimize z � cTx � E�[min q(�)T y(�)]
s.t.
Ax � b
T(�)x � Wy(�) � h(�)
x � 0, y(�) � 0

where the vector x contains first-stage decisions that must be made
“up front” based on known initial conditions and on the probabil-
ities of subsequent random events, before observing which events
occur. The vector y (�) contains second-stage “wait and see” re-
course decisions that can be made after the random events become
known. The “technology” matrix T (�) and right-hand side vector h
(�) contain any random parameters in the constraint set. Matrix A,
“recourse” matrix W, and right-hand side vector b contain only
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parameters that are known at the start. The objective function min-
imizes the sum of known “costs” cTx associated with the first-stage
decision plus the expected value of least “costs” associated with
second-stage recourse decisions.

In the context of our fire season resource acquisition and location
problem, the first-stage decision identifies which suppression re-
sources should be located at each fire station for IA over a fire season.
In the USDA Forest Service budget, costs associated with this deci-
sion stage are classified as “preparedness” expenditures (USDA For-
est Service Manual 1999). Second-stage recourse decisions deter-
mine which of the available suppression resources to dispatch to
each fire. Costs associated with these second-stage firefighting deci-
sions are classified as “suppression” expenditures (USDA Forest Ser-
vice Manual 1999). Additional expected losses and benefits from
fires might also be accounted for in the second stage, although we do
not attempt to do so in this initial investigation. We do consider,
however, a third category of costs referred to as “severity” expendi-
tures (USDA Forest Service Manual 1999, 2007), which can be used
to preposition resources from other parts of the country in an FPU
or take other actions to supplement local resources during periods of
exceptional fire danger.

In USDA Forest Service practice, second-stage suppression costs
for smaller fires are often aggregated in recordkeeping, in part be-
cause detailed accounting is difficult when multiple small fires occur
and in part because these costs tend to be dwarfed by suppression
costs for the larger fires that escape IA. Consequently, we drop the
second-stage expected value term from the objective function in our
IA-oriented model, replacing it with a chance constraint aimed to
control the probability of experiencing IA days that result in one or
more fires escaping containment.

Stochastic programming problems typically are solved using de-
terministic equivalent mathematical programs, often formulated as
approximations or estimates rather than exact models for large,
complex problems (Birge and Louveaux 1997). We define our de-
terministic equivalent formulation and our use of the chance con-
straint in detail below.

The MILP Model for Seasonal Resource Acquisition and Location
(SRAL)

The model contains the following.

Indices

g index of all sampled fires included in the model.
k index of fire days. More than one fire could ignite in each fire

day.
i index of fire stations.
r index of suppression resource types.
t index of time steps (periods) since the start of a fire.

Sets

Gk a set of fire ignitions in the same fire day k.
A the set of fire days (indexed by k) included in the determin-

istic equivalent MILP model. This set reflects our chance
constraint, as described later.

Variables

xr,i general integer variables denoting how many resources of
type r should be stationed at fire station i. These indicate
the first-stage decision.

yr,i,g general integer variables denoting how many resources of
type r are dispatched from fire station i to fire g. These
indicate the second-stage decision.

lg,t continuous variables denoting the length of new fire line
that can be constructed during period t to suppress fire g.
We assume that fire line produced during period t short-
ens the uncontained perimeter of fire g at the end of
period t.

fg,t binary variables denoting whether fire g will be contained
at the end of period t after suppression. fg,t � 1 denotes
containment of fire g at the end of period t; otherwise
fg,t � 0.

vg,t binary variables denoting whether fire line is built to con-
tain fire g in period t. vg,t � 1 denotes that fire line is built
in period t for fire g.

wg,t binary variables working as a switch; wg,t�1 � 1 denotes
that the adjusted distance (�DDg,t) between two free-
burning fire perimeters at periods (t � 1) and t will be
added into the uncontained perimeter of fire g at the end
of period t.

pg,t continuous bookkeeping variables used to track the un-
contained perimeter of fire g at the end of period t before
subtracting the new fire line constructed during period t.

�g bookkeeping variables tracking the uncontained perime-
ter of fire g after the T period IA time frame. �g is set to 0
if fire g was contained before or at the end of period T.

�Total bookkeeping variables tracking the total uncontained fire
perimeters for all fires in set A after the IA time limit.

u a bookkeeping variable tracking the total IA resources
stationing cost in an FPU (the preparedness cost).

Parameters

Cr,i the cost of stationing resource r at fire station i.
Lr,i,g,t the length of fire line constructed by each resource of

type r dispatched from station i to suppress fire g during
period t. A dispatch or departure time delay and travel
time affecting resource arrival from a station to a fire can
also be set through this parameter. For example, Lr,i,g,t is
set to 0 at period t if a resource of type r cannot arrive at
fire g from station i before period t. Likewise, Lr,i,g,t can
be set to reflect a constant line production rate after the
resource has arrived at the fire, or it can be set such that
it reflects declines in line productivity after some dura-
tion of operations resulting from potential crew fatigue
or an out-of-water situation for an engine.

Pg,t the free-burning perimeter of fire g at the end of period t
without suppression. This fire perimeter is calculated by
simulating fire spread using available fire simulation soft-
ware, in this case FARSITE (Finney 2004).

�D a parameter that reflects the possible line construction
paths between two consecutive fire spread periods (t �
1) and t (explained in more detail using Figure 2).

Dg,t the average distance between free-burning fire perime-
ters at the end of period (t � 1) and t (explained in more
detail using Figures 1 and 2).

M a large positive number used to set the value of logic
(switch) variables.
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Min Z � u (1)

subject to

�
g�Gk

yr,i,g 	 xr,i @r,i,k � A (2)

�pg,t �
Pg,t

Pg,t�1
� pg,t�1 
 lg,t�1�

� 2�DDg,twg,t�1 @g,t�Pg,t�1 � 0 �3.1�
pg,t � Pg,t @g,t�Pg,t�1 � 0 �3.2�

lg,t 	 �
r
�
i

Lr,i,g,tyr,i,g @g,t (4)

� lg,t 	 Mvg,t @g,t �5.1�
vg,t � vg,t�1 @g,t � 2 �5.2�

pg,t 
 lg,t 	 M�1 
 fg,t� @g,t (6)

lg,t 
 pg,t 	 Mfg,t @g,t (7)

wg,t � vg,t 
 fg,t @g,t (8)

pg,T 
 lg,T 	 �g @g (9)

�
g

�g 	 �Total (10)

�Total 	 0 (11)

�
r
�

i
Cr,ixr,i 	 u (12)

Objective function 1 minimizes the total budget for stationing all
resources. Constraint 2 enforces that the number of resources of
type r dispatched from station i to all fires within any modeled fire
day cannot be more than the total number of resources of type r
available from station i. This reflects an assumption that any re-
source which has already been dispatched to a fire cannot be dis-
patched to another fire within the same day. Resources are assumed
to go back to their assigned stations, ready to be dispatched again the
next fire day.

Constraint 3.1 calculates the length of uncontained fire perime-
ter of fire g at the end of period t. It assumes that fire line constructed
in earlier periods will halt fire spread at those locations. Whereas the
FARSITE simulations used to parameterize our model are run on a
spatially defined raster landscape, fire growth in our model is not.
Instead, we use the length of the free-burning fire perimeters calcu-
lated in FARSITE to calculate a discrete-time linear approximation
of perimeter growth reduced by line construction. Pt/Pt�1 is the
ratio between the length of the free-burning fire perimeters at the
ends of period t and (t � 1). It reflects the rate of fire perimeter
expansion during period t and is used to approximate how much fire
line constructed in period (t � 1) can reduce the expansion of fire
perimeter during period t. This equation allows us to approximate
the effects of fire line construction on perimeter growth by referenc-
ing the set of free-burning fire footprints created from FARSITE
(demonstrated in Figure 1). We built Constraint 3.2 in place of 3.1
for time steps where FARSITE reported fire perimeter lengths of 0
in the preceding time step. Because Constraint 3.1 represents an
approach that discretizes both the continuous fire growth and fire
line construction, modeling shorter time steps can help create

smoother fire growth and line construction paths. However, shorter
periods also require additional variables, creating a more complex
model.

We do not model the exact line construction paths in Constraint
3.1. Instead, the value of �D is set to mimic different fire line con-
struction paths, providing a calibration option in the model. The
possible effects of selecting different �D values to approximate pos-
sible fire line shapes are illustrated by Figure 2. Lower values of �D

represent assumptions of more efficient line construction when we
connect free-burning fire perimeters (Figure 2). Sensitivity analyses
can be used to help select values of �D.

Constraint 4 tracks the new fire line constructed during period t
by all resources dispatched from all stations to a fire g. Constraint 5.1
sets the value of binary variable vg,t to 1 when fire line is first built in
period t, and it remains 1 until the end of the IA time limit T
(Constraint 5.2) to ensure the continuity of fire line. Constraints 6
and 7 set the binary variable fg,t to indicate whether fire g is contained
at the end of period t. If and only if the amount of new fire line
constructed during period t is as long as or longer than the uncon-
tained fire perimeter at the end of period t, fg,t is set to 1 to declare
containment of this fire. fg,t remains 1 for the time steps after fire
containment (e.g., for periods t � 1, t � 2, … after the fire is
contained at period t) because the fire perimeter lower bound (set by
Constraint 3.1) remains 0 afterwards. Constraint 8 sets wg,t to 0
before suppression starts (when vg,t � 0). Constraint 8 also sets wg,t

to 0 in period t when fire g is contained (vg,t � 1 and fg,t � 1). If
wg,t � 0, the model excludes �DDg,t from the next-period fire pe-
rimeter growth in Constraint 3.1.

Constraint 9 calculates the value of Pg, the perimeter (if any) for
fire g remaining after the T period IA time frame. Constraint 10
sums the total uncontained fire perimeter for all fires after the T
period IA time frame. Constraint 11 enforces the full containment
of all modeled fires. We will describe how Constraint 11 is used with
a chance constraint in the following section. If full containment is
not required, this constraint could be dropped in concert with other
model changes.

Constraint 12 tracks the total resource stationing budget (the
preparedness budget). This budget is minimized in the objective
function. Recall that the variable cost (suppression cost) of dispatch-
ing a resource to a fire is not counted in this study. We assume that

Figure 1. A stylized example of free-burning fire perimeters from
fire simulation overlaid by the model-assumed fire line constructed
along and across the free-burning perimeters.
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fire operational costs come from sources different from the station-
ing costs, although this can vary by firefighting agency. This variable
cost could be incorporated into the budget calculation if needed.

Determining the Budget Based on Predetermined Exceedance
Probabilities

As stated in the Introduction, we are interested in minimizing the
required preparedness budget and identifying fire station assign-
ments for IA resources so as to limit the probability that any day with
fire ignitions will result in one or more IA containment failures. In
the context of our model, this requires meeting the following chance
constraint

P�� �g�G����1 
 fg,T�  0� 	 �

where the probability that IA fails to contain one or more fires
within T time periods on any random fire day � is no greater than a
prespecified exceedance probability � (e.g., � � 0.05) (Gumbel
1958, Makkonen 2008). G(�) is the set of fires in fire day �; fg,t �
1 denotes that fire g is contained within T time periods.

Use of this chance constraint recognizes that stationing suppres-
sion resources for a fire season within an FPU to contain all possible
fires can be too expensive to be practical. Instead, the constraint
partitions a set of fire days on a planning unit into two groups that
we refer to as group A and group B. Group A contains those fire days
in which the budgeted seasonal IA organization is intended to con-
tain all fires in the FPU. Group B contains the remaining fire days in
which the budgeted IA organization probably would experience
containment failures without supplemental resources. Conceptu-
ally, we use the chance constraint to partition the overall FPU plan-
ning problem into preparedness and severity subproblems, where
group A fire days are intended to be handled by the FPU seasonal
(preparedness) IA resources and group B fire days require supple-
mental (severity) IA resources from outside the FPU. Exceedance
probability � sets a breakpoint between these two subproblems. Our
SRAL model then identifies an FPU seasonal IA organization that
minimizes the preparedness budget required for full containment in
all group A fire days.

We employ a sampling procedure to implement this probabilistic
constraint. Starting from a large random sample of N fire days, we
solve the SRAL model N times, once for each fire day k indepen-
dently. A minimum resource stationing budget Zk that provides
resources to contain all fires in each fire day k is determined. All fire
days {1 to N} are then sorted based on Zk from the lowest to the
highest budget to form an ordered set. An estimated exceedance
probability � where � � 1 � K/(N � 1) (Gumbel 1958, Makkonen
2008) is achieved if we can contain all fires in K out of N indepen-
dent fire days. This equation can be used to calculate the value of K
with a given � and N, where the resulting K is rounded up to a whole
number to identify the breakpoint for partitioning a subset of or-
dered fire days {1 to N}. The 1st through the Kth fire days are put in
group A and used to identify seasonal resource needs and their
station assignments to achieve a targeted exceedance probability �.
Because our fire day observations are from a historic time series
record and are not independent, we used circular block bootstrap-
ping to estimate confidence intervals (Politis and White 2003) on
the targeted exceedance probabilities for various group A fire day
partitions.

For cases combining large sample sizes with small exceedance
probabilities, there could be hundreds or thousands of fire days in
group A and substantially more individual fires. Consequently, we
used an iterative procedure to avoid having to solve models contain-
ing very large numbers of fire days and fires. For this procedure, we
observe that if an SRAL model solution is optimal (i.e., achieves
minimum cost) for any subset of the group A fire days and is also
feasible for the other group A fire days, then that solution is optimal
for the full group A fire days problem. Anticipating that the fire days
in group A with the largest daily stationing budget requirements are
probably the most severe fire days to address, we implemented the
following iterative procedure:

1. Begin with the daily stationing budget configuration problem
corresponding to the Kth group A fire day, which requires the
largest daily stationing budget in all group A fire days, as the
master problem and its optimal solution as the master prob-
lem solution.

Figure 2. In this model, we assume that fire lines would first be constructed along each FARSITE-reported free-burning fire perimeter.
Lines built along two adjacent fire perimeters also need to be connected by additional fire lines. �D is used to adjust how to build
connecting lines between adjacent perimeters. A larger �D results in longer fire lines to contain a fire. This example uses circular fire shapes
to simplify demonstration.
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2. Impose the master problem solution on the daily budget re-
quirement problem for fire day K � 1, then for fire day K � 2,
and so on down to fire day 1. If a problem is found to be infea-
sible, stop at that fire day and go to step 3. When a solution is
found that is feasible for all group A fire days, go to step 4.

3. Add the fire day that resulted in infeasibility to the master
problem and re-solve. Repeat step 2.

4. Accept this master problem solution as an optimal solution to
the full group A problem.

It is also possible that the final solution resulting from this procedure
might be a feasible solution for fire days ranked higher (i.e., some of
the more costly group B fire days) than fire day K. Such an outcome
still conforms to our chance constraint while indicating that the
same IA organization can achieve an even smaller exceedance prob-
ability than was specified for the problem.

Test Case
We elected to use all federal lands within the BHFPU as the study

site to test our model. The BHFPU is located in western South
Dakota and northeastern Wyoming, covering an area approximately
200 km long and 105 km wide. Figure 3 shows a map of the BHFPU
including the FPU boundary, weather stations, and available fire
station locations.

Simulating Perimeters of Free-Burning Fires
We downloaded the BHFPU fire and weather records for years

1993–2010 from FireFamilyPlus (Bradshaw and McCormick

2000). From these records, we selected all federal fire records with
sufficient data for our simulations. This process produced records
for 1,655 ignitions (Figure 4) occurring in 935 fire days. We col-
lected the hourly and daily weather data associated with these fires
and used FARSITE (Finney 2004) to simulate the hourly growth of
each fire on raster landscapes with elevation and fuel types down-
loaded from LANDFIRE (Rollins and Frame 2006). Hourly
weather data from seven RAWS (Red Canyon, Elk Mountain,
Custer, Custer State Park, Mount Rushmore, Baker Park, and
Nemo) were used to support the calculation of spatially varying
hourly wind fields (direction and speed) for these simulations, using
a “point initialization option” in WindNinja (Forthofer et al. 2009).
Perimeters of these simulated free-burning fires were collected for
each hour over a 24-hour period to support parameter calculations
for our SRAL models. Figure 5 shows a frequency distribution of
our 935 daily totals of fire perimeters (summed over all fires in each
fire day) from simulating each fire as a free-burning fire for 24 hours.

Suppression Resource Types, Productivity, and Travel Times
Hand crews, fire engines, and water tenders are the three types of

fire suppression resources included in this study. We modeled two
types of fire engines using data collected for FPA from this FPU: in
our models, each small engine, type 5 or type 6, as described by the
Federal Fire and Aviation Task Group (2014), dispatches with three
crew members; and each large engine, type 3 or type 4, as described
by the Federal Fire and Aviation Task Group (2014), dispatches
with four crew members. Water tenders transport water from a
water source (i.e., lake, stream, well, or other) to the engines at a fire

Figure 3. The locations of the RAWS and fire stations in the BHFPU.
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scene. For simplicity, we allow water tenders to be paired as an
option only with the large fire engines to maintain a higher line
production rate for this engine type. We assume that the small fire
engines will run out of water after an hour of use, and the large fire
engines will run out of water every 2 hours without support from a
water tender. When an engine without a water tender runs out of
water, we assume that one crew member has to drive it to a water

source for refilling, while the remaining crew members continue
working on the fire at a hand crew rate of line productivity. For
example, when a small engine is dispatched to a fire in a location
with fuel type 121 (Low Load, Dry Climate Grass-Shrub based on
Scott and Burgan 2005), the hourly line production rate would be
set to 13.5 chains per hour for odd hours (1, 3, 5, …) after arrival at
the fire, reflecting work periods with water available, and would be
set to 5.4 chains per hour for even hours (2, 4, 6, …), reflecting the
line production rate of a two-person hand crew. When a large engine
is dispatched to the same fire without a water tender, the hourly line
production rate would be set to 18.9 chains per hour for hours (1, 2,
4, 5, 7, 8, …) after arrival at the fire, reflecting work periods with
water available, and would be set to 8.1 chains per hour every third
hour (3, 6, 9, …), reflecting the line production rate of a three-per-
son hand crew. If a large engine is operated together with a water
tender, the line production rate would be maintained at the higher
level of 18.9 chains per hour because we assume the water tender
would be able to provide a continuous water supply for this engine.
We based these fire line production rates on the average of the
resource productivity data found in the FPA system. The fire line
production rates used here were collected for FPA modeling pur-
poses and are calibrated specifically for the BHFPU. Other estimates
of fire line production rates are available, including a recent national
study by Broyles (2011).

In our model, suppression resources can be dispatched from any
fire station to any fire in the planning unit. For simplicity in these
exploratory tests, we chose not to constrain the numbers of resources
that can be located at any fire station. Adding constraints to reflect

Figure 4. The ignition locations of 1,655 historical federal fires from 1993 through 2010 in the BHFPU.

Figure 5. Frequency of the total 24-hour free-burning fire perim-
eters of all fires per fire day. Fires were simulated by FARSITE from
their historical ignition locations using corresponding historical
weather.
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capacity limits at various stations would be straightforward. Capac-
ity expansion options and costs also could be included with more
work. Likewise, we chose in these tests to calculate travel times from
fire stations to fire locations simply as the distance between those
points divided by a travel rate from the BHFPU FPA data of 56
km/hour. Modeled average costs per day for stationing each resource
type in the planning unit for the fire season (also from FPA) are
shown in Table 1.

Results
We tested the effects of four parameters on the minimum daily

cost for stationing seasonal fire suppression resources on the BH-
FPU. Costs are reported on a per day basis. Our primary parameter
of interest was �, the exceedance probability that determines how
much of the IA workload is intended to be handled by the local
planning unit with preparedness funds. We ran tests with three
settings for �: 0.05, 0.01, and 0.002 using 890, 927, and all 935 fire
days, respectively. Use of the circular block bootstrapping method
outlined in Politis and White (2003) indicated 95% confidence
intervals for our targeted exceedance probabilities of (0.033, 0.065),
(0.005, 0.017), and (0.001, 0.004) at these group A partition
points.

Given the recent fire history on the BHFPU, these exceedance
probabilities reflect a need for supplemental IA resources ranging on
average from about 1 to around 45–50 fire days every few decades.
We also ran tests with two settings for the time allowed to contain
each fire, T (18 and 24 hours), with two settings for our construction
path calibration parameter �D (0 and 1), and with two settings for
delays in fire discovery (or suppression resource travel) times (0 and
1 hour). Table 2 shows the results from these runs. Finally, we
conducted an additional analysis that compares the contained pe-
rimeters of each fire under different �D values with FARSITE-
reported free-burning fire perimeters at the corresponding hours of
containment to directly examine the effect of �D on fire perimeter
growth.

Budget Requirements
The seasonal resource acquisition and stationing budgets vary

substantially, depending on the specified exceedance probability.
Lowering the exceedance probability target from 0.05 to 0.01 al-
most doubles the minimum daily stationing budget requirement
regardless of the assumed fire discovery delay, IA time limits, or the
value of �D. Further lowering the exceedance probability from 0.01
to 0.002 requires another 2- to 3-fold budget increase, depending on
selected fire suppression assumptions. Rather than using such a large
increase in the local preparedness budget, fire managers might prefer
to handle extreme fire days associated with very low exceedance
probabilities using severity funds.

The results in Table 2 show that the daily budget is also sensitive
to changes in suppression assumptions. If the targeted exceedance
probability � is 0.002, shortening the time frame for IA from 24
hours (assumption 2) to 18 hours (assumption 1) increases the min-
imum daily stationing budget by about 19%. However, if � is set to
0.01 or 0.05, no additional budget is required to contain all group A
fires within 18 hours instead of 24 hours. If the IA duration is set to
24 hours, discovering a fire immediately under assumption 4 de-
creases the daily stationing budget by about 13% compared with a
1-hour discovery delay (assumption 5) when � is 0.002. More effi-
cient fire line construction (assumption #3 with �D � 0) reduces the
budget by about 20% compared with runs under assumption 5 with
�D � 1 when � is 0.002, about 19% when � is 0.01, and about 13%
when � is 0.05.

Fire Station Allocations
Our SRAL model allocates crews, engines, and water tenders to

different fire stations to provide IA support with the objective of
limiting the conditional probability of having a fire day with escapes
to be less than or equal to the defined exceedance probability. Figure
6 shows the allocation of fire suppression resources to fire stations for
a test case using an exceedance probability of 0.002 under assump-
tion 5 in Table 2. The selection of the best set of resources and the
corresponding optimal allocations to fire stations is based on the
cost, travel time, and the fuel-type specific line production rates of
the four suppression resource types.

Varying the targeted exceedance probability changes not only the
total number of resources of each type but also the locations of these
resources (Figure 7). For example, with assumption 5 in Table 2
(1-hour discovery time delay, 24-hour IA limit, and �D � 1), the
model stationed 12 crew members and one small engine in the FPU
to limit the exceedance probability to 0.05, 24 crew members and
two small engines to limit the exceedance probability to 0.01,
and 22 crew members plus 9 small engines, 4 large engines, and two
water tenders to limit the exceedance probability to 0.002.

Using the iterative procedure from our Methods section, we
found that the number of fire days required in each master problem
to obtain an optimal solution varied substantially by exceedance
probability. For example, to obtain a stationing solution to contain
fires in all 935 fire days (� � 0.002), only two of the most severe fire
days (k � 934 and 935) are needed in the master problem under all
tested assumptions (Table 2). With the exceedance probability set to
0.01, as many as 9 of the 927 group A fire days had to be included in
the master problem to obtain solutions that contained all fires in fire
days from k � 1 to 927. Increasing the exceedance probability to
0.05 classified 890 fire days into group A, and as many as 20 fire days
had to be included in the master problem to obtain optimal
solutions.

Table 1. Daily stationing cost for the four types of resources
modeled in the BHFPU.

Resource name Daily stationing cost ($)

Hand crew 146
Small engine 601
Large engine 1,108
Large engine � water tender 1,300

Table 2. Required daily stationing budget in he BHFPU in a fire
season to achieve targeted exceedance probabilities under differ-
ent assumptions of fire discovery delay, calibration parameter �D,
and IA time limit.

Assumption
no.

IA time
limit (hr)

Ignition
discovery
delay (hr)

Value of
�D

Daily preparedness
budget ($) required to

achieve targeted
exceedance probability

0.002 0.01 0.05

1 18 0 0 9,739 3,796 2,044
2 24 0 0 8,218 3,796 2,044
3 24 1 0 10,741 3,796 2,044
4 24 0 1 11,749 4,706 2,336
5 24 1 1 13,437 4,706 2,353
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Effect of �D on Final Fire Perimeters
�D is the parameter used in our SRAL model to calibrate fire line

construction requirements. It affects the degree to which fire line
constructed during one period of suppression reduces fire perimeter

growth in the subsequent period (see Equation 3.1). We constructed
an additional analysis to directly study the impact of �D on fire
perimeters. In these tests, we changed the objective function of the
SRAL model to minimize the sum of all contained fire perimeters in
each fire day. We compared the contained perimeter of each fire
with its FARSITE reported perimeter at the hour of containment
under two �D values (�D � 0 and �D � 1). In these tests, we assume
there is a 1-hour delay before the discovery of every fire; therefore, a
fire always grows freely according to the FARSITE-reported fire
growth rate until the second hour after ignition. Consequently, the
value of �D has no effect on a fire contained before the end of the
second hour after ignition. With �D � 1, our analysis indicated that
649 of the 1,655 modeled fires are contained after the second hour
after ignition. For these 649 fires, the average ratio of the contained
fire perimeter to the free-burning perimeter at the time of contain-
ment is about 0.85. With �D set to 0, 525 of the 1,655 modeled fires
are contained after the second hour, and the average ratio between
the contained fire perimeter and the free-burning fire perimeter at
containment decreases to about 0.26.

Discussion
Our purpose in this article is to develop a new set of methods

focused on arriving at first-stage fire season preparedness decisions

Figure 6. The spatial allocation of suppression resources under assumption 5 with a 24-hour IA limitation, 1-hour fire discovery delay
time, and �D � 1 (Table 2) combined with a targeted exceedance probability of 0.002.

Figure 7. Optimal resource deployment in fire stations under
three levels of exceedance probabilities using assumption 5 in
Table 2 (1-hour fire discovery delay time and �D � 1).
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regarding how many suppression resources to hire and where to
locate them given a preexisting set of fire stations. These first-stage
decisions are driven by the IA resource requirements for containing
wildfires, modeled here as recourse dispatch decisions given a set of
days with fire ignitions. Model decisions were based on simulations
of historical fire ignitions using historical fire weather data associated
with those ignitions. An implicit assumption here is that fires in the
near future will be similar to fires in the recent past. This assumption
can be relaxed if we can predict the number of fires and their loca-
tions and local weather associated with future fire days. A study in
southern Europe demonstrated the potential of using fire ignition
indices and forecasted meteorological maps to support decisions for
future fire management (Kalabokidis et al. 2012).

We view this study as a foundation for further research. Conse-
quently, we set aside a number of important issues in this article.
Perhaps the most notable of these is that second-stage IA dispatch
decisions are made with perfect knowledge of the fewest resources
required to achieve containment on each fire. Expecting fire dis-
patchers to have such perfect knowledge is a heroic assumption that
we are addressing in a forthcoming study. The extended study will
enhance the current SRAL model by integrating the design of stan-
dard response rules for different fire dispatch categories into the IA
resources deployment plan. Using rule-based dispatching relaxes the
perfect knowledge assumption adopted in this study and similar
two-stage IA planning models (e.g., Ntaimo et al. 2012, 2013).
Dispatch rules selected endogenously through an optimization
model may also lead to more efficient resource deployment plans
compared with plans based on exogenously generated dispatch rules
(e.g., Haight and Fried 2007).

Our current method for approximating fire line production and
fire growth interaction might also be enhanced. Test results show
that the adjusting factor �D can have substantial effects on fire line
construction requirements. These effects appear to be consistent
with the findings of Fried and Fried (1996), although comparisons
of our results with theirs are complicated by our focus on perimeter
adjustments versus their focus on area adjustment, our use of
FARSITE fire growth modeling on heterogeneous landscapes versus
their use of geometric fire growth modeling on homogeneous land-
scapes, and other factors. In future use, our single adjustment factor
�D might be replaced by �D(g,t) to reflect the unique characteristics
and suppression tactics associated with each fire g for each suppres-
sion period t. For example, this adjustment factor might be used to
reflect suppression tactics such as head attack versus tail attack to
improve the accuracy of fire growth estimates or to reflect fire sup-
pression practices such as building fire line through lighter fuel
instead of following the shortest path.

In this study, we also assume that resources deployed to an FPU
are available for IA in the FPU through the entire season. However,
resource availability may vary throughout a fire season due to staff-
ing adjustments, reflecting changes in local fire danger as well as
reallocations between agencies and FPUs. Changes in resource staff-
ing levels, relocation, and prepositioning represent important and
challenging future research. Such research requires an understand-
ing of fire situations in multiple planning areas during different
times of the fire season.

Additional simplifying assumptions were adopted in this study.
For example, we allow the model to select any configuration of
suppression resources for each available fire station; the capacity of
each fire station and the cost of opening a fire station were not
considered. Although such planning requirements could be incor-

porated into the model using additional constraints or altering pa-
rameter values, they also require the collection of detailed financial
data. Research also suggests that crew productivity is inversely re-
lated to fire intensity (Hirsch and Martell 1998). We collected data
from BHFPU, including the productivities of crews and engines
based on fuel types, and used these data to parameterize the model.
However, variations in line productivity due to differing fire inten-
sities are not explicitly described by the data nor built into the
model. In addition, Arienti et al. (2006) suggest that the IA success
rate may be higher for human-caused fires due to factors such as
response time, season, and location. We did not distinguish between
lightning-caused ignitions and human-caused ignitions in this
study. In addition, fire locations, fire simulations, and maps of hu-
man and resource values could be combined to provide fire threat
information, e.g., the distance from a fire to a town and the time it
takes a fire to affect a town. Corresponding IA requirements, e.g.,
shorter IA time frame for ignitions closer to a town, could be built
into the model based on different levels of potential fire threats.

Other issues we think might be addressed using the present work
as a foundation include planning for multiple fire ignitions occur-
ring in episodes lasting more than 1 day, extending the set of sup-
pression assets to include aerial resources, and expanding the set of
suppression response options to include more than just IA. Within
these issues, modeling episodes of fires for multiple days would also
help reflect resource shortages at the start of some days. Given suf-
ficient fire forecasting, we anticipate that the model also might be
adaptable to the shorter-term problem of prepositioning supple-
mental resources in anticipation of extreme events.

Resource deployment solutions identified from this model could
be reevaluated through postoptimization simulations using histori-
cal fires or randomly generated new fires with additional detail and
realism that may be difficult to model directly in an optimization
model. For example, postoptimization simulations could be used to
evaluate the effects of dispatching resources from the closest station.
Likewise, we could track the hour a fire is contained, thereby releas-
ing those resources and redeploying them to other fires in the same
fire day without sending them back to their fire stations. The IA
preparedness budget and resource deployment plan may also benefit
from postoptimization simulations to account for the logistic details
of employee work hours. In cases where postoptimization simula-
tions result in substantial differences from the optimization model
outputs, the optimization model may need to be adjusted and rerun
to revise the IA resource deployment plan.

In this study, we introduced a two-stage stochastic programming
model to station and dispatch hand crew and engines in an FPU. We
used a set of mathematical equations for fire growth and contain-
ment parameterized from fire simulations on LANDFIRE land-
scapes combined with local resource data. These equations approx-
imated the interactions between construction and fire growth,
accounting for the average distances between free-burning fire pe-
rimeters and average fire perimeter growth rates in each period. The
chance constrained approach used in our formulation provides an
important method for distinguishing between IA preparedness and
severity funding requirements. Despite the limitations of this ex-
ploratory model, results from our tests suggest a strong potential for
future enhancement and use.

Endnote
1. For more information, see www.forestsandrangelands.gov/FPA/index.shtml.
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