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Abstract Habitat fragmentation and habitat loss diminish

population connectivity, reducing genetic diversity and in-

creasing extinction risk over time. Improving connectivity

is widely recommended to preserve the long-term viability

of populations, but this requires accurate knowledge of how

landscapes influence connectivity. Detectability of land-

scape effects on gene flow is highly dependent on landscape

context, and drawing conclusions from single landscape

studies may lead to ineffective management strategies. We

present a novel approach to elucidate regional variation in

the relative importance of landscape variable effects on

gene flow. We demonstrate this approach by evaluating

gene flow between isolated, genetically impoverished

mountain goat (Oreamnos americanus) populations in

Washington and much larger, genetically robust popula-

tions in southern British Columbia. We used GENELAND to

identify steep genetic gradients and then employed indi-

vidual-based landscape genetics in a causal modeling

framework to independently evaluate landscape variables

that may be generating each of these genetic gradients. Our

results support previous findings that freeways, highways,

water, agriculture and urban landcover limit gene flow in

this species. Additionally, we found that a previously un-

supported landscape variable, distance to escape terrain,

also limits gene flow in some contexts. By integrating

GENELAND and individual-based methods we effectively

identified regional limiting factors that have landscape-level

implications for population viability.

Keywords Population connectivity � GENELAND � Circuit
theory � Causal modeling � Oreamnos americanus

Introduction

Anthropogenic landscape change, including habitat loss,

habitat fragmentation and climate change, is driving the

global loss of biodiversity (Thomas et al. 2004; Wiegand

et al. 2005; Fischer and Lindenmayer 2007; Butchart et al.

2010). Habitat loss reduces population size while habitat

fragmentation disrupts historical patterns of gene flow,

increasing isolation and lowering effective population size

(Ne) (Keyghobadi 2007). Climate change may further re-

duce and isolate populations by diminishing habitat quality,

altering species’ distribution and causing range shifts (Root

et al. 2003).

Small populations isolated by inhospitable landscapes

are more vulnerable to demographic variability, environ-

mental stochasticity and genetic processes including in-

breeding depression (Crnokrak and Roff 1999; Keller and

Waller 2002; Mainguy et al. 2009; Dunn et al. 2011), the

random fixation of deleterious alleles (Lynch et al. 1995;
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Lande 1998) and the loss of adaptive potential (Lande

1995; Willi et al. 2006), that further increase population

extinction risk. Conversely, a landscape that is permeable

to individual movement increases Ne, genetic diversity and

adaptive potential, while providing movement routes for

populations to respond to climate change (Krosby et al.

2010). Maintaining population connectivity facilitates the

movement of individuals and genes across the landscape

and is therefore critical to preserve population viability

(Taylor et al. 1993; Crooks and Sanjayan 2006; Heller and

Zavaleta 2009).

Landscape genetics provide powerful methods to eval-

uate the effects of multiple landscape variables on

population connectivity (Manel et al. 2003; Holderegger

and Wagner 2008; Segelbacher et al. 2010). The genetic

relatedness among individuals sampled across broad land-

scapes can be used to test hypotheses of landscape resis-

tance and hence infer connectivity among local populations

(Cushman et al. 2006; McRae and Beier 2007; Shirk et al.

2010). Many landscape genetic studies are based on asso-

ciations between genetic samples and landscape variables

within a single landscape (Segelbacher et al. 2010). This

may lead to erroneous conclusions about the general re-

sponse of a species to a landscape feature because de-

tectability of landscape effects on gene flow relies heavily

on context (Jaquiéry et al. 2011; Cushman et al. 2012;

Balkenhol et al. 2013; Cushman et al. 2013a). Even when a

species has a globally consistent response to a landscape

feature, the effect of that feature will only be detectable

when the pattern across the study area is highly variable

and limiting to gene flow (Cushman et al. 2011; Short Bull

et al. 2011). Thus, replication of landscape genetic analyses

over the range of habitat variability is crucial when infer-

ring landscape effects on gene flow. Previous studies have

not developed a systematic approach to spatially focus

replication in a manner that is likely to reveal local limiting

factors within continuous landscapes.

We expand previous research (Shirk et al. 2010) to

evaluate population connectivity between genetically im-

poverished mountain goat (Oreamnos americanus)

populations in Washington (WA) and larger, more ge-

netically diverse populations in British Columbia (BC).

The WA populations have been greatly reduced ([50 %)

by historical overharvest and many have not recovered

despite drastically reduced hunting pressure (Rice and Gay

2010). Shirk et al. (2010) found that mountain goat gene

flow within the Cascade Range, WA is limited by Inter-

state 90 (I90), smaller highways, development in low

elevation valleys and water, suggesting that anthropogenic

landscape alterations may also diminish population con-

nectivity between WA and southern BC. The expansive

Okanagan Valley may also contribute to genetic isolation

as this feature was found to limit cougar gene flow within

the same area (Warren et al. 2015). We used GENELAND

(Guillot et al. 2005) to identify genetic discontinuities and

divide our large study area into regions, facilitating an

analysis based on ecologically relevant boundaries rather

than political boundaries. We then analyzed landscape re-

sistance across regional boundaries within a causal mod-

eling framework to identify local limiting factors and infer

gene flow across the study area. This enabled us to evaluate

gene flow in a wider range of landscapes and combinations

of landscape features. Research that transcends political

boundaries also encourages interagency collaboration that

is vital to plan and implement efforts to maintain viable

populations confronted with habitat loss, habitat fragmen-

tation and climate change (Beier et al. 2011).

Methods

Study area

The study area encompasses 151,760 km2, including the

Cascade Range of WA and the Coast, Selkirk and Pur-

cell mountain ranges of BC (Fig. 1). Elevation varies

widely with heavily forested valleys dissecting rugged

alpine terrain. I90 cuts across the Cascades east–west,

and the Coquihalla Highway (Hwy. 5) cuts across BC

north-southwest. Several secondary highways and nu-

merous other roads also transect the study area. Devel-

oped areas and agriculture are present at lower elevations

and along transportation corridors. At higher elevations,

ski resorts and residential areas have developed near

major passes.

Sample collection

We used protocol developed by Rutledge et al. (2009) to

collect 250 scat samples in the summers of 2007, 2008,

2010 and 2011. We swabbed the pellet surface with a

cotton-tipped applicator moistened with DET salt solution

(20 % dimethyl sulfoxide, 0.25 M sodium-ethylenedi-

aminetetraacetic acid (EDTA), 100 mM tris (hydrox-

ymethyl) aminomethane (TRIS), pH 7.5 and saturated

NaCl; Seutin et al. 1991). The applicator tip was broken off

into a 2 ml vial containing 99 % alcohol to preserve the

sample. We opportunistically collected 2 hair samples, 1

tissue sample and 1 bone sample. We obtained DNA from

24 tissue samples from the Selkirk and Purcell mountains

(SP) that were acquired by Shafer et al. (2011) from legally

permitted hunters from 2005 to 2007 and 16 genetic sam-

ples from the Coast Range (CR) of BC that were acquired

by Poole and Reynolds (2010) in 2009 from scat and hair.

We used 147 genotypes from genetic samples (96 tissue

samples, 50 blood samples and 1 bone sample) collected
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from 2003 to 2008 by Shirk et al. (2010) in collaboration

with the National Park Service (NPS) and the Washington

Department of Fish and Wildlife (WDFW). All procedures

were approved by the Animal Care and Use Committee at

Western Washington University and permitted by the

WDFW, NPS, United States Department of Agriculture,

BC Ministry of the Environment and BC Ministry of

Forests Lands and Natural Resource Operations.

Genotyping

We conducted all laboratory procedures at the WDFW

molecular genetics lab in Olympia, WA. We used labora-

tory techniques previously described by Shirk et al. (2010)

with these exceptions for scat samples: ethanol was

evaporated from the collection vial prior to extraction,

initial extraction steps were conducted in the vial to max-

imize DNA collection and lysis buffer volumes were

doubled to cover the entire swab in liquid. We used MICRO-

CHECKER 2.2.3 (Van Oosterhout et al. 2004) to screen for

allelic dropout, null alleles and stuttering, GENEPOP 4.1.3

(Raymond and Rousset 1995; Rousset 2008) to detect de-

viations from Hardy–Weinberg equilibrium (HWE) and

linkage equilibrium (LE) and GENALEX 6.4 (Peakall and

Smouse 2006) to identify samples potentially from the

same individual.

Genetic gradients and diversity

Olympic National Park (ONP) hosts an introduced

population of mountain goats derived from animals cap-

tured in southeast Alaska and the Selkirks in the 1920s. In

the 1980s, 130 individuals were translocated from ONP to

the Cascades (Houston et al. 1994), where the population

was estimated at 8500 individuals in 1961 (Rice and Gay

2010). We obtained 12 genotypes collected by Shirk et al.

(2010) from ONP and used STRUCTURE 2.3.3 (Pritchard et al.

2000) as described by Shirk et al. (2010) to identify indi-

viduals highly admixed with the ONP population and re-

move those genotypes from this analysis because they do

not represent natural population structure or gene flow

within the region (Parks 2013).

We used GENELAND 4.0.2 (Guillot et al. 2005) to detect

genetic gradients because it outperforms similar methods

for detecting barriers in continuous populations with high

dispersal ability (Blair et al. 2012). GENELAND uses Bayesian

inference to estimate the number of panmictic groups by

minimizing Hardy–Weinberg and linkage disequilibrium,

while allowing spatial coordinates to inform prior distri-

bution. We used the uncorrelated allele frequency model

and evaluated the support for 1–10 populations with 106

iterations and a burn-in of 1000. Every 100th observation

was sampled to reduce sample autocorrelation. After

Fig. 1 The study area showing

genetic sample locations (black

triangles), freeways (thick grey

lines), highways (thin grey

lines), current mountain goat

distribution, elevation and the

study area extent orientation.

CR Coast Range, OK Okanagan,

SM Selkirk Mountains, PM

Purcell Mountains, NC North

Cascades, SC South Cascades
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estimating the value of K, we simulated fixed K using the

above parameters to determine population membership and

generate posterior probability maps.

We used the software package sGD (Shirk and Cushman

2011) to estimate spatially explicit indices of genetic di-

versity and detect fine-scale spatial heterogeneity in di-

versity across the study area. This approach groups

individuals into genetic neighborhoods and is more ap-

propriate for continuous populations. We used a Mantel

correlogram depicting autocorrelation in genetic distance

between individuals across distance classes, based on Eu-

clidean distance, to estimate the genetic neighborhood di-

ameter, defined as the largest distance class that has a

significant (a = 0.05) positive correlation with genetic

distance (described below). We set the minimum popula-

tion size to 10 individuals to minimize sampling error.

Modeling framework

We hypothesized that genetic gradients are a function of

isolation by resistance (IBR) where genetic distance be-

tween individuals is dictated by resistance of a heteroge-

neous landscape to gene flow (Cushman et al. 2006;

McRae 2006). Furthermore, we hypothesized that the

relative contribution of landscape variables to genetic

distance varies across our large study area due to different

local limiting factors (Short Bull et al. 2011). We mod-

eled IBR across the study area and then independently

modeled IBR for each pair of adjacent populations iden-

tified by GENELAND because this variability may be masked

by a single, global analysis. We evaluated the support for

multiple hypotheses of IBR accumulated by four land-

scape variables: distance to escape terrain (Det), roads,

landcover and elevation, selected a priori as potential

factors influencing mountain goat movement (Festa-

Bianchet and Côté 2008; Shirk 2009; Shirk et al. 2010;

Wells et al. 2011; Shafer et al. 2012). We transformed

each variable into alternative hypotheses of landscape

resistance using mathematical functions that allowed us to

systematically vary model parameters and resistance val-

ues (e.g. Shirk et al. 2010). We based resistance and pa-

rameter values on previous research by Shirk et al. (2010)

and adjusted values accordingly to reach a unimodal peak

of support in correlation between genetic distance and

resistance distance. We then identified the IBR model

most related to genetic distance in each region and tested

the support for IBR models against the null model of

isolation by distance (IBD).

Mathematical functions for landscape resistance

We obtained a 30 m resolution digital elevation model

(DEM) and 20 m resolution Canadian digital elevation data

(CDED), using the nearest neighbor technique to resample

the CDED to a 30 m resolution and combine the CDED

with the DEM. We used focal statistics to assign elevation

values to cells with no data based on neighboring cell

values and fill a small data gap along the international

border. Mountain goats are adapted to utilize an optimal

elevation range between suboptimal lowland valleys and

high elevation summits (Festa-Bianchet and Côté 2008;

Shirk et al. 2010; Wells et al. 2011). Thus, we modeled

landscape resistance due to elevation based on the Gaus-

sian function:

R ¼ Rmax � Rmax �
� elevation� Eopt

� �2

2� E2
SD

þ 1;

where R is the pixel resistance, Rmax dictates maximum

resistance, Eopt is the optimal elevation and ESD is the

standard deviation. As elevation moves away from Eopt,

resistance increases from 1 to Rmax at a rate dictated by

ESD. We evaluated five Eopt values (1200, 1400, 1600, 1800

and 2000), three values of Rmax (5, 10 and 25) and three

rates of ESD (500, 1000 and 1500).We modeled landscape

resistance due to distance to escape terrain (Det) by re-

classifying a raster representing Euclidean Det, with escape

terrain defined as slope C50� (Smith 1994), according to

the following function:

R ¼ Det=Vmaxð Þx � Rmax þ 1;

where x is the response shape exponent, Rmax dictates

maximum resistance and Vmax is a constant representing the

maximum value of Det. As the variable increases to Vmax,

the resistance increases to Rmax at a rate dictated by

x. When x is equal to one, the increase to Rmax is linear, and

when x is not equal to one, the increase is nonlinear. We

evaluated four different response shape exponents (0.1,

0.25, 0.5 and 1) and seven different values of Rmax (4, 9,

24, 49, 99, 249 and 449).

We obtained road data at 100 m resolution from the

Washington Wildlife Habitat Connectivity Working Group

(WHCWG 2010). We classified roads as pixels within

500 m of the road centerline for the following categories:

freeway, major highway, secondary highway, local road

and no road. We ranked the five road categories from 0 to 4

in order of increasing resistance: no road, local road, sec-

ondary highway, major highway and freeway. We modeled

landscape resistance due to roads according to the fol-

lowing function:

R ¼ Rank=Vmaxð Þx � Rmax þ 1;

where x is the response shape exponent, Rmax dictates

maximum resistance and Vmax is a constant representing the

highest road resistance rank (4). As the variable increases

to Vmax, the resistance increases to Rmax at a rate dictated by
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x. We evaluated five different response shape exponents (1,

3, 8, 10 and infinite) and eight different values of Rmax (4,

9, 24, 49, 99, 249, 499 and 999).

We obtained landcover data at 100 m resolution from

the WHCWG (2010) and classified landcover into seven

categories: alpine/sparsely vegetated, grass-dominated, wet

forest/dry forest, shrub-dominated, water/wetland/riparian,

agriculture and urban/developed. We reclassified urban/

developed to no data (complete barrier) because no suc-

cessful movement would likely occur through this land-

cover type. The remaining six landcover categories were

ranked from 0 to 5 in order of increasing resistance: alpine/

sparsely vegetated, grass-dominated, wet forest/dry forest,

shrub-dominated, water/wetland/riparian and agriculture.

We modeled landscape resistance due to landcover ac-

cording to the following function:

R ¼ Rank=Vmaxð Þx � Rmax þ 1;

where x is the response shape exponent, Rmax dictates

maximum resistance and Vmax is a constant representing the

highest landcover resistance rank (5). As the variable in-

creases to Vmax, the resistance increases to Rmax at a rate

dictated by x. We evaluated five different response shape

exponents (1, 5, 10, 15 and infinite) and eight different

values of Rmax (4, 9, 24, 49, 99, 249, 499 and 999).

We projected all GIS data to Albers Equal Area Conic

GCS North America Datum of 1983. Data layers were

resampled to a cell size of 150 m prior to reclassification

into resistance surfaces to attain reasonable computation

time when calculating pairwise resistance distance.

Elevation and Det resistance surfaces were converted to this

cell size by aggregating 5 9 5 blocks of 30 m pixels into a

single pixel (based on average aggregation technique and

minimum aggregation technique, respectively). The land-

cover and road rasters were converted from 100 m

resolution to 150 m resolution using the nearest neighbor

resample technique.

Model evaluation

We selected principle component analysis (PCA) to

quantify genetic distance because Shirk et al. (2010) found

PCA yielded the highest correlation values with landscape

resistance compared to proportion of shared alleles (Bow-

cock et al. 1994) and Rousset’s a (Rousset 2000). PCA is

theoretically more sensitive to genetic dissimilarity be-

cause it reduces multidimensional data into one dimension

containing most of the variance, allowing alleles with the

most genetic variation to contribute more to genetic dis-

tance than common alleles (Shirk et al. 2010). We gener-

ated a genetic data matrix Y with n rows and m columns,

where n is the number of individuals in the analysis and

m is the number of alleles present within the dataset. Each

element in the matrix Y (i,j) is populated for individual i by

the number of occurrences for the jth allele. The eigen-

vectors of Y were then computed in R 2.14.2 (R Devel-

opment Core Team 2012), and the R software package

Ecodist (Goslee and Urban 2007) was implemented to

generate a n 9 n pairwise genetic distance matrix

(G) based on distance between individuals along the first

eigenvector (Patterson et al. 2006).

We used Circuitscape 3.5.8 (McRae and Shah 2009)

to quantify resistance distance between sample locations

because Circuitscape does not assume gene flow is me-

diated by single, optimal pathways, but instead takes into

account how alleles move over multiple pathways

through intervening populations over many generations

(McRae 2006). We generated an n 9 n pairwise matrix

(X) of resistance distance between genetic sample loca-

tions for each landscape resistance surface tested. We

allowed gene flow to the eight nearest cells (i.e., di-

agonal connections enabled) and calculated resistance

between two cells as the average of the resistance value

assigned to both cells. To model IBD, we used the

Landscape Genetics Arc Toolbox (Etherington 2011)

distance matrix tool to generate an n 9 n matrix of

Euclidean distance between all sample locations. We also

considered a Log10 transformed n 9 n matrix of Eu-

clidean distance because the logarithm of geographic

distance would theoretically have a higher correlation

with genetic distance in two-dimensional landscapes

(Rousset 1997).

We used Mantel tests (Mantel 1967) with 10,000 per-

mutations in the R package Ecodist (Goslee and Urban

2007) to calculate the correlation between genetic distance

and resistance distance (XElev, XDet, XRoad or XLand). We

chose the optimized model of genetic isolation as the

model with the highest, significant (P value\ 0.05) cor-

relation that also reached a unimodal peak of support

(Cushman et al. 2006; Shirk et al. 2010).

Causal modeling

After we identified the optimized IBR model for each re-

gion, we evaluated the relative support of IBR against the

null model of IBD by employing partial Mantel tests

(Smouse et al. 1986) in the R software package Ecodist.

This allowed us to evaluate the relative support for IBR and

IBD (Cushman et al. 2006; Cushman and Landguth 2010;

Shirk et al. 2010). We expected that causal IBR models

would retain a significant, positive relationship with ge-

netic distance after partialling out the effect of IBD and

have a higher partial Mantel r than IBD (Cushman et al.

2013b).
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Results

Genotyping

Of the 250 scat samples collected, we deleted 127 geno-

types that were less than 63 % complete, 40 genotypes

potentially from the same individual and 2 genotypes that

were highly related to the ONP population. We retained

genotypes from 81 scat samples, 2 hair samples, 1 tissue

sample and 1 bone sample. On average, these 85 genotypes

were 92 % complete. We deleted 11 genotypes from Shirk

et al. (2010) that were highly related to the ONP popula-

tion, leaving 136 genotypes that were 98 % complete. The

24 genotypes from Shafer et al. (2011) were 92 % com-

plete and the 16 genotypes from Poole and Reynolds

(2010) were 98 % complete. From all sources, 261 geno-

types were used in our analysis. We excluded URB038

because it was monomorphic and McM527 because all

samples from the SP failed to amplify at this locus. We

retained the remaining 17 polymorphic loci.

When the dataset was divided according to the highest

level of substructure detected by STRUCTURE 2.3.3 (Pritchard

et al. 2000), there was no evidence of allelic dropout or

stuttering (Parks 2013). Nine loci (BM203, BM1225,

BM1818, BM4107, BM4513, BMC1009, HEL10, OarCP26

and RT9) did show significant homozygote excess in one or

two of the seven subpopulations, but because this problem

was not systematic we retained all nine loci. We found no

significant departure from LE or HWE after dividing the

data according to GENELAND population assignments, after

Bonferroni correction for multiple comparisons.

Genetic structure and diversity

GENELAND supported the presence of four populations based

on K = 4 being the most frequent value along the

simulation chain and detected three steep genetic gradients

that differentiate the CR, SP, Okanagan Valley and north

Cascades (ONC) and south Cascades (SC) (Fig. 2). Genetic

diversity was generally highest in the CR and lowest in the

SC, but we also observed fine-scale spatial heterogeneity in

genetic diversity across the study area (Fig. 3). The genetic

neighborhood diameter was 165 km.

Model optimization and causal modeling

The optimized model of IBRElev was nearly identical for all

three regions, indicating a consistent relation to elevation

with Rmax of 5. Eopt is higher in the ONC/SC and the study

area, but this is consistent with latitudinal variation in tree

line. In contrast, the optimized models of IBRDet, IBRRoad

and IBRLand varied considerably among regions (Table 1).

All optimized models of landscape resistance were highly

correlated with genetic distance (r = 0.628–0.842,

P\ 0.001, Table 2) and all showed unimodal peaks of

support. The null model of IBD was also highly correlated

with genetic distance and was more highly correlated with

genetic distance than the log transform of IBD in all cases

(Table 2).

In the CR/ONC (n = 163), only the IBRRoad model met

expectations as a causal model (Table 2). In this model,

freeways, major highways and secondary highways con-

tribute resistance of 1000, 57 and 2, respectively (Fig. 4a).

Local roads contribute resistance of 1, equivalent to the

resistance contributed by IBD. In the SP/ONC (n = 144),

both IBRDet and IBRLand met expectations as causal models

(Table 2). Resistance due to Det increases linearly to a

maximum of 450 (Fig. 4b). In the optimized IBRLand

model, alpine/sparsely vegetated, grass-dominated and wet

forest/dry forest contribute resistance of 1, while shrub-

dominated, water/wetland/riparian and agriculture con-

tribute resistance of 7, 108 and 1000, respectively. Urban/

developed landcover was modeled as a complete barrier

(Fig. 4c). In the ONC/SC (n = 175), IBRRoad met expec-

tations as a causal model (Table 2). In this model, only I90

with resistance of 100 contributes significantly to genetic

isolation (Fig. 4d). We removed the 17 northernmost

samples from the ONC/SC because gene flow through the

Okanagan was modeled in the CR/ONC and SP/ONC.

When we considered the entire study area (n = 261,

Table 2), IBRElev, IBRRoad and IBRLand all met expecta-

tions as causal models. In the optimized IBRElev model,

elevation contributed resistance of 1 at Eopt of 1600 and

resistance increased to 5 as elevation moves away from

Eopt at a rate governed by ESD of 1500, results consistent

with Shirk et al. (2010). Both the optimized models

IBRRoad and IBRLand had infinite shape exponents, where

only freeways and agriculture contribute the maximum

resistance of 25.

Discussion

Partitioning our large study area into regions of rapid ge-

netic change with GENELAND revealed patterns that were

concealed in the global analysis. This approach enabled us

to account for landscape-level population connectivity,

while controlling for regional variation in the relative im-

portance of landscape variables. We identified local limit-

ing factors within each region and found that the landscape

variables influencing gene flow varied regionally. This

suggests that the power to detect landscape effects on gene

flow is highly dependent on landscape context, i.e., land-

scape variables present a detectable relationship with
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genetic differentiation only when the pattern across the

landscape varies substantially enough to limit to gene flow.

Genetic diversity

We observed patterns of genetic diversity consistent with

the distribution of high-elevation alpine habitat as ‘‘sky

islands’’ (Galbreath et al. 2009) across the study area.

Genetic diversity was higher in the CR and SP, where

patches of alpine habitat are larger and locally well con-

nected, but declined across the Cascades moving toward

the southern periphery of the species’ distribution, where

alpine habitat is less abundant and more fragmented, results

that were consistent with a recent study by Shafer et al.

(2011) of genetic diversity across the species’ range. We

also detected fine-scale spatial heterogeneity in genetic

diversity. In particular, the Okanagan and northwest region

in the north Cascades both exhibited relatively low indices

of diversity, likely reflecting limited connectivity to other

populations. Genetic diversity was relatively higher in the

central Cascades of the ONC, but declined towards the

south Cascades, where we observed the lowest genetic

diversity (Fig. 3). The patchy distribution of alpine habitat

across WA, isolation at the southern extreme of the spe-

cies’ distribution and historical overharvest (Rice and Gay

2010) likely all contribute to the observed patterns of ge-

netic diversity across the Cascades.

Reduced hunting pressure beginning in the 1990s al-

lowed for the recovery of some WA populations, but large

areas of historical habitat remain sparsely populated or

unoccupied (Rice and Gay 2010). Although alpine habitat

throughout WA is largely intact (approximately 80 % of

the study area in WA is protected, US Geological Survey

2012), the intervening low elevation habitat has undergone

varying degrees of anthropogenic alterations that poten-

tially diminish or sever historical linkages. Consequently,

resistance to landscape-level gene flow may further erode

genetic diversity and limit the ability of WA populations to

recover. Indeed, low heterozygosity has been associated

with reduced juvenile survivorship in another small and

isolated mountain goat population in Caw Ridge, Alberta

(Mainguy et al. 2009). Ortega et al. (2011) observed a

temporal decline in genetic diversity in the Caw Ridge

population concurrent with increasing population size, but

higher heterozygosity in the offspring of individuals that

migrated to Caw Ridge. This suggests that increasing

population size inadequately compensates for small Ne and

that immigration is critical to increase genetic diversity.

Furthermore, Hampe and Petit (2005) found that popula-

tions residing at the low-latitude margins of a species’

distribution, such as those in WA, may be disproportion-

ately important for the long-term conservation of a species’

genetic diversity, phylogenetic history and evolutionary

potential.

Fig. 2 GENELAND posterior probability map of membership for the ONC subpopulation
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Causal modeling outcomes

Causal modeling supported freeways as the most resistant,

significant landscape feature in the CR/ONC, with major

highways contributing additional resistance. The inclusion

of major highways in this model is not surprising given that

Hwy. 99, which links Vancouver, BC to Whistler, a major

ski area, cuts across core habitat in the CR. Two additional

major highways, Hwy. 1 and Hwy. 3, further inhibit gene

flow through smaller habitat patches in the CR and into the

ONC (Fig. 4a).

In the SP/ONC, urban/developed was modeled as a

complete barrier and agriculture was the most resistant

landscape variable, with shrub-dominated, water/wetland/

riparian landcover types contributing further landscape

resistance. As expected, development and agriculture in

the Okanagan Valley severely restrict gene flow into the

ONC from the SP, with three large lakes limiting gene

flow within the SP (Fig. 4c). Det was also identified as a

significant contributor to landscape resistance in the SP/

ONC (Fig. 4b). Det is widely expected by expert opinion

to potentially contribute to IBR (Festa-Bianchet and Côté

2008; Shirk et al. 2010; Shafer et al. 2012), but Shirk et al.

(2010) noted the surprising lack of support for this variable

in their WA analysis. Our results suggest that Det does

influence individual movement, but only in landscapes

Fig. 3 Spatial patterns of genetic diversity calculated by sGD: (Ho) observed heterozygosity, (Hs) Nei’s gene diversity, (FIS) inbreeding

coefficient, (Ar) allelic richness

Table 1 The most highly supported models of IBR due to elevation,

Det, roads and landcover within each landscape

Elevation Det Roads Landcover

ESD Eopt Rmax x Rmax x Rmax x Rmax

CR/ONC 1500 1400 5 1 5 10 1000 Inf 1000

SP/ONC 1500 1400 5 1 450 3 5 10 1000

ONC/SC 1500 1600 5 1 10 Inf 100 Inf 1000

Study area 1500 1600 5 1 5 Inf 25 Inf 25
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where it is a limited resource, as it is in the Okanagan

Valley.

Causal modeling supported I90 as the significant con-

tributor to genetic isolation in the ONC/SC. This result is

consistent with Shirk et al. 2010, but causal modeling did

not support the inclusion of IBRElev or IBRLand, variables

found by Shirk et al. 2010 and our global analysis to sig-

nificantly influence gene flow. While this is surprising, we

had higher correlation between the IBD null model and

genetic distance in the ONC/SC (r = 0.716) than Shirk

et al. (2010) (r = 0.686) or our global analysis

(r = 0.684). Consequently, IBR hypotheses needed a

higher correlation with genetic distance in the ONC/SC to

be supported as a causal model.

Our approach revealed regional variation in both the

shape and magnitude of relationships between landscape

variables and genetic distance. Our global analysis only

identified the landscape variables that contributed the

strongest resistance to gene flow within each region (e.g.,

freeways, urban/developed and agriculture) and produced

estimates of maximum resistance that were below those

identified in regional subsets (Table 1). In the case of the

IBRRoad model, the global analysis underestimated the

maximum resistance of freeways relative to the CR/ONC

and ONC/SC (25, 1000 and 100, respectively), possibly

because freeways were not supported as a local limiting

factor in the SP/ONC, diluting the global signal. Global

analysis also drastically underestimated the resistance of

agriculture in the SP (25 and 1000, respectively). We did

not find significant support for IBRDet in the global

model, likely because escape terrain is not a limiting

factor in the CR or ONC. Major highways and secondary

highways in the CR and water/wetland/riparian and shrub-

dominated landcover types in the SP were other region-

ally significant landscape variables that were not sup-

ported in the global model because regional optimized

models identified differing response shape exponents than

the global model.

Table 2 Causal modeling

results for the candidate models

of IBR and the null model of

IBD

Model G–L G–L G–L|D G–L|D G–D|L G–D|L Causal

r P value Partial r P value Partial r P value Model?

CR/ONC Elevation 0.628 0.0001 -0.036 0.8198 0.403 0.0001 N

Det 0.638 0.0001 -0.141 1.0000 0.399 0.0001 N

Roads 0.783 0.0001 0.491 0.0001 -0.055 0.9538 Y

Landcover 0.662 0.0001 0.105 0.0202 0.326 0.0001 N

IBD 0.701 0.0001 – – – – –

IBDlog 0.446 0.0001 – – – – –

SP/ONC Elevation 0.668 0.0001 -0.112 0.9807 0.545 0.0001 N

Det 0.826 0.0001 0.452 0.0001 0.125 0.0062 Y

Roads 0.701 0.0001 -0.278 1.0000 0.534 0.0001 N

Landcover 0.842 0.0001 0.512 0.0001 0.039 0.2208 Y

IBD 0.779 0.0001 – – – – –

IBDlog 0.499 0.0001 – – – – –

ONC/SC Elevation 0.681 0.0001 -0.027 0.8199 0.303 0.0001 N

Det 0.688 0.0001 0.053 0.0335 0.278 0.0001 N

Roads 0.725 0.0001 0.252 0.0001 0.199 0.0001 Y

Landcover 0.692 0.0001 -0.009 0.6756 0.254 0.0001 N

IBD 0.716 0.0001 – – – – –

IBDlog 0.537 0.0001 – – – – –

Study area Elevation 0.697 0.0001 0.217 0.0001 0.117 0.0003 Y

Det 0.671 0.0001 0.064 0.0067 0.188 0.0001 N

Roads 0.711 0.0001 0.281 0.0001 0.084 0.0061 Y

Landcover 0.713 0.0001 0.284 0.0001 0.066 0.0195 Y

IBD 0.684 0.0001 – – – – –

IBDlog 0.523 0.0001 – – – – –

Bold letters indicate candidate models that are supported as a causal model

(1) G–L—simple Mantel test between the candidate model and genetic distance, (2) G–L|D—partial Mantel

test between the candidate model and genetic distance, partialling out Euclidean distance, (3) G–D|L—

partial Mantel test between Euclidean distance and genetic distance, partialling out the candidate model.

For a candidate model to be supported, (1) and (2) must be significant (a = 0.05) and the partial Mantel

value for (2) must be greater than the partial Mantel value for (3)
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Study limitations

The use of Mantel testing in landscape genetics is contro-

versial (Raufaste and Rousset 2001; Guillot and Rousset

2013; Graves et al. 2013), but multiple analyses defend the

use of this method within a causal modeling framework

(Cushman and Landguth 2010; Shirk et al. 2010; Cushman

et al. 2013b; Castillo et al. 2014). Legendre and Fortin

(2010) warn that Mantel tests lead to a large loss of sta-

tistical power, and Balkenhol et al. (2009) found simple

Mantel tests have high Type I error rates when assessing

the relative importance of landscape variables due to high

correlation among distance matrices. Cushman and Land-

guth (2010) found simple Mantel tests do produce spurious

correlations, but partial Mantel tests effectively rejected

incorrect explanations and identified the true causal pro-

cess. Additionally, Mantel tests may be biased when there

is spatial correlation in resistance models (Guillot and

Rousset 2011; Amos et al. 2012; Meirmans 2012). Cush-

man et al. (2013b) further evaluated the ability of causal

modeling to identify the true driver of genetic isolation and

found partial Mantel tests have very low Type II error

rates, but elevated Type I error rates when there is high

correlation among alternative landscape resistance models.

They proposed basing model comparison on partial Mantel

r values rather than p-values, effectively lowering Type I

error. With this approach, we detected support for variables

significantly limiting gene flow in each region that corre-

spond with GENELAND genetic gradients and global patterns

of genetic diversity.

Fig. 4 Landscape resistance models that contribute significantly to

genetic isolation. White represents the highest resistance and dark

grey represents the lowest resistance. (a) Landscape resistance in the

CR/ONC as dictated by roads. (b) Landscape resistance in the SP/

ONC as dictated by Det. (c) Landscape resistance in the SP/ONC as

dictated by landcover. (d) Landscape resistance in the ONC/SC as

dictated by roads
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The effect of genetic distance metric choice on causal

modeling outcomes has not been evaluated within the field

of landscape genetics. It is therefore difficult to anticipate

biases in PCA-based conclusions. Although PCA has not

been widely applied in landscape genetic studies, Shirk

et al. (2012) found consistent causal modeling outcomes

when using PCA, proportion of shared alleles and Rous-

set’s a (Rousset 2000), and Castillo et al. (2014) found

genetic distance based on Bray–Curtis percent dissimilarity

(Legendre and Legendre 1998) was similar to PCA genetic

distance. We detected significant landscape variables

within all three regions despite relatively low sample size,

supporting the utility of PCA in landscape genetic studies

of continuously distributed species.

We did not explore multivariate space in order to

maintain reasonable computation time. Only the SP/ONC

supported the inclusion of more than one variable, but in-

teractions between Det and landcover may add complexity

to the system that is not captured with univariate opti-

mization. Genetic algorithms that more efficiently search

parameter space to fit landscape resistance surfaces to

spatial genetic patterns may soon be readily available as

computer capabilities increase (Spear et al. 2010). This

could enable the development of a multivariate, moving-

window analysis that better accounts for complex land-

scape configuration. Recently, Castillo et al. (2014) found

that causal model outcomes based solely on relative sup-

port underestimated the magnitude of resistance compared

to reciprocal causal modeling. The application of recipro-

cal causal modeling could increase confidence in our as-

signed resistance values. Finally, low sample density,

particularly in BC, may have limited our ability to detect

landscape variable effects. We caution against concluding

variables are not important to population viability based on

a nonsignificant relationship in this analysis due to biases

inherent in modeling complex landscapes and patterns of

genetic diversity. For these reasons, management decisions

based on our results should be carefully evaluated.

Conclusions

Gene flow is not necessarily bound by regional, state or

international boundaries. Additionally, the landscape fea-

tures that control gene flow may differ across a species’

range due to changing limiting factors. Our study attempted

to address these issues by comparing a global scale analysis

to regional analyses of how landscape features influence

gene flow. Dominant landscape variables limiting gene

flow varied across the study area, insight that only became

apparent through the analysis of subsets of the larger study

area. We suggest that landscape-level genetic studies

should be carefully designed to account for regional

landscape variation. Our results have important conserva-

tion implications since local gene flow may be insufficient

to counterbalance the genetic consequences of low Ne,

making it imperative to understand how the landscape is

limiting landscape-level gene flow. Given anthropogenic

landscape change, immigration into the Cascades and

Okanagan may be insufficient to counterbalance low Ne.

Insight gained from our research better informs habitat

connectivity planning for mountain goats in WA and

southern BC, where gene flow among these populations at

the southern periphery of the species’ range can bolster

population viability and adaptive potential in response to

climate change (Sexton et al. 2011).
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