Using container weights to determine irrigation needs: a simple method

R Kasten Dumroese, Mark E Montville, and Jeremiah R Pinto

Proper irrigation can reduce water use, water waste, and incidence of disease. Knowing when to irrigate plants in container nurseries can be determined by weighing containers. This simple method is quantifiable, which is a benefit when more than one worker is responsible for irrigation. Irrigation is necessary when the container weighs some target as a proportion of its weight at field capacity. Care should be taken when comparing target container weights because they can be calculated different ways. In the nursery, one easy method for obtaining weights is using a small, handheld portable balance.

KEY WORDS
overhead irrigation, subirrigation, block weight, target weight, fertigation

NOMENCLATURE
USDA NRCS (2014)
applications. Although nursery managers can determine when to irrigate based on tactile properties, sensors, or crop vigor, these methods do not generally supply the information necessary to know how much irrigation water needs to be provided (Landis and Wilkinson 2014). Moreover, qualitative methods such as tactile require a great deal of experience by the individual to be consistent. And, consistency among staff can also be hard to achieve; what one staff person considers “dry” another might consider “moist.”

Gravimetric (weight-based) methods that rely on measuring the loss of water from the containers are common techniques for determining when and how much to irrigate (White and Mastalerz 1966; Landis and others 1989; Dumroese and others 2012; Landis and Wilkinson 2014). This simple method requires measuring the weight of a sown container when it is at field capacity (that is, the medium is irrigated until fully saturated and then allowed to freely drain for 30 to 60 min), and then subsequently reweighed at regular intervals (every day or

Some caution should be used when comparing “target container weights” because this can be measured different ways. For example, in operational settings, nursery managers often simply weigh the sown container at field capacity and, based on data from their facility, select a target container weight as a percentage of that field capacity weight. Because individual weights contributed by the medium, topdressings, the container (for example, Styrofoam block, Ray Leach “Cone-tainer” system, or Jiffy peat pellet system), and the water are not determined, the amount of water required to bring the container back to field capacity cannot be directly calculated. Many handbooks present this “manager technique” (Dumroese and others 1998, 2012; Landis and Wilkinson 2014) because it is simple. Although the “how much water is needed” question cannot be directly answered, growers can quickly determine from experience how long their irrigation system must run to bring containers to field capacity, and, to add about 10% more to ensure some drainage is occurring to prevent buildup of salts (Landis and others 1989).

For research papers published in journals, this calculation is often more refined, particularly if the scientists desire a more discrete idea of water depletion. Researchers therefore determine the individual weights for the empty container and oven dry weights of the medium and topdressing. The sum of these values is subtracted from the field capacity weight to obtain the weight of water. The target weight is based on a percentage of the actual weight of water “lost” through evaporation and transpiration. Because a kilogram of water equals a liter of water, this “scientist technique” yields an accurate estimate of the amount of irrigation to apply and allows scientists to avoid confounding irrigation and fertilizer amounts in their experiments (Dumroese and others 2011). Unfortunately, scientists, including ourselves, are often guilty of not explicitly stating how the target is calculated (for example, Zhu and others 2013). The take-home point is, however, that for a given target percentage, the manager technique will result in drier medium between irrigation events than will the scientist technique. Here is an example assuming an initial container field capacity of 16.2 kg and a desire to irrigate at a 70% target.

Scientist Technique

Container field capacity – **(sum of empty container, oven-dry medium, seed covering)** = **water in medium at field capacity**

\[
16.2 \text{ kg} - (4.7 \text{ kg} + 1.2 \text{ kg} + 2.3 \text{ kg}) = 8.0 \text{ kg water}
\]

Water in medium at field capacity × 70% target = water available at 70% field capacity

\[
8.0 \text{ kg} \times 0.7 = 5.6 \text{ kg water}
\]

Water available at 70% field capacity + **(sum of empty container, oven-dry medium, seed covering)** = **target container weight**

\[
5.6 \text{ kg} + (4.7 \text{ kg} + 1.2 \text{ kg} + 2.3 \text{ kg}) = 13.8 \text{ kg}
\]

Manager Technique

Container field capacity × 70% target = target container weight

\[
16.2 \text{ kg} \times 0.7 = 11.3 \text{ kg}
\]

Target container weight – **(sum of empty container, oven-dry medium, seed covering; assumed the same as above because not measured with this technique)** = water available at 70% field capacity

\[
11.3 \text{ kg} - (4.7 \text{ kg} + 1.2 \text{ kg} + 2.3 \text{ kg}) = 3.1 \text{ kg water}
\]

Thus, seedlings cultured with irrigation determined using the scientist technique (5.6 kg) would have 80% more water than those grown using the manager technique (3.1 kg) at the 70% target even though the target container weight is only 22% greater (13.8 as compared with 11.3 kg, respectively).
so) identifying when irrigation is necessary. This technique works for any type of irrigation system, including subirrigation (Pinto and others 2008).

Irrigation is one of the idiosyncratic variables of a nursery. Depending on the media used, container depth, species, and the philosophy of the nursery manager, each manager should measure container weights, record them, and evaluate seedling growth over time to hone in on the irrigation schedule that yields the best seedling quality. Because the target container weight for irrigation can be measured in different ways (manager technique versus scientist technique; see sidebar), consistency in the technique, rather than the technique used, is most important. Some guidelines for container weights using the manager technique have been published (for example, Dumroese and others 1998, 2012; Landis and Wilkinson 2014), but these should be used as starting points for any nursery and should be evaluated throughout the growing season, because, for example, Dumroese and others (2011) found that for *Pinus ponderosa* Douglas ex Lawson & C. Lawson (Pinaceae) target weights could be reduced substantially with little to no effect on seedling morphology. Therefore, we encourage you to conduct your own trials within your unique setting following the guidelines of Wilkinson and Haase (2014).

We have observed that nurseries have devised several methods for measuring container weights. In smaller nurseries, containers are often carried to a central location where a single balance is used to measure the container weight (Figure 1). Larger nurseries often use a cart to transport a balance to various locations within the facility (Figure 2), or sometimes multiple balances are left in place under containers on various greenhouse benches (Figure 3). All of these methods have advantages and disadvantages.

The PRT Oregon nursery in Hubbard grows more than 70 stocktypes for a total of 10 million seedlings annually, and each stocktype is regularly evaluated for container weight. Therefore, an inexpensive, easy-to-use, and flexible system was required. The solution was to use wire hangers manufactured for hanging floral baskets. Staff take the four, 57-cm-long (22.5 in) wires that have a hook crimped at the end and string each wire through the air vents in the Styrofoam containers, twisting them together underneath so that the container can “hang” like a floral basket. This could, most likely, be done for any type of container that has air vents and is reasonably rigid. PRT Oregon staff record about 120 block weights per summer day using a portable, handheld, digital balance (Figure 4). Without otherwise moving the container, the hook on the balance is looped

Figure 1. Carrying containers to a stationary balance is one way to determine container weights. This works well where distances are short and only one balance is required. Photo by R Kasten Dumroese

Figure 2. A balance on a cart can be rolled to various locations within the nursery, reducing the amount of time spent transferring containers to and from the balance. Photo by R Kasten Dumroese
around the crimped hook, and by simply lifting the container upward the container weight can be immediately read (Figure 5). That weight is recorded and compared to target weights to determine if irrigation is required. The wires are recycled from year-to-year. You may be able to find used wires that can be recycled, or they are available from nursery supply companies, ranging in price from US$ 0.40 to 2.40 each. The balance used at PRT Oregon is the Chestnut Tools Portable Electronic Scale (see Figure 4) that sells for about US$ 13 (Lee Valley Tools Ltd; http://www.leevalley.com). This particular unit can be set to English or metric units, will convert units, and is 99% accurate for loads \geq 1 kg (2.2 lb) to a maximum of 40 kg (88 lb); it shows weights to the nearest one-hundredth, more than enough accuracy.

ACKNOWLEDGMENTS

We thank Drs Thomas D Landis and Robert R Tripepi for their thoughtful comments on an earlier draft. The use of trade or
firm names is for reader information and does not imply endorsement by the USDA Forest Service of any product.

REFERENCES

AUTHOR INFORMATION

R Kasten Dumroese
National Nursery Specialist
kdumroese@fs.fed.us

Jeremiah R Pinto
Research Plant Physiologist
jpinto@fs.fed.us

USDA Forest Service
Rocky Mountain Research Station
1221 South Main Street
Moscow, ID 83843

Mark E Montville
Nursery Manager
PRT Oregon
31783 South Meadows Road
Hubbard, OR 97032
mark.montville@prt.com

AUTHOR INFORMATION

R Kasten Dumroese
National Nursery Specialist
kdumroese@fs.fed.us

Jeremiah R Pinto
Research Plant Physiologist
jpinto@fs.fed.us

USDA Forest Service
Rocky Mountain Research Station
1221 South Main Street
Moscow, ID 83843

Mark E Montville
Nursery Manager
PRT Oregon
31783 South Meadows Road
Hubbard, OR 97032
mark.montville@prt.com