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Mapping aboveground carbon stocks using LiDAR data in 
Eucalyptus spp. plantations in the state of São Paulo, Brazil

Mapeamento de estoques de carbono acima do solo utilizando dados 
LiDAR em  plantações de Eucalyptus spp no estado de São Paulo, Brasil
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Andrew T. Hudak4 e Luiz Carlos Estraviz Rodriguez5

Resumo

As plantações florestais de rápido crescimento fornecem um significativo baixo custo de sequestro de 
carbono para redução de gases de efeito estufa. O objetivo deste estudo foi avaliar a utilização de dados 
LiDAR (Light Detection And Ranging) aerotransportado para estimativa do estoque de carbono acima do 
solo (AGC) em plantações de Eucalyptus spp. Parâmetros biométricos tais como altura (Ht) e diâmetro à 
altura do peito (DAP) das árvores foram coletadas em parcelas de inventários convencionais. Os modelos 
de regressão linear múltipla, com o intuito de estimar o estoque de carbono total acima do solo (AGCt), 
em toras comerciais (AGCc) e em resíduos de colheita (AGCr), foram desenvolvidos utilizando métricas 
derivadas da nuvem de pontos LiDAR. Os melhores modelos de um conjunto de seis modelos foram sele-
cionados com base no Critério de informação de Akaike corrigido (AICc) e avaliados segundo a Raiz Qua-
drada do Erro Médio (RMSE) e Coeficiente de determinação ajustado (R²-adj). Os três melhores modelos 
para as estimativas do estoque de AGC foram AGCt: R²-adj= 0,81; RMSE = 7,70 Mg.ha-1; AGCc: R²-adj= 
0,83; RMSE = 5,26 Mg.ha-1; AGCr: R²-adj = 0,71; RMSE = 2,67 Mg.ha-1. Este estudo mostrou que métricas 
derivadas a nuvem de pontos LiDAR podem ser usadas para estimar o estoque de AGC em plantações 
Eucalyptus spp. no Brasil com precisão. Concluímos que existe um bom potencial para monitorar o cresci-
mento e a fixação de carbono em plantações de Eucalyptus spp. com o uso da tecnologia LiDAR.

Palavras-chave: Perfilhamento a Laser aerotrasportado-ALS; métricas LiDAR, estoque de carbono; plan-
tações de rápido crescimento.

Abstract

Fast growing plantation forests provide a low-cost means to sequester carbon for greenhouse gas 
abatement. The aim of this study was to evaluate airborne LiDAR (Light Detection And Ranging) to predict 
aboveground carbon (AGC) stocks in Eucalyptus spp. plantations. Biometric parameters (tree height (Ht) 
and diameter at breast height (DBH)) were collected from conventional forest inventory sample plots. 
Regression models predicting total aboveground carbon (AGCt), aboveground carbon in commercial logs 
(AGCc), and aboveground carbon in harvest residuals (AGCr) from LiDAR-derived canopy structure metrics 
were developed and evaluated for predictive power and parsimony. The best models from a family of six 
models were selected based on corrected Akaike Information Criterion (AICc) and assessed by the root 
mean square error (RMSE) and coefficient of determination (R²-adj). The best three models to estimate AGC 
stocks were AGCt: R²-adj = 0.81, RMSE = 7.70 Mg.ha-1; AGCc: R²-adj = 0.83, RMSE = 5.26 Mg.ha-1; AGCr: 
R²-adj = 0.71, RMSE = 2.67 Mg.ha-1. This study showed that LiDAR canopy structure metrics can be used 
to predict AGC stocks in Eucalyptus spp. plantations in Brazil with high accuracy. We conclude that there 
is good potential to monitor growth and carbon sequestration in Eucalyptus spp. plantations using LiDAR.

Keywords: Airborne Laser Scanning ALS; LiDAR metrics, C stock; fast growing plantation.
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INTRODUCTION

The international scientific community 
has issued warnings over steadily increasing 
concentrations of greenhouse gases in the 
atmosphere as a driver of climate change. 
According to the Intergovernmental Panel 
on Climate Change (IPCC), the atmospheric 
concentrations of the carbon dioxide (CO2) 
have increased to levels unprecedented in at 
least the last 800,000 years; concentrations of 
CO2 have increased by 40% since pre-industrial 
times, primarily from fossil fuel emissions and 
secondarily from net land use change emissions 
(IPCC, 2013). The forest sector contributes 17.4 
percent of all greenhouse gases anthropogenic 
sources; most of this due to deforestation and 
forest degradation (IPCC, 2007). Therefore, 
quantifying the substantial roles of forests as C 
stores, as sources of C emissions and as C sinks 
has become key to understanding the global C 
cycle (FAO, 2010). 

Eucalyptus plantations in Brazil cover an 
area of 5.10 million hectares, accounting for 
76.6% of the country’s total reforested areas 
(ABRAF, 2013). These plantations, when well 
established, produce between 100 and 400 
Mg.ha-1 at the peak of maximum mean annual 
increment (ECOAR, 2003). Thus, timber 
management as well as quantifying total C in 
these forests has received special attention for 
the possibility of production regulation and the 
issuance of C credits for the role they can play as 
C sequestration reservoirs (YU, 2004).

Measurements of aboveground C (AGC) 
stocks in Brazilian forest plantations are 
currently limited by budgets and time, making 
it impractical to efficiently implement an 
extensive inventory (ZONETE, 2009). Remote 
sensing techniques, using both active and 
passive optical sensors, have been presented as 
a viable alternative for the estimation of forest 
stand parameters in planted and natural forests 
(ASNER et al., 2011; HUDAK et al., 2006, 2012; 
NÆSSET, 2002, 2004; NÆSSET; GOBAKKEN, 
2008; SAATCHI et al., 2011). 

Among the techniques of remote sensing 
currently available, Light Detection and Ranging 
(LiDAR) scanning assessments have emerged as 
the most prominent in the forestry sector (EVANS 
et al., 2009; NÆSSET, 2002, 2004; NÆSSET; 
GOBAKKEN, 2008). LiDAR is an active remote 
sensing technology that uses emitted laser pulses 
to measure distances between objects (JENSEN, 

2007). It has proven useful for predictions of 
forest structure attributes at larger spatial scales 
than can be measured practically in the field 
(HUDAK et al., 2009). LiDAR also provides a 
good alternative for measuring C stocks in forests, 
since it may enable precise data collection at high 
spatial resolution and in a relatively short time 
compared to conventional methods (EVANS et 
al., 2009, HUDAK et al., 2012).

In Brazil, the use of airborne LiDAR 
technology is relatively new; on the other hand, 
a few studies have already been developed 
and published such as Rodriguez et al. (2010) 
and Zonete et al. (2010), that used LiDAR data 
to predict diameter at breast height (DBH), 
height (Ht), and basal area (BA) of Eucalyptus 
spp. plantation in Bahia. Furthermore, Macedo 
(2009) and Zandoná (2006) used LiDAR data to 
model individual tree and stand volume in Pinus 
spp. and Eucalyptus spp. plantations, respectively. 
Therefore, these works have demonstrated 
the great potential of airborne technology to 
predict relevant biometric parameters in forest 
plantations. However, more studies are needed 
to improve the accuracy of predictions for 
operational implementation by the Brazilian 
forestry sector.

The aim of this study was to evaluate the 
use of LiDAR to predict aboveground C (AGC) 
stocks in Eucalyptus spp plantations located in 
São Paulo state, Brazil. The specific objectives 
were to: (i) select the best LiDAR metrics to 
build AGC models; (ii) select the best models 
to predict AGC; (iii) estimate AGC stock in 
the total biomass (trunk and canopy) (AGCt), 
commercial logs (AGCc) and in the harvest 
residuals (AGCr) (bark, leaves and branches); 
and (iv) apply the predictive models selected 
across the landscape to map the spatial 
distribution of C stocks of Eucalyptus spp. at the 
stand level for the benefit of forest managers. 

METHOD

Study area
The study was based on data collected in a 

set of temporary and permanent sample plots 
installed for the purpose of annual forest 
inventory in industrial Eucalyptus plantations 
managed by Fibria Celulose S/A, a pulp 
company located in   São Paulo state, Brazil. 
The sample plots were randomly distributed 
among eight farms described in Table 1. These 
farms are located in the Paraíba Paulista Valley, 
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in the Eastern part of the state of São Paulo, 
near the municipalities of Jacarei, São Luiz do 
Paraitinga and Paraibuna (Latitude between 
23°30’ and 23°00’ S, Longitude between 46°00’ 
and 45°00’ W) (Figure 1). The climate of the 
region is characterized as humid temperate, 
with dry winters and hot summers (Cwa) 
(KÖPPEN; GEIGER, 1928). The annual mean 
precipitation is around 1200 – 1232 mm and 
the annual mean temperature ranges from 17.1º 
C in the coldest month (July) to 23.9° C in 
the hottest month (February). The topography 
in the selected plantations is complex, ranging 
from mildly to very hilly and from 577.52 m to 

1310.23 m in elevation. The soils of the region 
are predominantly Oxisols, and depending on 
the topographic variations may also include 
Inceptisols and Ultisols; however, all are clayey. 

The sampled trees in the sample plots 
are hybrid clones of two Eucalyptus species, 
Eucalyptus grandis and Eucalyptus urophylla, with 
ages varying from two to eight years and planted 
predominantly in a 3m x 2m grid, resulting in a 
density of 1,667 trees.ha-1. 

Field data collection 
For the inventory of C stock in the field, 

136 circular plots (400 m²) were installed on 
eight farms.  All plots were geo-referenced with 
a geodetic GPS with differential correction 
capability (Trimble Pro-XR). The projected 
coordinate system used was UTM SIRGAS 2000, 
zone 23 S. All trees were measured for diameters 
at breast height (DBH) and a subsample (15%) 
of trees for tree heights. For trees in the plot 
that were not directly measured for Ht, the 
inventory team of Fibria S/A company provided 
predictions calculated from hypsometric 
equations. The mean values of DBH and Ht 
measured in plots in the farms included in the 
study are shown in Table 2.

Figure 1. 	Location of study areas in Sao Paulo state, Brazil.
Figura 1. 	Localização da área de estudo no estado de São Paulo, Brasil. 

Table 1. 	 Main characteristics of the farms comprising 
the study - in São Paulo state.

Tabela 1. 	Principais características das fazendas em es-
tudo - Estado de São Paulo-SP. 

Eucalyptus 
plantation 
farms

City Area (ha) Age

F987 Jacarei 39.53 2.3
F986 Jacarei 94.16 3.3
F849 São Luiz of Paraitinga 138.96 4.7
F950 Paraibuna 86.72 5.5
F184 São Luiz of Paraitinga 58.34 5.9
F166 São Luiz of Paraitinga 84.35 6.1
F948 Paraibuna 79.33 6.8
F634 Paraibuna 84.80 8.0
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The AGCt, AGCc and AGCr (kg. tree-1) were 
obtained through allometric models, employing 
as independent variables the logarithm of 
DBH and Ht, and as dependent variables 
the logarithms of the AGCt, AGCc and AGCr 
(SILVA, 2013). The AGC models had adjusted 
coefficients of determination (R²-adj) of 0.97 
and relative root mean squared errors (RMSE) 
ranged from 1.44 to 4.57 Mg.ha-1 (Table 3). 

The summed C content of all trees in the 
sample plot was multiplied by the plot area (0.04 
ha) to calculate the C stored in the sample plot 
in Mg.ha-1. The summary statistics of AGC stocks 
(Mg.ha-1) measured in the farms evaluated are 
presented in Table 4. 

LiDAR data processing
LiDAR data were acquired using a Riegl 

ALS (model LMS-Q680I) mounted on a Piper 
Seneca II aircraft. LiDAR flight parameters are  
shown in Table 5.

Table 2. 	 Descriptive values of the biometric parameters of the network of plots inventoried in the study area  
(Fall 2012).

Tabela 2. 	Descrição dos parâmetros biométricos da rede de parcelas inventariadas na área de estudo  
(Outono 2012). 

Eucalyptus plantation farms DBH (cm) Ht (m) Number of plotsy s y s
F987 12.73 0.76 18.60 1.45 14
F986 14.59 0.95 24.17 1.38 21
F849 15.26 1.20 25.24 2.35 26
F950 8.82 1.57 11.65 2.55 17
F184 14.14 0.60 22.16 1.54 14
F166 14.57 0.70 23.74 1.19 17
F948 13.91 0.63 22.69 1.45 12
F634 13.70 1.20 23.29 1.68 15

DBH= diameter breast height; Ht= tree hieght; y = average; s = standard deviation. 

Table 3. 	 Ordinary least square regression models predicting AGC stocks. 
Tabela 3. 	Modelos de regressão de mínimos quadrados prevendo estoques de AGC.

Predictive models of AGC in tree R²-adj RMSE (kg.tree-1) RMSE (%)
ln(AGCt)  = -2.87 + 1.95*ln(DBH) + 0.44*ln(Ht) 0.97 4.57 12.38
ln(AGCc) = -3.89 + 1.72*ln(DBH) + 0.83*ln(Ht) 0.97 2.73 11.04
ln(AGCr)  = -2.61 + 2.49*ln(DBH) + 0.47*ln(Ht) 0.97 1.44 11.24

R²-adj = adjusted coefficient of determination; RMSE= root-mean-square error. 

Table 4. 	 Predicted AGC stocks (Mg.ha-1) in the farms studied.
Tabela 4. 	Estoque de AGC predito (Mg.ha-1) nas fazendas estudadas. 

Eucalyptus plantation farms AGCt AGCc AGCr Age Number of Plotsy s y s y s
F987 14.31 5.29 8.32 3.31 6.44 1.94 2.3 14
F986 45.45 6.19 28.86 4.36 16.67 1.88 3.3 21
F849 62.71 6.69 41.72 4.93 20.69 1.94 4.7 26
F950 63.67 9.96 42.11 6.66 21.27 3.32 5.5 17
F184 64.59 6.81 43.81 4.81 20.37 2.03 5.9 14
F166 69.76 9.77 47.67 6.89 21.65 2.91 6.1 17
F948 60.42 13.12 41.19 9.01 18.86 4.24 6.8 12
F634 72.54 9.06 50.00 6.75 22.11 2.66 8.0 15

AGCt= Aboveground carbon total; AGCc= Aboveground carbon in commercial logs; AGCr= Aboveground carbon in harvesting residuals ; y = 
average; s = standard deviation. 

Table 5. 	 LiDAR flight acquisition parameters  
(Fall 2012).

Tabela 5. 	Parâmetros de aquisição dos dados LiDAR 
(Outono de 2012). 

Parameter Value
Density of the laser pulse 10 m²
Dynamic range 12bits
Speed 57 m/s (205.20 km.h-1)
Flying altitude average 422.94 m
Sweep angle 45º
Horizontal Precision 0.1-0.15m (1.0 sigma)
Frequency sweep 400kHz
IMU / GPS Applainix 510

IMU=Inertial measurement unit; GPS=Global Positioning System.

FUSION software (v. 3.3) (McGaughey, 2013) 
was used to process the LiDAR data and generate 
four main products: the digital terrain model 
(DTM), the digital surface model (DSM), the 
canopy height model (CHM), and the LiDAR 
metrics used in this study.
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Initially the catalog function was used to 
evaluate the quality of the LiDAR data set. 
Ground returns were separated from the 
vegetation returns using groundfilter followed 
by gridsurfacecreate to generate the 1-meter-
resolution digital terrain model (DTM), which 
represents the bare earth elevation. The digital 
surface model (DSM) which represents the 
earth’s surface and includes the trees and other 
objects on it, was created using canopymodel 
also at 1 m resolution. The clipdata function 
was applied to normalize heights and to 
make sure that the z coordinate for each point 
corresponded to the height above ground and 
not the elevation of the point. After heights were 
normalized, the canopy height model (CHM), 
which represents the height of the forest, was 
created at 1 m resolution using canopymodel. 
The polyclipdata function was used to select only 
the LiDAR points falling within the field sample 
plots of interest. The cloudmetrics function was 
used to generate the LiDAR metrics within the 
sample plots, while the gridmetrics function was 
used to generate the same LiDAR metrics in 
across the LiDAR surveys at 5 m resolution. 

LiDAR first returns provide a more stable 
distribution of object heights than the other 
returns (Bater et al., 2011). For instance, Kim et 
al. (2009) used the first returns to distinguish 
between live and dead standing tree biomass, 
while Ørka et al. (2009) and Korpela et al. 
(2010) used the first returns to classify individual 
tree species by LiDAR intensity metrics. 
Therefore, we used just the LiDAR first returns 
to generate the LiDAR metrics in this study. The 
twenty LiDAR metrics used in this paper are  
presented in table 6.

Regression modeling
Initially, Pearson’s correlation (r) was used 

to identify highly correlated predictor variables 
(r>0.9); redundant predictors were subsequently 
excluded. Secondly, we determined the best 
subsets using the regsubsets function in the “leaps” 
package in R (R Development Core Team, 2010), 
which selects the highest correlated subset of 
predictive variables through exhaustive search. 
To determine the best subset the “regsubsets” 
function uses the Mallows Cp statistic, which 
compares the error sum of squares for a reduced 
model to the mean square error of the full model 
(MALLOWS, 1973).

Third, after selecting the best eight variables, 
we used the “lm” linear model function in 

R to define the prospective models. Finally, 
the corrected Akaike information criterion 
(AIC) (AKAIKE, 1973; 1974) was calculated to 
measure the relative quality of each model and 
to rank them accordingly by minimum AIC. 
However, since we had small sized samples (n/p 
< 40, where n is number of samples and p is 
number of parameters of the model), we used 
the corrected information criterion (AICc) to 
rank the models and select the best of them 
(HURVICH; TSAI, 1989).

Residuals from all prospective models were 
analyzed graphically and tested for normality 
using the Shapiro-Wilk test (SHAPIRO; WILK, 
1965) and for heteroscedasticity using the 
Breusch-Pagan test (BREUSCH; PAGAN, 1979). 
Statistics used to evaluate the alternative 
regression models were: (i) R²-adj and (ii) 
RMSE, both absolute and relative (%). The 
performance of the models was determined 
by means of a leave-one-out cross-validation 
strategy. For this paper, we defined an acceptable 
accuracy as a relative RMSE below 15%.

RESULTS AND DISCUSSION

Pearson’s correlation (r) applied to the 
21 candidate LiDAR metrics determined that 
15 were highly correlated (r>0.9). The six 
remaining metrics were not so highly correlated, 
and therefore were used to build prospective 

Table 6. 	 LiDAR-derived vegetation height and canopy 
cover metrics.

Tabela 6. 	Métricas de altura e cobertura de copa  
derivadas do LiDAR. 

Category LiDAR metric Acronym

Height

Maximum Height hmax

Mean height hmean

Standard deviation of mean height hsd

Coefficient of variation of height hcv

Mode of height hmod

5th percentile of height H5
10th percentile of height h10
20th percentile of height h20
25th percentile of height h25
30th percentile of height h30
40th percentile of height h40
50th percentile of height h50
60th percentile of height h60
70th percentile of height h70
75th percentile of height h75
80th percentile of height h80
90th percentile of height h90
95th percentile of height h95
99th percentile of height h99

Cover Percentage of first returns above 2 m Cdens
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models by best subset analysis. Even though the 
number of metrics was reduced to six, they still 
represented the top height (e.g. h99) and canopy 
density (Cdens) metrics of the LiDAR data. The 
six LiDAR metrics selected were hcv, hstd, h5, h10, 
h99 and Cdens. Some of them were positively 
correlated, such as hcv and hstd, while others 
were negatively correlated, such as Cdens and hcv 
(Figure 2).   

The best subsets of LiDAR metrics resulted 
in six models for predicting C content with the 
number of independent variables increasing 
from 1 to 6. Figure 3 shows box-and-whisker 
plots of the six selected LiDAR metrics.

Table 7 shows the competing AGC models 
and diagnostic statistics for predicting the three 
AGC response variables. For AGCt, the six best 
subset model R²-adj ranged from 0.79 to 0.81. 
The most common metric was h99 (present in 
all six models), followed by h10 (present in five 
models) and h

cv (present in three models). These 
variables explained 79-81% of the variability in 
AGCt. In addition, the AICc ranged from 966.24 
to 953.64, absolute RMSE ranged from 7.70 to 
8.25 Mg.ha-1, and relative RMSE ranged from 
13.43 to 14.40%.  

The AGCc model R²-adj ranged from 0.82 
with only one independent variable (h99) 

Figure 2. 	Pearson’s correlation among selected LiDAR metrics.
Figura 2. 	Correlação de Person para as métricas LiDAR. 

Figure 3.	 Box and whisker plots of the six selected LiDAR metrics.
Figura 3. 	Diagrama de caixa das métricas LiDAR selecionadas. 
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to 0.83 using six independent variables (h5, 
h10, h99, hcv, hstd and Cdens). The variables that 
appeared most in the composition of these 
models were the same as were selected in the 
AGCt models. The AICc ranged from 848.06 
to (three predictors) 856.51 (one predictor). 
Absolute RMSE ranged from 5.26 to 5.51 (Mg.
ha-1) and relative RMSE from 13.75 to 14.40%.  

For the AGCr, R²-adj ranged from 0.67 for 
the model with only one independent variable 
(h99) to 0.73 for models with six explanatory 
variables h5, h10, h99, hcv, hstd and Cdens). The 
independent variables that appeared in most 
models were h99, h10, and Hcv. The AICc ranged 
from 664.03 (one predictor) to 678.46 (six 
predictors). Absolute RMSE ranged from 2.67 
to 2.86 (Mg.ha-1); relative RMSE ranged from 
14.22 to 15.23%. 

All the aforementioned AGC model 
residuals (Table 7) exhibited both normality 
and homogeneity of variances when evaluated 
by Shapiro-Wilk and Breusch-Pagan tests. The 
three best models with the lowest AICc statistic 
identified for predicting AGCt, AGCc and AGCr 
had by definition the lowest AICc statistics 
and were composed of either three or four 
independent variables. (Table 7). 

The LiDAR metrics such as height percentiles 
and canopy density cover included in these 
models are frequently observed in studies that 
use LiDAR data for forest inventory (HUDAK et 
al., 2006, 2012; NÆSSET, 2002, 2004; NÆSSET; 

GOBAKKEN, 2008). The best three models for 
predicting AGCt, AGCc and AGCr explained 
81, 83 and 71% of the variation, respectively. In 
addition, all three AGC models selected had a 
low RMSE between the predicted and observed 
values, indicating good model accuracy. The 
model accuracies were also favorably compared 
with other studies predicting forest biomass 
C (GARCÍA et al., 2010; HUDAK et al., 2012; 
PATENAUDE et al., 2004).

The LiDAR canopy height and density metrics 
selected in this work are also commonly used 
to predict AGC stocks in forests. For instance, 
Hudak et al. (2012) used LiDAR mean height 
and other metrics to quantify aboveground 
forest C pools and ?uxes from repeated LiDAR 
surveys in Moscow Mountain in Northern 
Idaho, USA, and Stephens et al. (2012) used 
LiDAR height percentiles and canopy density 
for estimation of C stocks in New Zealand 
planted forests. LiDAR height and canopy 
density metrics, and in some cases intensity 
metrics, also have been used to predict stand 
biomass (e.g. GARCIA et al., 2010; NAESSET, 
2002). LIDAR metrics can also be useful to 
predict stand height, volume and basal area 
(RODRIGUEZ et al., 2010; ZONETE et al., 
2010) in Brazilian Eucalyptus plantations.   

In this paper, equivalence plots of observed 
versus predicted AGC via leave-one-out cross-
validation indicated that predicted and observed 
C were similar (Figure 4A1, B1 and C1). The 

Table 7. 	 AGC models created using LiDAR-derived vegetation height and canopy cover metrics.
Tabela 7. 	Modelos de AGC criado a partir das métricas de altura e cobertura de copas derivadas do LiDAR. 

AGC # Models R²-adj AICc RMSE 
(Mg.ha-1)

RMSE 
(%)

AGCt

1 = -46.76 + 3.98h99 0.79 966.24 8.25 14.40
2 = -47.20 + 0.66h10 + 3.51h99 0.80 958.98 7.97 13.91
3 =-55.73 + 1.51h10 +2.81h99 + 66.59h10 0.81 955.04 7.80 13.60
4 =-42.92 - 0.21h5 + 1.56h10 +1.93h99 + 4.66hstd 0.81 953.64 7.70 13.43
5 = -72.69-0.16h5 + 1.61h10 + 2.83h99 + 65.89hcv + 0.18Cdens 0.81 959.43 7.78 13.57
6 = -43.90 + 0.20h5 + 1.47h10 +1.49h99 -72.06hcv + 8.18hstd+ 0.15Cdens 0.81 955.59 7.65 13.75

AGCc

1 = -34.49 + 2.90h99 0.82 856.51 5.51 14.40
2 = -37.76 + 0.41h99 + 2.60h99 0.82 850.45 5.35 13.97
3 =-42.72 + 0.91h10 + 2.20h99+ 38.68hcv 0.83 848.06 5.26 13.75
4 =-42.44 – 36.66h5 - 0.92h10+ 2.21h99 + 36.66h10 0.83 850.21 5.26 13.74
5 = -45.51 + 0.04h5 + 0.93h10 + 1.64h99 + 2.93hstd + 0.11Cdens 0.83 850.91 5.20 13.59
6 = -38.31 + 0.14h5 + 0.87h10 +1.48h99 -31.97hcv + 4.36hstd + 0.09Cdens 0.83 848.61 5.20 13.58

AGCr

1 = -7.85 + 1.02h99 0.67 678.46 2.86 15.23
2 = -8.00 + 0.24h10 + 0.84h99 0.69 670.40 2.76 14.67
3 =-11.49 + 0.59h10 + 0.56h99 + 27.18hcv 0.71 664.03 2.67 14.22
4 =-10.54 – 0.11h5 + 0.62h10 + 0.60h99 + 20.25hstd 0.71 665.54 2.67 14.19
5 = -13.49 + 0.04h5 + 0.65h10 + 0.18h99+ 2.01hcv + 0.08Cdens 0.72 670.85 2.60 14.54
6 = -3.87 + 0.05h5 + 0.57h10 - 0.04h99 -42.67hcv + 3.91hstd + 0.05Cdens 0.73 664.58 2.57 13.69

R²-adj = adjusted coefficient of determination; AICc= corrected Akaike information criterion; RMSE= root mean square error.
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models accuracy is confirmed by the low 
relative value of RMSE between observed and 
predicted AGC by cross-validation. The results 
from the equivalence tests support the stability 
of the chosen models. In addition, the patterns 
of residuals also confirm that the models do 
not violate the assumption of homogeneity of 
variances (Figure 4. A2, B2 and C2). 

AGC was slightly over-predicted for the 
F987, F986, F166, F634 farms (Figure 5). These 
even-aged plantations do not show height or 
other structural variability, so a relatively small 
number of field plots equitably distributed 
across the range of age and height variability 
was sufficient to develop robust models with the 
LiDAR metrics.

Figure 4. 	Equivalence plots of leave-one-out cross-validation of best models for: A) predicted versus observed AGCt 
(A1) and residuals (A2); B) predicted versus observed AGCc (B1) and residuals (B2); and C) predicted 
versus observed AGCr (C1) and residuals (C2). The black line indicates the line of best fit of a simple linear 
model of observations regressed on predictions. The gray shaded bar defines the region of similarity in the 
intercept. If the error bar about the line of best fit falls within the shaded gray region, then the intercept of 
the linear model does not significantly differ from its range of expected values. If the black error bar falls 
between the dotted lines, then the slope of the linear model does not significantly differ from its range of 
expected values.

Figura 4. 	Gráfico de equivalência para a validação cruzada “deixa um de fora” dos melhores modelos: A) Valores de 
AGCt preditos versus observados (A1) e resíduos (A2); B) Valores de AGCc preditos versus observados(B1) 
e resíduos (B2); C) Valores de AGCr predito versus observados (C1) e resíduos (C2). A barra cinza som-
breada define a região de semelhança para o intercepto. Se a barra de erro preta estiver dentro da região 
sombreada cinza, o intercepto do modelo linear não difere significativamente do seu intervalo de valores 
esperados. Se a barra de erro preta estiver entre as linhas pontilhadas, em seguida, o termo o coeficiente 
angular do modelo linear não difere significativamente do seu intervalo de valores esperados. 
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Figure 5. 	Observed versus predicted AGC by the selected models for each farm in the study.
Figura 5. 	AGC predito versus observado de acordo com os modelos selecionados para cada fazenda em estudo. 

AGC maps are useful to evaluate the forest 
homogeneity, because they show the distribution 
of the C content across of the whole area. The 
three best AGC models were applied to predict 

AGC across the landscape, and we created 24 
maps showing the C stored at the stand level 
(Figures 6 and 7). 
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Figure 6. 	Predicted AGC stocks (AGCt, AGCc and AGCr) for Eucalyptus plantations located in F987, F986, F849 and 
F950 farms. Map resolution is 5 m.

Figura 6. 	Estoque de AGC predito (AGCt, AGCc e AGCr) para as plantações de Eucalyptus spp. localizadas nas fa-
zendas F987, F986, F849 e F950. O mapa tem resolução de 5 m. 
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Figure 7. 	Predicted AGC stocks (AGCt, AGCc and AGCr) for Eucalyptus plantations located in F184, F166, F948 and 
F634 farms. Map resolution is 5 m.

Figura 7. 	Estoque de AGC predito (AGCt, AGCc e AGCr) para as plantações de Eucalyptus spp. localizadas nas fa-
zendas F184, F166, F948 e F634. O mapa tem resolução de 5 m.
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CONCLUSIONS

Best subsets regression models predicting 
AGCt, AGCc and AGCr from LiDAR metrics 
produced R2-adj of 0.81, 0.83 and 0.71, and 
relative RMSE of 7.70, 5.26 and 2.67 Mg.ha-1, 
respectively. Therefore, we conclude that LiDAR 
metrics can be used to predict aboveground C 
stocks in fast growing Eucalyptus plantations 
in Brazil with acceptable accuracy. High 
spatial resolution maps of AGC stocks and the 
component pools can be created from LiDAR 
data once robust models are developed. Our 
results point to the need to continue advancing 
and promoting the application of LiDAR data for 
inventory of forest plantations of Eucalyptus spp.
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