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With earth's surface temperature and human population both on the rise a new emphasis has been placed on
monitoring changes to forested ecosystems the world over. In the United States the U.S. Forest Service Forest
Inventory and Analysis (FIA) programmonitors the forested land basewith field data collected over a permanent
network of sample plots. Although these plots are visited repeatedly through time there are large temporal gaps
(e.g. 5–10 years) between remeasurements such that many forest canopy disturbances go undetected. In this
paper we demonstrate how Landsat time series (LTS) can help improve FIA's capacity to estimate disturbance
by 1.) incorporating a new, downward looking response variable which is more sensitive to picking up change
and 2.) providing historical disturbance maps which can reduce the variance of design-based estimates via
post-stratification. To develop the LTS response variable a trained analyst was used to manually interpret 449
forested FIAplots located in theUintaMountains of northernUtah, USA. This involved recording cause and timing
of disturbances based on evidence gathered from a 26-year annual stack of Landsat images and an 18-year,
periodically spaced set of high resolution (~1 m) aerial photographs (e.g. National Aerial Image Program, NAIP
and Google Earth). In general, the Landsat data captured major disturbances (e.g. harvests, fires) while the air
photos allowedmore detailed estimates of the number of trees impacted by recent insect outbreaks. Comparing
the LTS and FIA field observations, we found that overall agreement was 73%, although when only disturbed
plots were considered agreement dropped to 40%. Using the non-parametric Mann–Whitney test, we compared
distributions of live and disturbed tree size (height and DBH) and found that when LTS and FIA both found non-
stand clearing disturbance the median disturbed tree size was significantly larger than undisturbed trees,
whereas no significant difference was found on plots where only FIA detected disturbance. This suggests
that LTS interpretation and FIA field crews both detect upper canopy disturbances while FIA crews alone add
disturbances occurring at or below canopy level. The analysis also showed that plots with only LTS disturbance
had a significantly greater median number of years since last FIA measurement (6 years) than plots with both
FIA and LTS disturbances (2.5 years), indicating that LTS improved detection on plots which had not been field
sampled for several years. Next, to gauge the impact of incorporating LTS disturbances into the FIA estimation
process we calculated design-based estimates of disturbance (for the period 1995–2011) using three response
populations 1.) LTS observations, 2.) FIA field observations, and 3.) Combination of FIA and LTS observations.
The results showed that combining the FIA and LTS observations led to the largest andmost precise (i.e. smallest
percent standard error) estimates of disturbance. In fact, the estimate based on the combined observations
(486,458 ha, +/−47,101) was approximately 65% more than the estimate derived solely with FIA data
(294,295 ha, +/−44,242). Lastly, a Landsat forest disturbance map was developed and tested for its ability to
post-stratify the design-based estimates. Based on relative efficiency (RE), we found that stratification mostly im-
proved the estimates derived with the LTS response data. Aside from insects (RE = 1.26), the estimates of area af-
fected by individual agents saw minimal gain, whereas the LTS and combined FIA + LTS estimates of total
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disturbance sawmodest improvement, with REs of 1.43 and 1.50 respectively. Overall, our results successfully dem-
onstrate two ways LTS can improve the completeness and precision of disturbance estimates derived from FIA in-
ventory data.

Published by Elsevier Inc.
1. Introduction

In addition to being one of the primary drivers of the net terrestrial
carbon budget (Harmon, 2001; Kasischke et al., 2013), forest distur-
bance also plays a critical role in affecting biodiversity (Dornelas,
2010), wildlife habitat (Gibson et al., 2013) and the surface energy
balance (O'Halloran et al., 2011). With rising global temperatures
(Easterling et al., 2000; IPCC, 2014) and an ever growing human popula-
tion (Raftery, Li, Ševčiková, Gerland, &Heilig, 2012) poised to alter the fre-
quency and severity of disturbance regimes across the globe (Bradford,
Jensen, Domke, & D'Amato, 2013; Dale et al., 2001; Westerling, Hidalgo,
Cayan, & Swetnam, 2006), improved monitoring of forest disturbance,
especially at the landscape scale has become increasingly important.
Because forest disturbancemanifests at a variety of spatial and temporal
scales (Asner, 2013) and has varying impacts which affect the canopy,
understory and forest floor, effective monitoring will likely require a
hybrid approach, where detailed field measurements collected in a
probabilistic sample are combined with frequent, repeated observa-
tions made by remote sensing satellites.

In the United States, the Forest Service Forest Inventory and Analysis
(FIA) program (http://www.fia.fs.fed.us/) collects detailed field mea-
surements which are used to produce timely and accurate estimates
of a wide range of forest attributes. These attributes, which include
forest area and volume, are used to provide information on the current
status and health of forests over varying geographical extents. Typically,
a probabilistic sample of inventory plots is used to estimate amount of
forest area while maps derived from remote sensing have been used
both as strata applied to reduce variance (i.e. for “post-stratification”,
see McRoberts, Wendt, & Liknes, 2005) and to delineate forest location
and extent (McRoberts & Tomppo, 2007). Reporting population esti-
mates at the state and county level has long been a primary function
of FIA. However, with increasing stress on forested ecosystems (van
Mantgem et al., 2009; Weed, Ayres, & Hicke, 2013), a new emphasis
has been placed on improving FIA's capacity to report on how much
forest is changing, where it is changing and what is changing it. This
includes developing a flexible monitoring system which can estimate
annual trends, report on different geographic areas (e.g. administrative
units, watersheds, or ecoregions), aswell as incorporate different spatial
layers for use in post-stratified variance reduction.

Presently, monitoring the status and trends of forest disturbance can
be challenging for inventory programs as they often have long temporal
gaps (e.g. several years to decades) betweenplotmeasurements. For ex-
ample, in the western U.S., a 10 year cycle of measurements is required
for the network of FIA plots to fully sample the entire forested land-
scape. Since forest disturbance and recovery dynamics vary irregularly
(annual rates b 3% per year; Masek et al., 2013) over space and time,
both the frequency (time) and spatial coverage (space) of observation
determine how well a sample captures a rare event like disturbance
(Patterson & Finco, 2011). Therefore, it would greatly benefit FIA if all
of its plots could be monitored and updated annually, thus providing
estimates of disturbance which better reflect the current condition of
the forest landscape. This would be especially beneficial in the western
states, where annual updating would give FIA better capacity to track
and respond to episodic insect outbreaks and fires. Based on this need,
there is potential for FIA to improve its change monitoring capabilities
by incorporating more frequent observations from optical remote
sensing satellites such as Landsat.

With a 40+ year historical archive and a 16 day repeat cycle,
Landsat imagery offers an excellent data source for monitoring forest
disturbance over large areas (Hansen & Loveland, 2012). The 30 m
spatial grain and 6 reflective bands are capable of capturing many
types of forest disturbance, especially those that impact the upper cano-
py (Cohen&Goward, 2004). Now that the entire Landsat archive is freely
available it has become economically feasible to monitor disturbance
over large areas using satellite time series. The increased accessibility of
Landsat data has led to the emergence of several new automated algo-
rithms which are capable of mapping historical disturbance using the
spectral response from multiple image dates (Huang et al., 2010; Jin
et al., 2013; Kennedy, Yang, & Cohen, 2010; Zhu, Woodcock, &
Olofsson, 2012). Thanks in part to greater access to supercomputers
such as the NASA Earth Exchange (NEX, https://nex.nasa.gov/nex/),
these algorithms are now being run over increasingly larger areas
(Hansen et al., 2013). For example, the North American Forest Dynamics
(NAFD) project (Goward et al., 2008; Masek et al., 2013) is currently
using the Vegetation Change Tracker (VCT, Huang et al., 2010) algorithm
to produce a wall-to-wall forest disturbance map for the conterminous
U.S. With the availability of Landsat-based disturbance maps on the
rise, it is important to determine their utility for improving the precision
of FIA estimates through post-stratification.

In addition to stratification, Landsat data have also recently emerged
as an effective backdrop for collecting plot-level reference information
on disturbance and land cover change. Visualization tools such as
TimeSync (Cohen, Yang, & Kennedy, 2010) demonstrate how a trained
analyst can use the spectral and temporal information from Landsat
alongwith other spatial data to record timing and cause of most natural
and anthropogenic disturbance events. Such ancillary data include high
spatial resolution photos from NAIP and Google Earth; fire polygons
from Monitoring Trends in Burn Severity (MTBS, www.mtbs.gov;
Eidenshink et al., 2007); and disturbance grids compiled by the Landfire
program (www.landfire.gov; Vogelmann et al., 2011). Because of
Landsat's long historical record, the analyst interpretation approach
has surfaced as one of the best (and only) methods for collecting refer-
ence data over the full range (20–40 years) and interval (annual) of
most time series maps. In addition to validation, analyst-based LTS ob-
servations can also be used for design-based estimation if collected
over a statistically-based set of sample locations such as FIA plots. In
fact, it is possible that combining the improved frequency and spatial
coverage of LTS observations with the detailed, but less frequently
acquired FIA field data might provide the most complete picture of
where and how disturbance is impacting the greater landscape. In gen-
eral, combining LTS and field-based observations in a design-based
framework is an emerging technique for estimating (or predicting)
landscape scale disturbance dynamics (e.g. see Plugmacher, Cohen,
Kennedy, & Yang, 2014) and for validating maps of disturbance
(Olofsson, Foody, Stehman, & Woodcock, 2013). Although our focus
here is on FIA data, it is important to recognize that LTS observations,
both in the form of maps and analyst-interpretations can be similarly
applied to other sets of probabilistically collected field measurements.

Traditionally, Landsat data and its derivatives (e.g. National Land
Cover Dataset, NLCD) have been used by FIA for post-stratification, a
statistical technique for using spatial data to reduce the variance of
design-based parameter estimates (McRoberts, Tomppo, & N sset,
2010). The literature suggests that static parameters such as forest
area and volume have typically gained the greatest benefit from stratifi-
cation (McRoberts et al., 2006; Nelson, McRoberts, Liknes, & Holden,
2002), while dynamic parameters reflecting forest change (e.g. growth,
mortality and removals) have had much more limited success (Brooks,
Coulston, Wynne, & Thomas, 2013; Gormanson, Hansen, & McRoberts,
2003). It is possible that stratification (which is based on agreement be-
tweenmap and sample plots) could improve if the FIA response variable
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were measured annually over the full landscape and if a satellite distur-
bancemap could be developedwhich accurately captures the prevailing
disturbance dynamics of a region (e.g. agents and severity).

Therefore, the two main objectives of this study are to: 1.) Use LTS
disturbance observations to augment FIA plots and determine how sup-
plemental plot histories impact design-based estimates of disturbance,
and 2.) Determine whether a Landsat disturbance map can improve
(i.e. increase precision of) design-based estimates through post-
stratified variance reduction. To address these objectives, we first use
an analyst-led LTS interpretation approach (similar to TimeSync,
Cohen et al., 2010) to collect supplemental disturbance history informa-
tion on 449 forested FIA plots located in the Uinta Mountains of north-
ern Utah, USA. In addition to annual Landsat imagery, a time series of
high spatial resolution air photos from NAIP and Google Earth are
used to expand the interpretation approach to include detailed tree-
level measurements of mortality occurring below the resolution of the
Landsat data. To better understand how the LTS and field observations
relate to one another we use the cells of an agreement matrix to divide
the plots into 3 disturbance populations (e.g. 1.) Both LTS and FIA find
disturbance, 2.) Only FIAfinds disturbance and 3.) Only LTSfinds distur-
bance) which are used to compare distributions of live and disturbed
tree size (i.e. height, HT and diameter at breast height, DBH) and num-
ber of years between LTS and FIA measurements using non-parametric
Mann–Whitney tests. Next the FIA and LTS observations of disturbance
are used individually and combined together to generate design-based
estimates of disturbed area (for the period 1995–2011) for specific
agent classes (e.g. insect, disease, fire, harvest, weather, mechanical,
and animal) and their total. To test the potential for improving the
precision of the derived estimates through post-stratification, we use a
multi-stage approach to develop a Landsat forest disturbance map
which better captures the subtle, lowmagnitude spectral changes asso-
ciated with recent insect outbreaks. We evaluate the maps' capacity to
increase the precision of the plot-based estimates using the measure
of relative efficiency (RE = variance from simple random sampling/
variance from post-stratification; see McRoberts, Holden, Nelson,
Fig. 1. The Uinta Mountains study area defined by the Landsat path 37 ro
Liknes, & Gormanson, 2006), which can be interpreted as the factor by
which the size of a simple random sample would have to increase by
to achieve the same precision as stratification. Testing the capacity of
remote observations to improve disturbance estimates over a broad
range of forest types and causal agents may provide a template for fu-
ture integration of field and LTS observations within FIA's monitoring
and reporting system.

2. Methods

2.1. Study area

The 1.6 million ha study area consists of the non-overlapping
portion (or Thiessen Scene Area, TSA) of Landsat scene path 37 row
32, which covers nearly the entire Uinta Mountain range located in
the northeast corner of Utah, USA (Fig. 1). Approximately 56% of the
study area is forested including broad expanses of conifer and mixed
deciduous forest, as well as stands of pure aspen at high elevations
and sparse Pinyon-Juniper woodlands on drier, lower elevation slopes.
According to the most recent US Forest Service forest type map
(Ruefenacht et al., 2008) the majority of forest within the study area
falls in 5 major group types. These include Pinyon-Juniper (18%),
Aspen/Birch (12%), Fir/Spruce/Hemlock (12%), Lodgepole Pine (10%)
and Douglas-fir (3%) (see Fig. 1). The diversity of forest types and land
management objectives in the region have resulted in a wide array of
disturbance agents, including harvests, fires, insects, and mechanical
treatments such as chaining. Due in part to warmer winter tempera-
tures and shifting precipitation patterns (Bentz et al., 2010; Hebertson
& Jenkins, 2008), the Uinta Mountains have recently (i.e. 2004–2011)
experienced elevated levels of mortality from insects such as mountain
pine beetle and spruce beetle (DeBlander, Guyon, Hebertson, Mathews,
& Keyes, 2012; Man, 2012). Given the broad array of disturbance agents
which have occurred in both dense and sparse forest types the Uinta
Mountains provide an excellent and challenging location to evaluate
the expanded use of LTS observations within FIA's estimation process.
w 32 Thiessen scene area (TSA). Non-forest areas are shown in gray.



64 T.A. Schroeder et al. / Remote Sensing of Environment 154 (2014) 61–73
2.2. Data

2.2.1. FIA field disturbance observations
The field data used in this study consists of 790 phase 2 (P2) FIA

plots (449 are forest; 341 non-forest) measured between 2000 and
2011. Part of FIA's annual inventory design (Reams et al., 2005), the
P2 field plots are randomly located across the US on a hexagonal sam-
pling frame at a density of 1 plot per 2403 ha (5937 acres). Sample
trees are measured on four 7.32 m (24 ft) fixed radius subplots which
together cover a 687.97 m2 area (0.17 acres). It is important to note
that at the plot-level FIA tree measurements come from the four
subplots, which in total cover an area 1/6 of the size of the LTS photo
plot (described below). In the western states, FIA measures plots on a
10 year rotating panel system such that 10% of all plots are measured
annually. Therefore the data used here includes one full cycle of obser-
vations (i.e. all plots have been measured once), with an additional
20% having been measured twice during the period of study. During
field visits, FIA crews collect a variety of forest attributes (e.g. forest
type and disturbance) which are reported by condition classes
reflecting distinct differences in land use or vegetation types found on
a plot. Thus, it is possible for a plot to contain multiple forest conditions
or a combination of forest and non-forest conditions. Both single- and
multiple-condition plots were used in this study. For each plot the
proportion of each condition is accounted for by an expansion factor
(e.g. Trees per Acre) which is applied during the estimation process. Ex-
cept for rare situations, field measurements (including observations of
disturbance) are only collected on plots which potentially meet FIA's
definition of “forest” (i.e. land which is at least 10% stocked with trees,
or formerly had such tree cover and is not currently developed for a
non-forest use). Here a binary labeling system is used to partition the
forested FIA plots into disturbed and undisturbed categories based on
information taken from both the condition and tree-level data.

At the condition-level, FIA crews record the timing of disturbances
(e.g. insect, disease, fire, weather, animal, and other) and treatments
(e.g. harvesting, from here on referred to as a disturbance) which are
at least 4047 m2 (1 acre) in size and that have significant mortality or
damage to at least 25% of trees. Detecting and labeling disturbance
from the ground perspective requires field crews to interpret the cur-
rent ecological condition of the forest to identify and back-date the
timing of past disturbance events. Since crews must look back 5 years
during initial plot installation and 10 years during remeasurement the
process of observing disturbance is not always straightforward. For ex-
ample, in certain situations (mostly involving insects and disease) field
crews cannot accurately hind-cast when a disturbance began so instead
they label it as “ongoing continuously”. In the event of this designation
we used the year of plot measurement as a proxy for year of occurrence.
Field crews can record up to 3 different disturbances and 3 different
treatments (i.e. harvest) for each forested condition found on a plot.

To capture smaller (b4047 m2) and less severe disturbances (b25%
of trees) not captured at the condition-level, we also used FIA's sample
tree measurements. This involved calculating the number of individual
trees≥ 12.7 cm (5 inch) DBH on each plot which were flagged as dam-
aged or killed by the same 7 agents used above (e.g. insect, disease, fire,
harvest, weather, animal, and other). Trees were summed across all
conditions found on the plot. To capture multiple disturbances, all
agents with 5 or more impacted trees were recorded as separate distur-
bance events. Since the timing of tree-level disturbance andmortality is
not consistently availablewhen necessary the year of plotmeasurement
was used as a proxy for year of occurrence.

2.2.2. Landsat time series disturbance observations
To derive supplemental disturbance history information for the 449

forested FIA plots we used a new approach for collecting reference
information based on human interpretation of remotely sensed data.
Similar to the TimeSync methodology (Cohen et al., 2010), we used a
trained analyst to manually record disturbance observations based on
evidence gleaned from simultaneous inspection of annual Landsat
data (both individual images and spectral trajectories), high resolution
air photos (e.g. NAIP, Google Earth), and ancillary GIS layers including
MTBS fire polygons (Eidenshink et al., 2007) and Landfire disturbance
grids (Vogelmann et al., 2011). By concurrently viewing all the available
data in and around the plot area, the analystwas able to use the spectral
information and supporting context from air photos to record the
timing and cause of disturbances occurring on the FIA plots between
1995 and 2011 (see Fig. 2 for example). Tominimize spatial inaccuracies
in both the image data (e.g. misregistration) and FIA plot locations
(e.g. GPS error) we elected to interpret a 4047 m2 (1 acre) circular
area drawn around the center coordinate of each FIA plot. This approx-
imates the area sub-sampled by FIA, which uses 4 sub-plots covering
about 1/6 of this area.

Although Landsat data has a 30 m spatial grain, its spectral time
series offers a consistent and highly informative signal from which
both subtle and abrupt changes in forest structure and leaf area can be
resolved (see Fig. 2 lower left, Cohen et al., 2010; Kennedy, Cohen, &
Schroeder, 2007; Schroeder, Wulder, Healey, & Moisen, 2012). Here,
the Landsat data alone led to the detection of 5 different types of distur-
bance, including: stress (from insect, disease and drought); fire; har-
vest; mechanical (e.g. brush saw, chaining); and other (e.g. label used
for disturbances which could not be assigned a specific cause). In most
cases where disturbance occurred abruptly, the Landsat data could be
used to determine the year of onset. The interpretability of the Landsat
data was greatly enhanced by the inclusion of higher spatial resolution
(~1 m) air photos (e.g. NAIP) such as those commonly found in Google
Earth. Covering several dates (1993, 1998, 1999, 2001, 2003, 2004,
2006, 2008, 2009, 2011), the air photos were instrumental in detecting
the first signs of stress-related tree mortality caused by insects, disease,
and drought. Not surprisingly, the most recent air photos were found to
be the best quality (in terms of spatial resolution, color, and contrast)
and thus allowed a unique opportunity to improve capture of the recent
insect outbreaks which have impacted the study area.

During the analyst interpretation process we observed several in-
stanceswherewidespread, chronic (i.e. slow-developing) treemortality
could be seen in the air photos even though it was not yet distinguish-
able in the Landsat images or trajectories. Becausemost of the severe in-
sect damage in this area has occurredwithin the last 8 years of the study
period (i.e. 2004–2011) there were several high quality photos which
showed detailed changes in tree-level mortality. Using this improved
spatial detail we were able to count the number of red attacked trees
(primarily caused by mountain pine beetle) and dead gray trees occur-
ring within each plot's 4047 m2 (1 acre) footprint (see Fig. 2 lower
right). This process involved using the most recent NAIP photo (which
was the highest quality) to count the number of disturbed trees in
2011. Then, working backwards, the disturbed trees were pushed back
in time as far as possible using the older dates of photography. The
year of onset was recorded as the date of the earliest photo containing
evidence of tree mortality. Plots observed to have red attack trees
were labeled as insect disturbance, whereas plots with only gray dead
trees were labeled “stress” to imply mortality may have been the result
of any number of slower occurring processes (e.g. insects, disease, or
drought). As the spatial detail of this information is similar to FIA's
tree-level measurements we considered all plots with 5 or more dead
or dying trees as disturbed.We recognize that using the same tree cutoff
with larger LTS plots will result in a higher probability of detecting
disturbance. As one of the objectives of this study is to improve FIA's
sensitivity to detecting disturbance we consider this an advantage of
the LTS approach. However, since our estimates are not reported on a
per-area basis and do not quantify differing levels of severity (e.g. num-
ber of disturbed trees) no adjustment is needed to account for differ-
ences in FIA and LTS plot sizes. Note the use of bigger LTS plots will
result in larger area estimates than FIA due to the difference in relative
numbers of dead trees observed per unit area (e.g. 5 trees per 1/6 acre
FIA plot vs. 5 trees per 1 acre LTS plot). Finally, in addition to recording
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the type and timing of each disturbance (and for insect/stress the num-
ber of dead and dying trees) the analyst also estimated themagnitude of
each disturbance (i.e. severity) as either very low, low, moderate or
high, depending on the amount of observed tree cover change pre-
and post-disturbance. Similarly a confidence score was assigned (high,
medium, low) which reflected the analysts overall degree of certainty
regarding the accuracy of the recorded disturbance attributes. Only dis-
turbances with medium and high confidence were used in the analysis.

2.2.3. Combining FIA and Landsat time series disturbance observations
Given the spatial and temporal complexity of forest disturbance, a

hybrid approach which incorporates both FIA and LTS observations
may well provide the most complete picture of how disturbance is
impacting the broader landscape. Thus, to better understand how the
LTS and field observations relate to one another we used the cells of a
standard agreementmatrix to divide the plots into 3 disturbance popu-
lations: 1.) Plots where both LTS and FIA field crews found disturbance
(referred to as FIA + LTS), 2.) Plots where only FIA field crews found
disturbance (referred to as FIA only), and 3.) Plots where only LTS
found disturbance (referred to as LTS only). Here agreement is based
solely on the presence of disturbance, thus timing and agent are not ex-
plicitly considered. Using these populations, we examine two physical
and temporal characteristics of the field and LTS disturbance observa-
tions. First, the FIA tree measurements are used to compare the relative
canopy position of non-stand clearing disturbances (i.e. insect and
stress) detected by FIA and LTS (population 1) versus those found
only by FIA (population 2). Cumulative frequency distributions and
the non-parametric Mann–Whitney test (reported as U) are used to
compare the median size (e.g., HT in m and DBH in cm) of disturbed
(i.e. standing dead and disturbed trees ≥ 12.7 cm (5 inch) DBH identi-
fied above in Section 2.2.1, plots with only condition-level disturbance
and no disturbed trees are not considered) and undisturbed “live”
trees ≥ 12.7 cm (5 inch) DBH from the two populations. Note that HT
and DBH are first derived as plot-wise averages (without weighting by
forested proportion of the plot), which are then summarized and com-
pared as medians across the two populations. No minimum tree cutoff
was applied thus all plots with measured tree disturbance were includ-
ed in the analysis (note trees from themost recent surveywere used on
remeasured plots). If multiple conditions were observed, the live and
dead trees were taken from the same class except in rare cases when
availability required using live trees from a secondary condition. In the
case where HT and DBH of disturbed trees (excluding fire and harvest-
ing) is larger and significantly different than the undisturbed trees we
can infer disturbance occurred in the upper or main stand portion of
the canopy; whereas, larger undisturbed trees implies disturbance
occurred at, or below main canopy level (i.e. understory). Second,
cumulative frequency plots of the number of years between LTS (last
measured in 2011) and FIA field measurements are compared to high-
light the effect of sampling frequency on disturbance detection. Using
all the disturbed plots from the three errormatrix populations, a second
series ofMann–Whitney tests are used to determine if the LTS only plots
have a larger median number of years since FIA's last field visit. A signif-
icant discrepancy in the amount of time since last field measurement
would indicate that the continuous nature of the LTS observations is
an important factor in detecting disturbance between FIA field visits.

2.2.4. Landsat forest disturbance map
In addition to collecting the analyst interpretations, we also used the

LTS data to create a forest disturbancemap for post-stratification. Due to
the widespread and complex nature of the disturbance processes
impacting the study area, this required a three step process. First, the
near-annual stack of 26 growing season (i.e. one image per year, June

image of Fig.�2


Table 1
Types and frequency of disturbance observed by FIA field crews and Landsat time series
(LTS) interpretation (n = 449 plots).

FIA LTS FIA + LTS

Insect 58 93 108
Disease 49 0 49
Stress 0 47 21
Fire 11 14 15
Harvest 4 7 10
Weather 6 0 6
Mechanical 0 5 5
Animal 7 0 7
Other 5 1 3
Total # of disturbance events 140 167 224
Total # of disturbed plots 126 161 205
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to September) Landsat images (1984–2010) was used to map distur-
bance with two automated algorithms, the Vegetation Change Tracker
(VCT, Huang et al., 2010) and the Landsat-based detection of Trends in
Disturbance and Recovery or “LandTrendr” (Kennedy et al., 2010).
Even though both algorithms infer change on the ground from changes
in the spectral signal captured over time by multiple Landsat images
they do so in different ways. For instance, VCT uses an “adaptive
thresholding” approach to primarily locate abrupt disturbances such
as fire and harvesting, while LandTrendr relies on multitemporal
segmentation to simultaneously find both abrupt events and slower,
longer-term trends.

Although these algorithms were able to find most of the major dis-
turbances (e.g. fire and harvests) neither was fully optimized to capture
the pervasive, low severity damage caused by recent insect outbreaks.
Detecting insect disturbance can be challenging for automated
algorithms because the spectral changes are usually subtle and slow to
develop (Vogelmann, Xian, Homer, & Tolk, 2012) and there is an inher-
ent level of background noise associated with imperfect image calibra-
tion, atmospheric correction, and varying sensing geometry. Here the
challenge was further exacerbated by the fact the low magnitude
changes occurred near the end of the time series and were impacting
both dense and sparse forest types. Although LandTrendr and VCT did
successfully identify some areas of low magnitude change, the specific
needs of our study required a more thorough capture of the recent
insect outbreak.

Therefore in a second step, instead of attempting to further custom-
ize VCT or LandTrendr, we combined the initial output from those algo-
rithms' with a composite analysis approach (Coppin & Bauer, 1996)
using supervised classification of multi-temporal images to target the
missed insect damage. The supervised classification, developed with
shortwave-infrared data from Landsat band 5, allowed us to better iso-
late the subtle, yet distinct spectral patterns associated with the insect
damage, which in turn led to improved capture of the widespread na-
ture of the disturbance. The third and final step involved using a previ-
ously published forest cover map (Blackard et al., 2008) to remove
disturbance from non-forest areas. To better coincidewith the temporal
span of the FIA and LTS observations, only the disturbances mapped
between 1995 and 2010were used in the analysis. Finally, the 30m res-
olution map was recoded into three classes (undisturbed forest, forest
disturbed between 1995 and 2010, and non-forest) for use in stratifying
the design-based estimates of disturbance.

2.3. Design-based estimates of forest disturbance

To derive traditional, design-based estimates of disturbancewe used
an in-house statistical package called Forest Inventory Estimation
for Analysis (FIESTA, Frescino, Patterson, Freeman, & Moisen, 2012).
Developed as a flexible estimation tool, FIESTA expands the analytical
capacity of traditional FIA state-level reporting to more easily incorpo-
rate diverse ancillary layers for reducing estimation variance and
for reporting on different areas of interest. Here FIESTA was used to
calculate the amount of disturbed area (with 95% confidence intervals)
between 1995 and 2011 caused by each of the nine disturbance agents
and their total. Note the study period is defined by the range of FIAmea-
surement (starting in 2000 minus a five year look back for disturbance
or 1995) and the most recent LTS observations (last measured in
2011). Stratified estimates (developed using the forest disturbance
map described above) were calculated with standard estimators
outlined in Cochran (1977) and Scott et al. (2005). Due to programming
constraints, plots with multiple disturbances were only counted once
when estimating total disturbance, thus individual agent estimates
will not directly sum to total disturbance. Two estimates were run for
each set of disturbance observations (i.e. FIA, LTS, and FIA + LTS), one
using the Landsat disturbance map for post-stratification and the
other with no stratification (i.e. treated as a simple random sample).
To quantify the effectiveness of post-stratification, we converted the
standard errors from each run to variance, then calculated relative
efficiency (RE) as the ratio of variance from simple random sampling di-
vided by the variance from post-stratification (McRoberts et al., 2006).
In general, the higher the RE, the more effective stratification is at in-
creasing the precision of the disturbance estimates. In other words, RE
can be thought of as a measure of how much larger a simple random
sample would need to be in order to achieve the same level of precision
obtained by post-stratification. Any increase in sample size can be
further evaluated in terms of potential cost savings to the inventory
program.

3. Results

3.1. Comparing FIA field and Landsat time series disturbance observations

Over the 17 year period of study, FIA field crews observed a total of
140 discrete disturbance and treatment (i.e. harvest) events (on 126
out of 449 plots), of which the vastmajority (76%)were attributed to in-
sects and disease (Table 1). Fires were the next most prevalent agent
(8%), followed by animal (5%), weather (4%), other (3%) and harvest
(2%). The types and proportion of disturbances detected on the ground
by FIA were similar to those observed by analyst interpretation of the
LTS data (Table 1). For example, 84% of the LTS disturbanceswere attrib-
uted to insects and stress, with fires (8%), harvest (4%) and mechanical
treatments (3%) the next most prevalent agents. In addition, both the
FIA and LTS observations showed that during the period of study, distur-
bance has been steadily increasing with time (see Fig. 3, note different
y-axes). Despite these similarities the LTS approach found 167 distur-
bance events (on 161 out of 449 plots), nearly 28% more than were
recorded by FIA field crews. The importance of the aerial photography
was evident asmore than half of the LTS disturbances (mostly resulting
from insects and stress) were either low or very low severity (Table 2)
and thus required the higher spatial resolution photos for detection.

To better understand the physical and temporal dynamics of the LTS
and field detected disturbances we compared the plot-level observa-
tions using a standard agreement matrix (Table 3). Overall the LTS
and FIA field observations agreed 73% of the time, although much of
this agreement was attributed to the large number of undisturbed
plots (n = 244). When only disturbed plots were considered (n =
205) agreement dropped to 40%. The low kappa statistic (0.37) high-
lights the large number of disturbances found by only one of methods.
In fact, when taken together (n = 123) the unique detections account
for 60% of all plot-level disturbances. The error matrix was used to di-
vide the plots into three populationswhichwere used to further analyze
two physical and temporal characteristics of the LTS and field detected
disturbances.

First, to assess the relative canopy position of the detected distur-
bances we compared distributions of disturbed and undisturbed tree
size (e.g. HT and DBH from FIA measurements) using plots from popu-
lations 1 (FIA + LTS) and 2 (FIA only). Table 4 shows that when LTS
and FIA crews both found disturbance (population 1) the disturbed
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Fig. 3. Temporal frequency of disturbance events observed by a.) FIA field crews (FIA),
b.) analyst-led Landsat time series (LTS) interpretation, and c.) a combination of FIA and
LTS data (FIA + LTS); note different y-axes. In a. and b. fitted exponential curves (gray
lines) show disturbance has been increasing in the Uinta Mountains over the 17 year
period of study.

Table 3
Matrix showing plot-level agreement between FIA field crew and Landsat time series
(LTS) disturbance observations. Here agreement is based solely on the presence of distur-
bance without explicit consideration for onset year or agent type. Numbered cells (shown
in bold) refer to the 3 disturbance populations used in the distribution analyses presented
in Tables 4 and 5 and Figs. 4 and 5.

Landsat time series obs.

FIA field obs. Disturb Not Disturb Total Commission

Disturb 1 82 2 44 126 34.92%
Not disturb 3 79 244 323 24.46%
Total 161 288 449
Omission 49.07% 15.28%
Overall agreement = 0.73; Kappa = 0.37

Table 4
Mann–Whitney U results comparing FIA measurements of height (HT) and diameter at
breast height (DBH) of disturbed and undisturbed trees for populations 1 (FIA + LTS,
n = 68) and 2 (FIA only, n = 27) of the agreementmatrix shown in Table 3. Populations
with statistically different medians are highlighted in bold. Note only non-stand clearing
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trees were significantly taller (median HT DISTURB = 14.48 m, U =
1721, p = 0.010) and larger (median DBH DISTURB = 23.37 cm,
U = 1741, p = 0.013) than the undisturbed “live” trees (median HT
LIVE = 13.05 m, median DBH LIVE = 21.41 cm). On the other hand,
plots with only FIA disturbance (population 2) showed no statistical
difference in the size of disturbed and undisturbed trees (HT LIVE vs.
HT DISTURB U = 351, p = 0.815 and DBH LIVE vs. DBH DISTURB
U = 299, p = 0.257). Cumulative frequency distributions of HT and
DBH (Fig. 4) further highlight the size difference between disturbed
and undisturbed trees for population 1 (FIA + LTS, top row) versus no
difference for population 2 (FIA only, bottom row).

A second series of Mann–Whitney tests were run to gauge the effect
of sampling frequency on disturbance detection. This involved using the
three error matrix populations to compare themedian number of years
between LTS observation (last measured in 2011) and FIA field
measurement. Table 5 shows that the LTS only plots (population 3)
had a significantly larger median number of years since last FIA
field measurement (6 years) than either of the other two populations
Table 2
Number of Landsat time series (LTS) disturbance observations by severity class.

High Moderate Low Very low Total

Insect 27 17 24 25 93
Stress 6 7 19 15 47
Fire 5 8 1 – 14
Harvest 2 3 2 – 7
Mechanical 2 1 1 1 5
Other – – 1 – 1
Total 42 36 48 41 167
(FIA + LTS = 2.5 years, U = 1582, p = 0.000 and FIA only =
2.0 years, U = 871, p = 0.000). Essentially, LTS is catching a significant
amount of disturbance on plots for which the last field measurement
was several years ago. The magnitude of this difference is further
highlighted by the cumulative frequency plot (Fig. 5) which shows
that 50% of the population 1 and 2 disturbances occurred within
3 years (or less) of the most recent LTS measurement, while 50% of
the LTS only disturbances (population 3) occurred on plots which
were last visited by FIA 6–9 years ago.
3.2. Landsat forest disturbance map

In an attempt to improve the precision of the design-based estimates
a Landsat disturbance map was developed for post-stratification. The
multi-step process used to develop themap is described in Fig. 6 (panels
a–f). First, VCT and LandTrendrwere run over the study area resulting in
a disturbance map which captured abrupt, large magnitude changes
from fire and harvesting, as well as some areas of lowmagnitude insect
damage (Fig. 6a and d). The output from VCT and LandTrendr was
then combined with a supervised classification which used unique
shortwave-infrared (band5) training signatures (Fig. 6f) and amaximum
likelihood classifier to specifically target the insect damagemissed by the
automated algorithms (Fig. 6b and e). A close up (Fig. 6 panels c–e)
shows how the majority of forest along the north slope of the Uinta
range has spectrally changed from a healthy, green color in 1987 to a
stressed, dark purple color in 2010 (images are displayed in 5,4,3 false
color). Combining the outputs from the supervised and automated ap-
proaches dramatically improved the capture of the pervasive insect dam-
age (Fig. 6e). From a simple disturbed versus not disturbed perspective
(i.e. timing and agent are not considered) this “combined” disturbance
map agreed well (e.g. overall agreement = 75.5%, +/−2.1%) with the
LTS disturbance observations described above in Section 2.2.2.
disturbances are considered.

Population 1 — FIA + LTS (n = 68) Median U p-Value

HT LIVE (m) 13.05 1721 0.010
HT DISTURB (m) 14.48
DBH LIVE (cm) 21.41 1741 0.013
DBH DISTURB (cm) 23.37

Population 2 — FIA only (n = 27) Median U p-value

HT LIVE (m) 11.69 351 0.815
HT DISTURB (m) 12.13
DBH LIVE (cm) 22.81 299 0.257
DBH DISTURB (cm) 21.08
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3.3. Design-based forest disturbance estimates

Estimates of the amount of disturbed forest occurring between 1995
and 2011 were generated for the Uinta Mountains study area using
observations from FIA field crews, analyst-based LTS interpretation
and a combination of FIA and LTS data. Although the estimates were
run with and without the Landsat map for post-stratification, only the
post-stratified estimates are shown for brevity (the effectiveness of
post-stratification is evaluated below). The amount of forest disturbed
(in ha with 95% confidence intervals) by each of the nine disturbance
agents is shown in Fig. 7a and b. The agents which occurred less
frequently (shown in Fig. 7a) have large confidence intervals relative
to area disturbed due in part to high sampling errors resulting from
low sample size. Several of these agents were only observed by one
method (e.g. weather, mechanical, and animal) while others (e.g. fire
and harvest) have FIA estimates that are well below (25% and 40% less
respectively) those from LTS. The FIA + LTS observations resulted in
Table 5
Mann–Whitney U results comparing number of years between LTS (last measured in
2011) and FIA field measurements for the three agreement matrix populations shown in
Table 3. Populations with statistically different medians are highlighted in bold.

n Median (years) U p-Value

Population 1 — FIA + LTS 82 2.5 1764 0.836
Population 2 — FIA only 44 2.0
Population 1 — FIA + LTS 82 2.5 1582 0.000
Population 3 — RS only 79 6.0
Population 2 — FIA only 44 2.0 871 0.000
Population 3 — RS only 79 6.0
the largest estimates of fire (33,177 ha) and harvest (24,352 ha), indi-
cating that each method found unique events that were not detected
by the other. Furthermore, the FIA + LTS observations also led to
improved agent labeling. For example, estimates of other disturbance
were much higher for FIA (12,833 ha) than LTS (2344 ha); however,
when the data were combined, more than half of FIA's “other” distur-
bances were also observed by LTS, and thus could be reassigned to
more specific agent classes. This same data combining effect also
allowednearly 50%of the LTS stress to be reassigned tomore descriptive
insect and disease categories (Fig. 7b). Insects were by far the most
prevalent agent with FIA + LTS combining to estimate 259,496 ha
(+/−40,791) of disturbance.
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When taken across agents, estimates of total disturbance (Fig. 8) had
proportionally smaller, non-overlapping confidence intervals. The FIA
field data yielded the lowest estimate of total disturbance (294,295 ha,
+/−44,242) followed by the LTS estimate which was 32% higher
(389,151 ha, +/−44,849). The FIA+ LTS observations led to the largest
estimate which found 486,458 ha (+/−47,101) of forest was disturbed
during the 17-year period of study. Overall the combined estimate is
65% higher than the estimate derived solely with the FIA field data.

The effectiveness of using the Landsat disturbance map for post-
stratification was assessed using the measure of relative efficiency
(RE). The REs for each agent class and for total disturbance are presented
in Table 6. In general, estimates derived with the LTS response data
benefited more from post-stratification than estimates derived solely
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Fig. 7. Forest disturbance estimateswith 95% confidence intervals based on FIA field data (FIA),
(FIA+ LTS). The estimates represent the number of hectares (ha) disturbed between 1995 and
disease and stress.
with the FIA field data. Most of the individual agents saw very little if
any benefit from stratification although some of the more prevalent
agents like insects (RE= 1.26) andfire (RE= 1.16) did show somemin-
imal improvement. Because the disturbance map did not specifically
label causal agents, it is not surprising that the estimates of total distur-
bance gained themost benefit from post-stratification. Total disturbance
estimates derived with the LTS and combined FIA + LTS data saw the
biggest gains in precisionwith REs of 1.43 and 1.50 respectively. Accord-
ing to the 5 levels of gain outlined by Czaplewski and Patterson (2003),
REs of this magnitude represent moderate improvement such that
the simple random sample of forested FIA plots would need to increase
by 43–50% to achieve the same level of precision obtained by post-
stratification.
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4. Discussion

4.1. Disturbance observations

In this study, a new LTS methodology was used to integrate various
scales of data to improve estimates of disturbance from a design-based
sample of FIA plots located in the Uinta Mountains of Utah, USA. This
involved using an analyst to record forest disturbances based on visual
evidence gathered from annual Landsat images, NAIP photography,
and other ancillary spatial data sets (e.g. MTBS, Landfire) (Fig. 2). One
advantage to this approach is that it allows all plots to be measured
annuallywith remote sensing data, resulting in improved temporal sen-
sitivity compared to the FIA sample design, which requires 10 full years
to visit all of the plots in this study area. In addition, the LTS approach
was adapted to take full advantage of high resolution photography,
which allowed tree level mortality caused by insects to be captured on
each plot (Fig. 2, lower right). The high spatial resolution of these obser-
vations (~1 m) coupled with the larger, 4047 m2 (1 acre) LTS plot size
improved detection of low severity disturbance involving only a few
trees and thus helped bridge the spatial gap between the Landsat
images (30 m pixel) and the FIA field observations.

Overall, the improved spatial and temporal sampling of the LTS ap-
proach led to the detection of 28% more discrete disturbance events
than were recorded solely by FIA crews (Table 1). Much of the increase
in detection is attributed to the more current and continuous observa-
tions provided by the LTSmeasurements (see Table 5 and Fig. 5), though
the use of bigger measurement plots was also a contributing factor.
Although LTS detected more disturbance, the FIA field observations
were critical for capturing below-canopy processes (see Fig. 4 bottom
row) which were not detectable from the aerial perspective (e.g. animal
damage, weather and ground fires) and for providing better labeling of
disturbances caused by insects anddisease (Table 1). Although combining
Table 6
The relative efficiency (RE) of using the Landsat disturbance map to post-stratify the
design-based estimates shown in Figs. 7 and 8 (FIA = Field, LTS = Landsat time series).
The higher the RE the more effective stratification was at improving the estimate over
simple random sampling.

FIA LTS FIA + LTS

Insect 1.11 1.20 1.26
Disease 1.01 – 1.01
Stress – 1.02 0.99
Fire 1.10 1.16 1.15
Harvest 0.97 0.99 1.00
Weather 0.96 – 0.96
Mechanical – 1.00 1.00
Animal 0.94 – 0.94
Other 0.93 1.07 0.95
Total 1.15 1.43 1.50
the observations improves capture we recognize that some below-
canopy disturbances may still be missed due to our temporal updating
approach relying solely on imagery and photos that look down on top
of the canopy.

Despite differences in viewing perspective and sampling frequency,
both the LTS and FIA observations show that disturbance in the Uinta
Mountains has been increasingwith time (see fitted exponential curves
Fig. 3). This increase is due in large part to widespread insect outbreaks
(mostly from mountain pine beetle) which started around 2004.
Although both observation methods show a distinct increase in distur-
bance around this time, the LTS data show two pronounced peaks in
2006 and 2011. These peaks are largely caused by the spacing, quality
and availability of the air photos which were the primary data used to
detect most of the LTS insect and stress disturbance. Though the photos
do not always support an accurate assignment of onset year, they do
provide improved capture of the overall impacts of disturbance across
the study period. In general, the availability and quality of data, coupled
with the timing and natural characteristics of the disturbance agents at
play in a particular region, will impact the exact implementation of the
analyst interpretation methodology as presented in this study. As data
quality and availability are generally improving with time (Wulder,
Masek, Cohen, Loveland, & Woodcock, 2012), it seems likely that some
variant of the presented approach could be implemented in most
areas of the country (Loveland & Dwyer, 2012).

In this study more than half of all plot-level disturbances were
detected with only one of the two observation methods (FIA only
n = 44; LTS only = 79), thus strongly supporting our case for using a
plurality of evidence to maximize disturbance detection. Using the FIA
tree measurements we established that FIA crews add below canopy
disturbances (Fig. 4, bottom row; Table 4, population 2), while LTS
adds disturbance primarily through improved temporal sampling
(Fig. 5, Table 5). These findings are clearly related to the scale of obser-
vations, with field crews able to access individual-tree disturbance in-
formation and LTS picking up disturbance occurring both between
sub-plot measurements and since the time of the last field survey. Our
results suggest that combining the LTS and FIA field methods may
improve the acuity withwhich an inventory picks up disturbance. Addi-
tionally, if it is determined that a particular disturbance processes is
beingmissed by an inventory, the integrative approach presented here-
in opens the door for specialized LTS analyses in addition to altering
existing field protocols. These benefits extend to other probabilistic
sets of field inventory measurements and are thus not restricted to FIA.

Although some upper canopy, non-stand clearing disturbances were
detected from the field and aerial perspectives (Fig. 4 top row, Table 4
population 1); the conditions were such that only a small percentage
of total disturbancewas detected by bothmethods (see Table 3, popula-
tion 1). Partial disturbancemay be detected and characterized with LTS
(e.g. Healey, Yang, Cohen, & Pierce, 2006; Kennedy et al., 2010), but
spectral signals are more subtle than those associated with stand-
clearing events, and are thus more difficult to isolate in the context of
normal phenological and radiometric variation. At the same time,
many types of partial disturbance do not alter a field list of live trees;
such disturbances may significantly alter a stand's canopy (branches
and/or foliage) without causing mortality and the loss of individual
stems. Given these potential barriers to detection of partial disturbances,
it is unsurprising that there was relatively little overlap in detection
between the field and remotely sensed methods.

One issue not addressed in our estimates, nor in those of FIA, is the
error associated with observing disturbance. Photo interpretation error
will certainly affect the quality of the LTS estimates, and field measure-
ment error also exists. FIA disturbance measurements generally meet
program quality standards; however this is largely because disturbance
tends to be rarely observed (Pollard et al., 2006). Agreement between
“cold check” field calls can be poor in cases where at least one crew ob-
serves a disturbance. Though this work was restricted to FIA's standard
design-based estimators, other methods may be more appropriate for
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variables such as disturbed area (e.g., McRoberts & Walters, 2012), and
are thus an area of future research.

4.2. Landsat forest disturbance map

To examine benefits of post-stratifying the plot-based estimates, a
Landsat disturbancemapwas produced for the study area. With several
different types of disturbance agents at play, a multi-step process was
required to capture the varying levels of damage found across the
region. Here the automated algorithms VCT and LandTrendr provided
a quick and reliable way of mapping abrupt, severe disturbances (e.g.
fire and harvesting); however in this study neither was fully optimized
to capture the slower, pervasive damage caused by recent insect out-
breaks. We recognize that specialized calibration efforts with these
algorithms, particularly LandTrendr (Kennedy et al., 2010) would likely
have resulted in better capture of insect activity. There are also other
recent approaches to LTS analysis (Brooks, Wynne, Thomas, Blinn, &
Coulston, 2014; Zhu et al., 2012) which leverage a very high density of
historic Landsat observations to detect even slight deviations from
established conditions. Since several factors complicate remote detec-
tion of insect disturbance (e.g. forest condition and age structure, type
and intensity of pest activity, and timing, repeatability and resolution
of input image data), and knowing that the post-stratification role
intended for the maps is sensitive to map accuracy (Czaplewski &
Patterson, 2003), we opted to use a simple classification approach
rather than attempt further calibration of the automated algorithms.
The option chosen involved using a detailed set of shortwave-infrared
(band 5) training signatures (shown in Fig. 6f) to specifically target
the insect damage missed by the automated algorithms. Fig. 6e clearly
shows that combining the automated and supervised classifications im-
proved capture of thewidespread impacts of the recent insect outbreak.

Though improved, the combined map still contained some large
patches of insect damage which were omitted from the classification
(see white arrows Fig. 6e). Closer inspection revealed many of these
areas were located in dense, mature conifer stands containing very
low levels of tree mortality. As mature conifer is spectrally dark in the
shortwave-infrared region, it's likely that low levels of tree mortality
were masked by shadows (from canopy and topography) and thus did
not trigger a large enough spectral response to be classified as distur-
bance. Our extensive work in this area suggests that spectral indices
which respond more directly to changes in leaf area (e.g. NDVI, NBR)
may be better suited to distinguishing subtle, low severity changes
(mostly related to brightness) occurring in dense conifer forests.

Despite omitting some areas of low magnitude insect damage,
our two-stage mapping approach did produce a suitably accurate
forest disturbance map for the study area. When compared with the
LTS disturbance observations described in Section 2.2.2 above, the
map had relatively low error rates for the disturbed forest class (i.e.
48.8% +/−7.9 omission and 28.3% +/−8.5 commission). As the map
was designed primarily for post-stratification, the low error rate for
the disturbance class facilitated effective post-stratification of the sam-
ple. Overall, the success of the mapping approach hinged on combining
data from multiple algorithms to best capture disturbance. Although
VCT and LandTrendr did not capture the full extent of the insect and
stress damage, ongoing developments suggest that in the future these
algorithms will more successfully capture these trends, thus decreasing
(or eliminating) the need to employ labor intensive, post-classification
approaches such as the one presented in this study. However, given
the complex ecological and spectral dynamics associated with forest
disturbance (especially insects e.g. see Meigs, Kennedy, & Cohen,
2011) it is unlikely that any one algorithmwill fully capture its distribu-
tion on the landscape. In fact, detecting different disturbance patterns
around the globe will likely require a variety of different LTS transfor-
mations (Schroeder et al., 2012), search algorithms and frequencies of
image acquisition (Kennedy et al., 2014). Here, we simply added maps
from different algorithms; however this is just a precursor to more
sophisticated methods which can statistically integrate maps (from
many different algorithms) and other spatial predictors in an ensemble
modeling framework.
4.3. Design-based forest disturbance estimates

Estimated amounts of forest disturbance were ultimately deter-
mined by the number of discrete disturbance events observed by FIA
field crews and/or LTS interpretation. As both methods found unique
events not found by the other each resulted in very different estimates
of disturbance. For example, Fig. 8 shows that the FIA, LTS and combined
FIA+ LTS estimates are unique in that none of their 95% confidence in-
tervals overlap each other. At the agent class level, a similar but slightly
less unique pattern of estimates was observed for abundant classes like
insect and stress (Fig. 7b), whereas rarer classes (with higher sampling
error) had larger uncertainty bounds which resulted in different but
mostly overlapping estimates of disturbance (Fig. 7a). When examining
the estimates it is particularly important to note the large difference
between the FIA and FIA + LTS approaches. This difference (nearly
193,000 ha) is considerable especially when viewed as a percentage of
total forest area (1,092,046 ha, +/−42,808). For example, the FIA
data suggests that 27% of the total forest area was disturbed during
the 17-year period of study as opposed to nearly 45% when FIA + LTS
data are combined and used together. Overall, the combined data yields
nearly 1.65 times more disturbance over the period of study or nearly
1% more on an annual basis. This dramatic difference further highlights
the advantage of augmenting infrequent, but detailed field inventory
observations (from FIA and/or other probabilistically collected field
plots) with frequent, LTS observations that more robustly sample the
full landscape over space and time. While LTS added disturbance
through improved temporal sampling (see Table 5 and Fig. 5) the use
of larger plots also helped increase detection sensitivity. The large num-
ber of unique disturbances observed only by FIAfield crews (n=44) and
LTS interpretation (n = 79) provide strong evidence that combining
data from the two approaches leads to a more spatially and temporally
complete estimate of disturbance.

In addition to combining the field and LTS observations, the distur-
bance estimates were further improved by using the Landsat distur-
bance map for post-stratification. Although derived independently, the
success of the stratification as measured by RE (Table 6) showed a
clear relationship between the aerial perspective used to collect the dis-
turbance observations and the Landsat perspective used to derive the
disturbance map. Post-stratification reduces estimate variance only if
plots are effectively grouped into strata with comparatively lower inter-
nal variance. To the extent that photo- and satellite-based observations
have the same downward-looking perspective of the canopy, it is logical
to expect satellite-basedmaps to correspond to observationsmadewith
photos. Those disturbances detectable only from the groundperspective
are less likely to be effectively stratified using Landsat-based maps, as
our results show (see Table 6). Consequently, lowering sample error
by increasing field visits (either by increasing measurement frequency
or adding new plots) may be the best way to improve precision of
below canopy disturbance estimates. Alternatively, repeated acquisition
of canopy penetrating LiDAR may also provide future opportunities for
detecting loss of subcanopy trees.

Because specific agent class maps were not available at the time of
this study we elected to use a simplistic coding scheme to test broad
strata classes developed from a binary disturbance map (i.e. disturbed,
undisturbed). Undoubtedly, this limited our ability to effectively stratify
most of the individual agent classes; especially those with lower preva-
lence (e.g. see animal and weather Table 6). In the future, new maps
which are currently under developmentwill employmore sophisticated
methods to spatially predict individual agent classes, thus potentially
allowing improved stratification of specific types of disturbance. To
further support management objectives, future studies will also seek
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to quantify different severity levels (e.g. Table 2), as well as year to year
trends over time (e.g. Fig. 3).

Future improvements notwithstanding, the simple stratification ap-
proach used here did result in significant improvement of the LTS and
combined FIA + LTS estimates of total disturbance. Based on the REs
in Table 6, the FIA simple random sample of forested plots would need
to increase by 43–50% to achieve the same level of precision obtained
by post-stratification. It must be emphasized that RE here is evaluated
not against current FIA estimates (which rely on a variety of point-in-
time condition maps around the country), but against a more generally
interpretable no-stratification scenario. The RE values in Table 6 are low
compared to static variables such as forest area and volume (whichhave
resulted in REs ranging from 2.0 to 5.0 see Gormanson et al., 2003;
McRoberts et al., 2006). However, they are on the upper end of studies
attempting to stratify dynamic variables such as growth, mortality,
and removal (see Brooks et al., 2013). Here increasing the forest sample
by 50% would require adding roughly 230 extra field plots to the FIA
sample. Assuming a cost of $1000/plot the use of the Landsat distur-
bance map for post-stratification in this small study area (~1.6 million
ha) could net well over $230,000 in potential cost savings over a
10 year cycle. Without question, more accurate disturbance maps
which include specific agent classes and more homogenously defined
strata classes could in the future lead to even bigger financial savings.

One final issue which impacted map accuracy and ultimately the
success of post-stratification is how the inventory plots were assigned
tomap strata classes. In the presented example, FIESTAused the Landsat
pixel from the center of each FIA plot to assign one of the three strata
classes (i.e. undisturbed forest, disturbed forest, and non-forest). The
use of only one 30 m pixel however meant that a large proportion
(N70%) of each plot was not considered when assigning the strata clas-
ses. In areas like the Uinta Mountains which experience high levels of
spatially heterogeneous disturbance (e.g. insects and disease), this spa-
tial disconnect between the map area unit and the reference sample
unit can reduce map accuracy and change the balance of omission and
commission errors (McRoberts et al., 2005). This has important implica-
tions as both the accuracy and consistency of misclassification impact
the success of post-stratification (Czaplewski & Patterson, 2003). As
other studies have shown the benefit of modeling FIA plot variables
with a 3 × 3 (90 × 90 m) window (Healey, Lapoint, Moisen, & Powell,
2011), there is some justification for incorporating information from
surrounding pixels into future strata map assignment procedures.
Filteringmay be oneway to aggregate information and improve perfor-
mance (Nelson, McRoberts, Holden, & Bauer, 2009) and thus will be a
focus of future investigations.

5. Conclusion

In this study we demonstrate two ways LTS can improve traditional,
design-based forest inventory estimates of disturbancederived fromFIA
data. First, a 26 year satellite time series was used to collect supplemen-
tal disturbance history information on 449 forested FIA plots located in
the central Uinta Mountains of Utah, USA. This involved using a trained
analyst to interpret and record the cause and timing of all disturbances
occurring on each FIA plot between 1995 and 2011. As the study area
has recently experienced high levels of widespread, low severity tree
mortality (e.g. insects and disease) the analyst also used a periodic
time series of high resolution air photos (e.g. NAIP and Google Earth)
to estimate the number of disturbed (i.e. dead and actively dying)
trees on each plot. Comparing the plot-level observations, we found
FIA and LTS disturbance agreed only 40% of the time, while 60% of dis-
turbances were unique to one method. Using the FIA tree measure-
ments we showed that FIA crews add below-canopy disturbance
while LTS interpretation adds disturbance primarily through improved
temporal sampling. Here the LTS interpretation approach allowed all
FIA plots to be updated annually, a substantial improvement over the
10 year re-measurement cycle typically employed by FIA in thewestern
U.S. Further, by incorporating the improved spatial detail of the air
photos, the LTS approach helped bridge the gap between the Landsat
and FIA scales of measurement, leading to the detection of 28% more
disturbance events than were recorded solely by FIA field crews. Not
surprisingly, when the FIA and LTS observations were combined the
resulting estimate of total disturbance was 1.65 times higher than the
estimate based solely on FIA data. In addition to augmenting the FIA
response design, we also used the LTS data to develop a Landsat forest
disturbance map for post-stratification.

To improve capture of subtle, yet widespread insect damage, we
used a mapping process which combined outputs from automated
and supervised classification approaches. Using the measure of relative
efficiency (RE), we found post-stratificationmostly improved estimates
derived with the LTS response data. In fact, the LTS and combined
FIA + LTS estimates of total disturbance gained moderate levels of effi-
ciency (REs equal to 1.43 and 1.50, respectively) such that the sample of
forested FIA plots would need to increase by 43–50% to attain the same
levels of precision achieved by post-stratification. Overall, the improved
spatial (i.e. bigger plots) and temporal (i.e. annual measurement) sam-
pling permitted by the LTS approach, coupledwith the detailed labeling
of below-canopy disturbances observed during FIA field visits, helped
formulate the largest and most accurate estimate of disturbance for
the study area. Furthermore, post-stratification with the disturbance
map helped reduce variance, thus providing an additional way LTS
improved the inventory estimates of disturbance. We believe the
methodology and results presented in this study outline a novel yet
achievable way to improve both plot and landscape level monitoring
and estimation of disturbance with FIA plot data. Overall, our results
offer a promising look at how LTS observations (both from maps and
analyst interpretation) can be combinedwith FIA and/or other probabi-
listic sets of field inventory plots to improve estimates of disturbance.
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