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INTRODUCTION 

Puccinia psidii Winter (Basidiomycota, 
Uredinales) is a biotrophic rust fungus that 
was first reported in Brazil from guava in 
1884 (Psidium guajava; Winter 1884) and 
later from eucalypt in 1912 (Joffily 1944). 
Considered to be of neotropical origin, the 
rust has also been reported to infect 
diverse myrtaceous hosts elsewhere in 
South America, Central America, the 
Caribbean, Mexico, the USA (California, 
Florida, and Hawaii), Japan, Australia, 
China, and most recently South Africa and 
New Caledonia (Figure 1; Maclachlan 
1938, Marlatt and Kimbrough 1979, 
Mellano 2006, Uchida et al. 2006, 
Kawanishi et al. 2009, Carnegie et al. 
2010, Perez et al. 2011, Zambino and 
Nolan 2011, Zhuang and Wei 2011, Roux 
et al. 2013, Rayamajhi et al. 2013). Given 
the rate at which the pathogen is spreading 
and its wide host range, the objectives of 
this study were to estimate genetic 
diversity within and among populations 
across the species native range as well as 
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areas of recent introduction, evaluate 
possible pathways of spread, and predict 
geographic areas that are climatically 
suitable in order to predict risk of invasion. 

METHODS 

Six microsatellite loci were scored for 
Puccinia psidii samples derived from 
diverse hosts in eight countries (Table 1). 
Samples were assigned to genetic clusters 
using a Bayesian genetic clustering 
algorithm implemented in STRUCTURE 
v2.3.4 (Pritchard et al. 2000). Posterior 
probabilities were estimated for K = 1 to K 
= 12 assuming an admixture model. 
STRUCTURE analyses were performed 
using clone-corrected data (unique multi
locus genotypes, MGs). Fifty thousand 
burn-in generations were employed for 
each of 10 replicate runs of 1,000,000 
generations of the MCMC sampler for each 
K. The optimal value of K was inferred 
using the method of Evanno et al. (2005) 
implemented in STRUCTURE HARVESTER 
web v0.6.93 (Earl and von Holdt 2012). 
Population genetic analyses of all samples 
(grouped by genetic cluster) were 
performed using GenAIEx v6.4 (Peakall and 
Smouse 2006). To examine relationships 
among MGs, a minimum spanning network 
was estimated using the genetic distance 
measure of Bruvo et al. (2004 ). 
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however, some errors may remain.



Figure lA. Puccinia psidii on guava (Brazil); B. P. psidii on eucalypt (Brazil); C. P. psidii 
on rose apple (Hawaii). 

Table 1. Geographic origin and host of confirmed Puccinia psidii genotypes. 
Country Host CLUSTER* 
Brazil Eucalyptus spp. EU/SJ 

Costa Rica 

Jamaica 

Mexico 
Paraguay 
Puerto Rico 
Uruguay 

USA 

Eugenia uniflora OTHER 
Myrciaria cauliflora OTHER 
Psidium guajava OTHER 
Psidium guineenese OTHER 
Syzygium cumini OTHER 
Syzygium }ambos EU/SJ 
Callistemon lanceolatus PANDEMIC 
Syzygium }ambos PANDEMIC 
Pimenta dioica PD 
Syzygium }ambos PANDEMIC 
Syzygium }ambos PANDEMIC 
Eucalyptus grandis EU/SJ 
Syzygium }ambos PANDEMIC 
Psidium guajava OTHER 
Eucalyptus grandis EU/SJ 
Eucalyptus globulus EU/SJ 
Myrrhinium atropurpurea OTHER 
Eugenia koolauensis PANDEMIC 
Melaleuca quinquenervia PANDEMIC 
Metrosideros excelsa PANDEMIC 
Metrosideros polymorpha PANDEMIC 
Myrcianthes fragrans PANDEMIC 
Myrtus communis PANDEMIC 
Rhodomyrtus tomentosa PANDEMIC 
Syzygium jambos PANDEMIC 

* EU/SJ = collections from Eucalyptus spp . and Syzygium }ambos from Brazil, Paraguay, and 
Uruguay; OTHER = collections from Psidium guajava, Psidium guineense, Syzygium cumini, 
Myrciaria cauliflora, Eugenia uniflora, and Myrrhinium atropurpureum var octandrum; PD = 
collections from Pimenta dioica from Jamaica; and PANDEMIC = collections from diverse 
hosts from the Caribbean, Mexico, and USA. 
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Bioclimatic modeling was performed using 
the documented occurrences of the rust (n 
= 356) and a reduced set of global 
pandemic occurrence records (n = 56) 
coupled with 19 bioclimatic variables in 
MaxEnt (Maximum Entropy Species 
Distribution Modeling) v3.3.3K (Phillips et 
al. 2006, Phillips and Dudik 2008). This 
reduced set represents all known 
occurrences of samples with confirmed 
genotypes that correspond to the global 
pandemic biotype. Cross-validation was 
used to verify results among 10 replicate 
runs. Quantum GIS (QGIS) was used to 
create the final output in a cumulative 
format according to prediction probability. 

RESULTS AND DISCUSSION 

Among Puccinia psidii sampled from Brazil, 
Costa Rica, Jamaica, Mexico, Paraguay, 
Puerto Rico, Uruguay, and the USA, 26 
unique MGs were identified. A Bayesian 
clustering analysis and a m1mmum 
spanning network revealed four major 
genetic clusters among the MGs: (1) PD = 
collections from Pimenta dioica from 
Jamaica, (2) PANDEMIC = collections from 
diverse hosts from the Caribbean, Mexico, 
and the USA, (3) EU/SJ = collections from 
Eucalyptus spp. and Syzygium }ambos from 
Brazil, Paraguay, and Uruguay, and ( 4) 
OTHER = collections from Psidium guajava, 
Psidium guineense, Syzygium cumini, 
Myrciaria cauliflora, Eugenia uniflora, and 
Myrrhinium atropurpureum var octandrum 
from Brazil and Uruguay (Table 1 and 
Figures 2 and 4 ). All loci were polymorphic, 
with five to 11 alleles detected per locus. 
Genetic diversity was highest within the 
OTHER cluster, followed by the PANDEMIC, 
the PD, and finally the EU/SJ clusters 
(Table 2). 
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Similar to previous attempts to assess the 
geographic invasive potential of the species 
(Booth et al. 2000, Glen et al. 2007, 
Magarey et al. 2007, Booth and Jovanovic 
2012, Elith et al. 2013, Kriticos et al. 
2013), the model using all 356 occurrence 
records predicted many areas throughout 
the world as having a suitable climate for 
P. psidii (Figure 3A) whereas the model 
using only the 56 global pandemic records 
of occurrence shows a prediction for the 
western hemisphere of a restricted 
distribution (Figure 3B). 

This work builds on previous research that 
shows that genetic diversity must be 
considered when assessing the invasive 
threat posed by this pathogen to 
myrtaceous hosts worldwide (Graga et al. 
2013). Future work will include occurrence 
records of P. psidii genotypes from 
Australia, South Africa, and New Caledonia 
which will allow us to predict the global 
geographic area that is climatically suitable 
for the species as a whole and for each 
individual genetic cluster to better assess 
pathways of spread and determine areas at 
risk of invasion. 
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Table 2. Summary of genetic variation among clusters of Puccinia psidii. 

Alleles per locus 
Effective alleles per locus 
Private alleles 
Shannon's info index 
Number of multi-locus 

genotypes 
Observed heterozygosity 
Expected heterozygosity 
Fixation index 

PD* PANDEMIC EU/SJ 
2.50 (0.43**) 3.50 (0.67) 2.33 (0.21) 
2.26 (0.35) 2 .91 (0.45) 1.97 (0.25) 
4 9 1 
0.78 (0.18) 1.07 (0.16) 0 .70 (0.12) 
5 9 6 

0. 767 (0.158) 
0.487 (0.103) 
-0.621 (0.159) 

1.000 (0.000) 
0.618 (0.050) 
-0.669 (0.128) 

0.69 (0.19) 
0.44 (0.08) 
-0.388 (0.309) 

*genetic clusters are described in Table 1; **standard error 

1.00 

0.80 

0.60 

040 

0.20 

0.00 

OTHER 
4.83 (0.60) 
3.40 (0.39) 
11 
1.35 (0.12) 
6 

0.611 (0 .127) 
0.685 (0.037) 
0.135 (0.164) 

6("1) 13(1) 22(1) 3(1) 4(1) 18(1) 10(1) 7(1) 25(1) 1(1) 24(1) 2l(1) 26(1) 
14{1) 23(1) 2(1) 17(1) 1 9(1 J 16(1) 11(1) 9(1) 12(1) 8(1) 20(1) 5(1) 15{1 

PO PANDEMIC EU/SJ OTHER 
Figure 2. Population structure inferred using a Bayesian clustering algorithm 
implemented in STRUCTURE v2.3.4 at K = 4. PO = Pimenta dioica (Jamaica), PANDEMIC 
= global pandemic cluster (which includes collections from diverse hosts from the 
Caribbean, Mexico, and USA), EU/SJ = collections from Eucalyptus spp. and Syzygium 
jambos (Brazil, Paraguay, and Uruguay), OTHER = other hosts (collections from Psidium 
guajava, Psidium guineense, Syzygium cumini, Myrciaria cauliflora, Eugenia uniflora, and 
Myrrhinium atropurpureum var octandrum). 
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Figure 3A. Prediction of suitable climate space for Puccinia psidii using all 356 records of 
occurrence in MaxEnt (Maximum Entropy Species Distribution Modeling) and 19 
bioclimatic variables (worldclim.org). Dark green represents predicted suitable climate 
space for P. psidii with light green, yellow, orange, and red indicating increasing 
probabilities of suitable climate; B. Predictions of suitable climate space in the western 
hemisphere for Puccinia psidii using all records of occurrence (gray) and 56 records of 
global pandemic occurrences (green). 
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Figure 4. Minimum spanning network of multilocus genotypes (MGs) estimated using 
Bruvo distances (Bruvo et al. 2004). Red circles represent collections from Pimenta dioica 
(Jamaica), blue represents collections from Eucalyptus spp. and Syzygium }ambos (Brazil, 
Paraguay, and Uruguay), green from the global pandemic cluster (which includes 
collections from diverse hosts from the Caribbean, Mexico, and USA), and yellow from 
other hosts (collections from Psidium guajava, Psidium guineense, Syzygium cumini, 
Myrciaria caulif/ora, Eugenia uniflora, and Myrrhinium atropurpureum var octandrum). 
Sizes of circles are proportional to MG frequency and connections are labeled with 
distances if different from 0.06, which corresponds to one mutational step at one locus. 
Loops in the network indicate multiple tied minimum spanning trees. 
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