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Abstract New remote sensing technologies and improved computer performance now allow numerical
flow modeling over large stream domains. However, there has been limited testing of whether channel
topography can be remotely mapped with accuracy necessary for such modeling. We assessed the ability of
the Experimental Advanced Airborne Research Lidar, to support a multi-dimensional fluid dynamics model of
a small mountain stream. Random point elevation errors were introduced into the lidar point cloud, and
predictions of water surface elevation, velocity, bed shear stress, and bed mobility were compared to those
made without the point errors. We also compared flow model predictions using the lidar bathymetry with
those made using a total station channel field survey. Lidar errors caused < 1 cm changes in the modeled
water surface elevations. Effects of the point errors on other flow characteristics varied with both the
magnitude of error and the local spatial density of lidar data. Shear stress errors were greatest where flowwas
naturally shallow and fast, and lidar errors caused the greatest changes in flow cross-sectional area. The
majority of the stress errors were less than ± 5 Pa. At near bankfull flow, the predicted mobility state of the
median grain size changed over ≤ 1.3% of the model domain as a result of lidar elevation errors and ≤ 3%
changed mobility in the comparison of lidar and ground-surveyed topography. In this riverscape, results
suggest that an airborne bathymetric lidar can map channel topography with sufficient accuracy to support a
numerical flow model.

1. Introduction

Numerical simulations are often used to investigate morphodynamics of channels as well as response of
fluvial systems to natural and anthropogenic perturbations [e.g., Nelson and Smith, 1989; Lane and Richards,
1998;Wheaton et al., 2004; McKean and Tonina, 2013; Tonina and Jorde, 2013]. Computational fluid dynamics
(CFD) models allow examination of the interactions of flow and sediment transport processes with fluvial
forms and aquatic habitat at spatial and temporal scales relevant for scientific and management purposes
[e.g., Leclerc et al., 1995; Lancaster and Downes, 2010; Tonina and McKean, 2010; McKean and Tonina, 2013].
These models can improve understanding of flow structure and sediment transport, more easily evaluate the
effects of boundary conditions, and increase the spatial density of information relative to that gathered by
field observations [Lane et al., 1999]. Numerical models can be employed to generate hypotheses and direct
efficient field investigations [Wheaton et al., 2004]. They can also be used to explore adaptive management
scenarios, i.e., “digital adaptive management,” with fewer logistical and economic demands and
environmental risk than full-scale physical experiments.

In all CFDmodels of in-channel flows there is a trade-off between adequate spatiotemporal representation of
hydraulic complexity over the modeling domain and computational efficiency and model data requirements
[Hardy, 2008; Tonina and Jorde, 2013]. For example, some aquatic habitat studies may require knowledge of
complex patterns of flow, velocity gradients, and depth that vary spatially over distances on the order of a
meter and occur throughout kilometer-scale stream segments [e.g., Fausch and White, 1981; Tonina and
McKean, 2010; Tonina et al., 2011; McKean and Tonina, 2013; Maturana et al., 2013]. Fully 3-D fluid dynamics
models will make spatially explicit flow and sediment transport predictions, but model complexity and data
and computational requirements currently restrict the 3-D domain to at most a few hundred meters of
channel length [e.g., Bradbrook et al., 1998; Lane et al., 1999; Booker, 2003; Shen and Diplas, 2008; Tonina and
Buffington, 2009; Tonina and Jorde, 2013]. Alternatively, 1-D models can represent kilometer-scale channel
segments but use only average conditions in channel cross sections to define the flow domain and make
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simplified flow and sediment transport predictions. An appropriate compromise for many problems is 2-D or
quasi 3-Dmodels that predict depth-averaged processes with meter-scale spatial resolution over domains up
to several kilometers long [e.g., Leclerc et al., 1995; Crowder and Diplas, 2000a, 2000b, 2002; French and Clifford,
2000; Nelson et al., 2003; May et al., 2009; Harrison et al., 2011; Legleiter et al., 2011a; Tonina et al., 2011].

Channel topography can have a strong effect on hydraulics, and therefore it is important to properly describe
the topography that defines the boundary of a CFD model flow domain [e.g., ASCE, 1988; Lane and Richards,
1998; Horritt, 2005; Hardy, 2008; Legleiter et al., 2011b; Conner and Tonina, 2013]. A number of studies have
demonstrated the influence of model topography and topographic errors on floodplain hydraulics predicted
by CFDmodels [e.g., Hardy et al., 1999;Marks and Bates, 2000; Horritt and Bates, 2001; Bates et al., 2003; French,
2003; Casas et al., 2006], but comparable research for 2-D simulations of in-channel flows is less common. In
one investigation of the effects of model topography on 2-D CFD predictions of channelized flows, Horritt
et al. [2006] used high-resolution sonar and other survey data to define the boundary of a channel with a
relatively simple trapezoidal shape. For a single discharge condition equal to the mean annual flood, they
found that model predictions were sensitive to the resolutions of both the model mesh and the topographic
sampling, with the mesh resolution the more important of the two. However, the authors noted that the
streambed topography was almost featureless compared to that of a natural channel. At low discharges, when
flows tend to be steered by small features of the bed topography (with dimensions of tenths of a channel
width) and in more complicated channels than that investigated by Horritt et al. [2006], the importance of
topographic mapping presumably would have been greater. Horritt et al. [2006] also did not explore the effects
of model domain boundary topographic errors on flow model performance.

Conner and Tonina [2013] investigated the effect of cross-section spacing on flow properties predicted with
2-D numerical models supported by cross-section derived bathymetries. They concluded that the spatial
resolution of streambed topography has an important effect on predicted flow fields and cross-section
spacings less than one channel width may be necessary to generate elevation rasters suitable for 2-Dmodeling
in large streams.

Pasternack et al. [2006] observed a propagation of topographic errors through 2-D model predictions of
flow depth, velocity, and shear velocity when compared to field measurements and estimates of these
traits in a regulated gravel bed river. The model flow mesh was derived from a DEM that was, in turn,
developed from relatively closely spaced point elevation measurements made during a field survey.
Model flow depth errors averaged 21% and were all attributed to errors in the topographic survey. Model
velocity errors averaged 29%, and greater than half of this was the result of depth errors, and thus again
topographic errors. Despite the depth and velocity errors, model shear velocity corresponded well with
the field estimates of this flow characteristic. Pasternack et al. [2006] used a constant value of Manning’s n
to describe channel roughness, and unrecognized spatial variations in this parameter may have also
contributed to the model errors.

Legleiter et al. [2011b] used stochastic simulations to produce many realizations of channel topography in a
short, simple reconstructed meander bend. They tested the effects of uncertainty in the model boundary
condition on predictions of water surface elevation, flow depth, and velocity and near-bed shear stress. The
channel topography was originally mapped with very sparse field-surveyed data (0.06measurementsm�2).
Then multiple variations of these data and even sparser subsets (as few as 0.01measurementsm�2) were
produced by introducing spatially correlated variations in point elevations. Thus, topographic uncertainty
was the result of both a variable data density and data errors. Iterative model predictions were made using
these varying topographic boundary conditions, and statistics from the many simulations defined
distributions of outcomes at each node in the flow mesh. This study also used a spatially constant drag
coefficient, calibrated for conditions in each simulation, to represent channel roughness throughout the
model domain. Legleiter et al. [2011b] found that topographic uncertainty caused by decreased data density
propagated through the multi-dimensional flow model and in some cases had a strong influence on
predicted water surface elevations, depths, velocities, boundary shear stresses, bed mobility, and aquatic
habitat suitability indices.

Traditional field methods, including wading surveys using levels, total station, or GPS technologies, can
map channel topography with high precision, accuracy, and resolution but only over a limited area [e.g.,
Brasington et al., 2000]. The locations and spatial extents of wading surveys and the survey data density are
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restricted by logistical issues such as legal access, flow conditions of depth, velocity and water temperature,
GPS signal quality, and the time required to make each measurement. Optical airborne remote sensing
surveys have recently been used with some success to map bathymetry in local reaches of channels [e.g.,
Lyon et al., 1992; Gilvear et al., 1995; Winterbottom and Gilvear, 1997; Lane, 2000; Marcus et al., 2003; Legleiter
et al., 2004; Marcus and Fonstad, 2008; Feurer et al., 2008; Legleiter et al., 2009]. These passive sensors must
accommodate spatial and temporal variability in water column optical properties (e.g., from turbidity), bottom
reflectivity, sun glint off the water surface, shadowing by overhanging stream bank vegetation, and mixed
subaerial-subaqueous pixels on the margins of flowing water and generally require some local calibration
[Feurer et al., 2008; Gao, 2009; Legleiter et al., 2009]. Passive optical methods also measure water depth rather
than stream bed elevations. Wide swath sonar systems towed behind boats are capable of high-definition
bathymetry over large areas [e.g., Parsons et al., 2005; Horritt et al., 2006; Conner and Tonina, 2013]. Horritt et al.
[2006] report vertical and horizontal sonar map accuracies of about 10 and 25 cm, respectively, in recent
kilometer-scale surveys by the UK Environment Agency. Navigable flow conditions are necessary, and Horritt
et al. [2006] also noted poor system performance in shallow (undefined) water at the lateral margins of flow, and,
in their study, the banks, islands, and other features along the edges of flowweremapped by non-sonar surveys.

Airborne near-infrared lidars are routinely used tomap floodplain topography in support of flood routingmodels.
Unfortunately, little near-infrared energy is returned from surface water bodies, and these terrestrial lidars have
limited utility for in-channel mapping [Hofle et al., 2009]. Bathymetric lidars usually operate at green wavelengths
(normally 532nm) and potentially can penetrate water to depths of several meters, depending on factors such
as water clarity, laser power, beam divergence, and bottom reflectivity [e.g., Liu, 1990; Storlazzi et al., 2003; Finkl
et al., 2005; Hilldale and Raff, 2008]. Most bathymetric lidars have a footprint size of a few meters [Nayegandhi
et al., 2009; Bailly et al., 2010], and this large footprint limits their use to lower spatial resolution mapping in
larger channels and also accentuates errors in areas of abrupt topographic change, such as at stream banks.

New airborne bathymetric lidars have been developed that are designed for shallow water surveying using
narrow-beam, full-waveform lasers with relatively low power andmeasurement footprints of around 15–20 cm.
One of the pioneering narrow-beam, shallow-water bathymetric lidars is the Experimental Advanced Airborne
Research Lidar (EAARL) [Wright and Brock, 2002; Brock et al., 2002, 2004]. This instrument was initially used
in near-shore marine surveys but has recently been deployed to map detailed stream and floodplain
topography [Kinzel et al., 2007; McKean et al., 2008a, 2009a, 2009b]. During these projects the EAARL
performance was evaluated by comparing how well it mapped basic topographic attributes relative to field
surveys of point elevations [Kinzel et al., 2007, 2013; McKean et al., 2009b], stream profiles, cross sections,
areas, and volumes [McKean et al., 2009b]. But there has been limited testing of whether narrow-beam,
shallow-water bathymetric lidars can define channel topography with sufficient accuracy to support a 2-D
fluid dynamics model [McKean et al., 2009b].

Here, we report results of such a test of the EAARL system. We first measured performance by introducing point
elevation errors, with a pattern and magnitude typical of those produced by this instrument, into the original
lidar data point clouds. These errors were propagated into the fluid dynamics model, and their effects on model
predictions were evaluated. Finally, the lidar-based CFD model results, without introduced experimental errors,
were also compared to the same model predictions supported by field-surveyed channel topography.

2. Field Area

The lidar errors were tested on a CFD model of Bear Valley Creek, a tributary to the Middle Fork Salmon River,
Idaho. This stream is 10–15m wide, the median substrate size in the channel bed is about 58mm, and the
channel gradient ranges from 0.17 to 0.61%, measured over 200m channel lengths [McKean et al., 2008a,
2009b; Gariglio et al., 2013]. Two reaches were analyzed, one has a meandering planform with pool-riffle bed
morphology (Figure 1a), and the other, located 2.5 km downstream, is a straight reach with plane bed
morphology with randomly located large boulders (Figure 1b). Bankfull water depths in the pool-riffle channel
range up to about 1.8mwith one standard deviation of 0.29m, while depths in the plane bed reach are< 1.1m
and aremore consistent with one standard deviation of 0.17m. The channel banks are about 1m tall and range
from vertical to gently sloping on point bars and around islands in the meandering reach and are generally
steeper in the plane bed reach. Vegetation along the meandering reach is dominantly grasses, sedges, and
willows with occasional isolated conifers, while the straight reach is bordered mostly by a coniferous forest.
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3. Airborne Bathymetric Lidar
Background and Methods
3.1. Lidar Errors

The error budget of all airborne subaerial
or bathymetric lidars is complex and
involves at least the instantaneous
location and three-dimensional
orientation of the aircraft, laser ranging
accuracy, laser return sampling
frequency, laser scan rate and angle,
laser beam divergence and footprint,
and the interactions of these system
and mission parameters with terrain
that has variable scales and amounts of
topographic roughness and other target
characteristics, such as reflectivity.

Bathymetric lidars also have several
additional significant complications. The
laser energy is refracted when crossing
the air-water interface on both the
outgoing and return travel legs of each
laser pulse and the amount of refraction
is proportional to the angle of incidence
as described by Snell’s Law. The EAARL
instrument uses a cross-track scanner

that oscillates perpendicular to the line-of-flight, so a first-order correction is made for the increasing angle of
incidence toward the edges of each scan line. However, finer corrections to compensate for the individual
refraction of each laser pulse caused by the dynamic local water surface roughness, e.g., due to wind
and waves, are not possible. The effects of refraction errors increase with water depth and primarily
cause planimetric shifts in the data.

The velocity of laser energy drops from 15 cmns�1 in air to about 11 cmns�1 in water. Therefore, during data
processing it is important to recognize the water surface in the return from each laser pulse and adjust
the laser velocity during the portion of the travel time spent in water. If the air velocity is erroneously used for
the travel time in water, this vertical error of about 4 cmns�1 means the elevation of a point will be under
predicted. At water depths less than about 15 cm it can be difficult to discriminate the water surface and
correctly adjust the laser velocity, but a velocity error over this depth translates into a vertical error of only a
few centimeters, within the normal vertical uncertainty of airborne lidar data. As water depths increase, the
potential error associated with the incorrect velocity rises, but it also becomes easier to distinguish the water
surface in the EAARL data and avoid the error.

To best retrieve the submerged ground elevations, it is normally necessary to record and interpret the full
time-rate-of-return of reflected energy from each laser pulse, i.e., to use a “full-waveform” lidar and data
interpretation methods. For example, the full waveform is employed to distinguish reflections at the water
surface from those caused by sediment suspended in the water. The EAARL sensor is a full-waveform resolving
lidar, and the custom-built processing software, the Airborne Lidar Processing System (ALPS), provides the user
several algorithms and adjustable parameters to customize the processing in specific stream environments [see
Bonisteel et al., 2009, for further details about the ALPS software]. Adjustments in the ALPS algorithms and
parameters can strongly affect the density of the bathymetric data and, to a lesser extent, the predicted
elevations of point reflections.

Water depth and quality can also affect lidar performance as a result of both energy scattering and
absorption. Suspended sediment particles and entrained air bubbles are point reflectors that scatter energy
as each laser pulse makes the two-way transit through the water column. In-water reflections that still reach

Figure 1. Field sites: (a) Low gradient meandering gravel bed, pool-riffle
reach. Channel is approximately 15mwide. View is downstream. (b) Straight
gravel bed channel reach with plane bed morphology. Channel is approxi-
mately 15mwide (see figure on right bank for scale). View is downstream.
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the system detector can make the return energy waveform more difficult to interpret and identify true
reflections from the channel bed. Some of the energy may also be reflected outside the field of view of the
detector, reducing the returned signal strength, sometimes to the extent that it is not possible to detect the
signal. In addition, some dissolved organic molecules, for example tannic acids, heavily absorb laser energy
having a wavelength of 532 nm and can prevent laser pulses successfully traversing the water column twice
to define a bed elevation. Thus, in poorer quality and deeper water, in-water reflections and absorption can
locally cause either bed elevation measurement errors or data thinning and eventually complete loss of bed
elevation data, all of which deteriorate the resulting channel DEM, but in different ways.

3.2. Lidar Data Acquisition and Error Assessment Methods

Lidar data were acquired by the EAARL in October 2007. The key attributes of this instrument are given by
Wright and Brock [2002] and Nayegandhi et al. [2006]. Bear Valley Creek was in low-flow conditions during the
lidar survey with very clear (unquantified) water and flow depths < 2m. The data were processed using the
bathymetric algorithm in the Airborne Laser Processing Software (ALPS) [Wright and Brock, 2002; Nayegandhi
et al., 2006; Bonisteel et al., 2009]. The typical lidar bathymetric data density was about 0.3 pointsm�2. The
mean lidar elevation error was eliminated by vertically adjusting the lidar data after comparison of lidar point
elevations with ground-surveyed GPS and total station point elevations made within 0.25m, horizontally, of
the lidar points. After this block adjustment of the lidar data, the elevation accuracy of individual bathymetric
lidar measurements was about ± 15 cm (1σ) when compared to the ground measurements. In a similar 2004
survey of this field area with the same instrument, the point elevation accuracy was ± 17 cm (1σ) [McKean
et al., 2006, 2009b]. Point elevation errors calculated by this method are always somewhat uncertain as they
include the effects of topographic variability in the up to 0.25m distances between each ground and
corresponding lidar point measurement. In our study channels, the local bed slope can approach 20%, with
elevation changes of 5 cm over a 25 cm horizontal distance. Furthermore, there is planimetric ambiguity in
each lidar measurement, which is often on the order of 50 cm, and each recorded lidar elevation is some
representation of the range of elevations in the ~20 cm diameter lidar footprint. The 2004 lidar data also used
a lower precision GPS solution due to problems with the on-site field base station during the mission.

Experimental elevation errors were introduced to all data in the EAARL bathymetric point clouds by sampling
randomly from normally distributed error populations with a mean elevation error of zero [McKean et al.,
2008b]. The possibility of spatially correlated errors in the lidar data was examined in some detail by McKean
et al. [2009b] in the same study stream, and no correlations were found. This is particularly obvious in
Figures 6 and 8 from that publication where along two stream profiles the lidar data vary in an irregular
fashion around a coincident ground-surveyed profile. The effects of error magnitude were tested by
regenerating the error populations with one standard deviation equal to 10, 13, and finally 15 cm and then
repeating the flowmodel predictions with each level of errors. This size range of errors is based on the 2004 and
2007 EAARL point accuracy assessments in this study area. It is slightly greater than that found by Nayegandhi
et al. [2009], who used the EAARL in shallow clear-water marine studies and reported RMS elevation errors of
8–14 cm and slightly lower than that reported by Kinzel et al. [2007] who found EAARL elevation errors with
an RMS of 18 and 24 cm in two reaches of the Platte River. In each realization with a different magnitude of
errors, the errors also had an independent spatial distribution.

Ground-based total station surveys were made of 120–150m long subsets of the pool-riffle and plane bed
reaches to enable the lidar-to-ground survey comparison. The surveys extended beyond the channel banks
for several meters in both reaches. The ground survey data had an average density of 0.08 pointsm�2,
and the internal horizontal and vertical point accuracies were about ±1–2 cm in the subaerial and shallow
submerged portions of the surveys. In areas of deeper flows the survey accuracy probably declined, in some
unquantified manner, due to effects such as difficulty maintaining a vertical rod position. To enable the lidar-
to-ground comparison, the total station data were converted to the same datum and projection as the lidar
data by GPS observations at the total station bench marks.

All point clouds from the ground surveys, the original lidar surveys, and lidar with experimental introduced
errors were treated identically. Data were first gridded to make elevation rasters with 1m grid cell spacing. A
simple isotropic kriging method was selected to make the rasters after tests on the dense lidar data showed
little effect of using anisotropic kriging or changing the spatial covariance of the kriging. These elevation
rasters were then mapped onto a channel-centered flow mesh with a similar square 1m grid spacing
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[Lane, 1998; Tonina and Jorde, 2013] in the finite difference fluid dynamics model FaSTMECH, run under
the user interface MD-SWMS [Nelson et al., 2003; McDonald et al., 2005]. FaSTMECH is a depth-integrated
hydrostatic model that proceeds by solving the Reynolds-averaged momentum equations. It has two
calibration parameters: a drag coefficient (cell-scale roughness flow resistance) and lateral eddy viscosity
(turbulence resistance). The former can be spatially distributed and depends on streambed roughness
including grain size and any other topographical irregularities at a scale smaller than the mesh size [Morvan
et al., 2008]. The latter has a uniform value for the entire reach and is estimatedwith the equation ν =0.01 ·U ·H,
where U and H are the mean flow and hydraulic depth of the flow at the reach scale [Barton et al., 2005].
Nelson et al. [2003] andMcDonald et al. [2005] describe further details of flow calculations in FaSTMECHwithin
the MD-SWMS environment. FaSTMECH was implemented in a quasi-3-D mode to predict spatially distributed
water elevations, velocities, and near-bed shear stresses.

The FaSTMECH model was first calibrated, using the original lidar bathymetry, by comparison with the water
surface elevation (surveyed along the channel centerline) and depth-averaged velocity distribution, both
measured in the field at a low discharge of 0.96m3 s�1 [McKean and Tonina, 2013]. The calibration was
accomplished by adjusting the flow resistance until the model predictions matched the two field measured
variables. The resistance was described by a drag coefficient that varies spatially as:

Cd ¼ 1
h
∫hzo f z; zoð Þdz

� ��2

(1)

Here h is the local flow depth, z is height above the stream bed, and zo is the height above the stream bed at
which the velocity is equal to 0, assuming a logarithmic vertical velocity profile [McLean et al., 1999]. This
exercise yielded a calibrated zo = 0.006m and an eddy viscosity of 0.05m2 s�1 [Figure 5 inMcKean and Tonina,
2013]. A sensitivity analysis showed little change in transverse flow structure and water surface elevation
when the eddy viscosity was varied by as much as ± 50%, so this parameter was kept constant at 0.05m2 s�1

during higher discharges. Comparable sensitivity analyses on the values of zo and the lateral eddy viscosity
are also reported in the work of McKean and Tonina [2013] for the same reach, and of Maturana et al. [2013]
for a similar nearby reach. Note that flow resistance still varied spatially according to the flow depth even
though zo was constant.

The model was validated by comparing modeled and observed water surface elevations at a discharge of
1.6m3 s�1 and velocities over a range of discharges from 1.6 to 6m3 s�1 with the set zo and ν values (see
McKean and Tonina [2013], for calibration and validation data). The model was also validated empirically at a
discharge of 0.96m3 s�1 by observing a close correspondence between two predicted recirculating eddies,
shaded by meanders, and the same eddies mapped in the field by injecting a dye tracer into the water.

The 1m square cells in the CFDmesh provided a detailed flow field and optimal convergence with local cross-
sectional and reach mass balance errors within ± 3% and below 1%, respectively [Tonina and McKean, 2010;
McKean and Tonina, 2013]. The comparisons of the original lidar bathymetry to lidar-with-errors were then
made by repeating the flowmodel predictions with the boundary condition errors while leaving constant the
roughness and lateral eddy viscosity parameters as well as the discharge and downstream water stage. We
used the same Cd and ν because our goal was to quantify the error caused solely by the bathymetry and not a
combination of bathymetric uncertainties and energy losses due to flow resistance at the cell scale. Furthermore,
our high-resolution topography constrained the local resistance to losses caused by topographic irregularities
with scales smaller than the mesh size. Reach scale values, which are at a scale larger than the resistance
accounted for by Cd, should not change by varying the local elevation data.

Previous modeling and fieldmeasurements had established that annual base flow and bankfull flow conditions
existed in the study channel at discharges of about 1 and 6.7m3 s�1, respectively, and model calculations
were made at 1 and 6m3 s�1. The same calibrated hydraulic model parameters and range of discharges were
used to also compare model predictions of water elevation, velocity, and near-bed shear stress, made with
the original lidar bathymetry, to those made with the ground-surveyed bathymetry.

Whether or not the water surface, velocity, and near-bed shear stress errors caused by topographic errors are
functionally significant depends on the intended use of the model predictions. For example, a common
application of CFD models is to analyze channel bed mobility [e.g., May et al., 2009]. We tested the effects of
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bathymetric lidar errors on modeled
initial motion of particles on the beds of
the pool-riffle and plane bed channel
reaches. Particle motion was evaluated
by first predicting local shear stress at
each node of the flow mesh as a
function of discharge, using each of the
model bathymetric boundary conditions
defined above. Then the shear stress at
each mesh node was compared to a
theoretical critical stress, τc, for initial
particle motion estimated from the
Shields criterion for a single grain size:

τc ¼ θg ρs � ρwð Þd (2)

Here θ is the dimensionless Shields
number (0.047), g is the gravitational
acceleration (9.81m s�2), ρs is the
sediment bulk density (2500 kgm�3), ρw
is the bulk density of water (1000 kgm�3),
and d is the representative grain size.
While more sophisticated initial motion

models are available, this simple approach using a single particle size has been used successfully in other
studies [e.g., May et al., 2009; Goode et al., 2013; Conner and Tonina, 2013] and suffices to investigate the
effects of bathymetric errors. The grain size, d, was varied from 1 to 145mm, corresponding to critical stresses
from 0.5 to 100 Pa. The median grain size, defined by field surface pebble counts, is 58mm and has a critical
stress of about 40 Pa.

4. Results
4.1. Lidar to Lidar-With-Errors Comparisons

The results of the direct effects of experimental introduced bathymetric errors on mesh elevations and near-
bed shear stress residuals are shown only for larger errors randomly sampled from populations with one
standard deviation of 15 cm. For the assessment of bed mobility predictions, smaller and larger errors are
compared at the high-flow condition of 6m3 s�1 by random sampling from error populations having one
standard deviation of 10 and then 15 cm.
4.1.1. Patterns of Introduced Topographic Errors
The normally distributed (in magnitude) elevation errors introduced into the EAARL point cloud data
produced a similar statistical distribution of MD-SWMS mesh errors (see error histograms in Figures 2 and 3).
One standard deviation of the mesh elevation errors was 9 and 10 cm in the meandering and plane bed
reaches, respectively, which is slightly less than that in the introduced point elevation error populations
(15 cm s.d.). This is as expected due to the smoothing of data during production of the elevation rasters and
then the mapping of those rasters to the flow mesh. In the pool-riffle reach the maximum errors were about
± 35 cm, while they were ± 43 cm in the plane bed channel. In both reaches, elevation errors in the flowmesh
occurred throughout the model domain with no apparent biases along the margins or center of the flows
(Figures 2 and 3). In the pool-riffle reach, the smaller mesh elevation errors (< ± 9 cm) were often clustered in
groups that are 4–5m across and frequently extended for >10m in either the downstream or cross stream
directions. This pattern wasmost predominant in regions where the lidar point cloudwas less dense, allowing
each original elevation error to have an effect over a larger area, for example, in the last (downstream) 100m
of the pool-riffle reach (Figure 2). The larger errors (>± 9 cm) occurred in smaller symmetrical clusters about
3–5m in diameter. In the plane bed channel, groups of the smaller flow mesh elevation errors (< ± 10 cm)
tended to have a planimetric asymmetry with the long axis parallel to the lidar scan lines which intersected
this straight reach at about 70° to the channel long axis (Figure 3). The larger errors (>± 10 cm) occurred in
small symmetrical clusters about 2–4m in diameter.

Figure 2. Elevation error pattern in MD-SWMS flow mesh of pool-riffle
channel reach at bankfull flow (6m3 s�1). Flow mesh has 1m pixels, and
errors are mapped in 1σ categories. Gray dots are lidar measurement
locations in original EAARL point cloud. Two red circles are areas of largest
elevation errors, and red polygon is area of the ground-surveyed reach
shown in Figures 11a, 12, and 15. Flow is from lower left to upper right.
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4.1.2. Patterns of Near-Bed Shear
Stress Errors
Of the threemodeled variables (water surface
elevation, flow velocity and bed shear stress),
only shear stress results at the lowest and
highest discharges are presented. The
bathymetry errors caused almost no change
(< 1 cm) in the predicted water surface
elevations. FaSTMECH predicts shear stress
from flowvelocity, so bathymetric errors affect
both of these variables in a similar fashion.

In themeandering pool-riffle channel reach,
the magnitude of shear stress errors was
normally distributed by magnitude with only
a slight trend in the median toward more
positive residual errors (see histograms in
Figures 4 and 5). Relative to the original shear
stresses, the errors were larger at low-flow
conditions than at the greater discharge (the
median original shear stress is noted at each
discharge for comparison in Figures 4 and 5).
The overall spatial patterns of shear stress
errors in the meandering channel were
similar from low-flow to high-flow conditions.
However, at the higher stage there was flow
around three islands that were still connected
to the bank at the low flow. In these areas of
complicated topography, such as around the
island on the left side of the cross section A-A′
in Figure 5, bathymetric errors sometimes
caused greater shear stress and velocity
errors. Along the margins of flow some
nodes switched fromwet-to-dry or vice versa
when topographic errors were introduced.

The largest shear stress errors were generally in the main core of flow in places where the water was
shallower and had a higher velocity. In those locations bathymetric errors of a given size make a relatively
greater change in the cross-sectional area of flow. For example, a 15 cm bed elevation error in the bottom of a
2mdeep pool represents only a 7.5% change in depth, but the same error at a site with a flow depth of 40 cm
causes a 37.5% change in depth. A consequence of this depth dependency is that higher shear stress errors
were biased toward morphologic and habitat units that naturally have shallower and higher velocity flows
(Figures 6a and 6b). In both low-flow and high-flow conditions, the smallest shear stress errors occurred in
pools and planar areas, while riffles and point bars experienced greater errors. At low flows, the shear stress
errors declined considerably where depths were greater than about 35 cm (Figure 6a). At bankfull flows, the
water surface was about 45 cm higher, and the low-flow error pattern with depth and morphologic unit was
essentially repeated, but shifted about 45 cm toward greater depths. Thus, at these high flows, errors
decreased greatly where the water is deeper than about 80 cm (Figure 6b).

The direction of shear stress errors (increasing or decreasing when the topographic errors were introduced)
consistently reflected the direction of the input bathymetric errors. Errors that locally raised the bed of the
channel caused the cross-sectional area of flow to decrease and the flow velocity and bed shear stress
increased correspondingly. Logically, some of the largest shear stress errors occurred where there was a
combination of shallow and fast water and, by chance, larger positive and negative bathymetric errors
occurred adjacent to one another. Examples include the areas defined by dotted circles in Figures 2, 4, and 5.

Figure 3. Elevation error pattern in MD-SWMS flow mesh of plane
bed channel reach at bankfull flow (6m3 s�1). Flow mesh has 1m
pixels, and errors are mapped in 1σ categories. Gray dots are lidar
measurement locations in original EAARL point cloud. Red rectangle
is area of ground survey shown in Figures 11b, 13, and 15. Flow is from
bottom to top.
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Shear stress errors in the plane bed reachwere
also normally distributed with a slight trend
toward more positive residuals, similar to
the results of the pool-riffle channel (see
histograms in Figure 7). Flow in the plane
bed channel was not well structured by the
bed morphology, and consequently the
spatial pattern of shear stress errors was
more poorly organized, particularly at low
flows. The largest shear stress and velocity
errors were where flows were shallowest and
again higher stress and velocity were related
to bathymetric errors that decreased flow
depth. In low-flow conditions the errors
declined greatly at flow depths greater than
about 35 cm (Figure 6c). At bankfull flows the
pattern of errors with depth shifted about
40 cm toward deeper flows (Figure 6d). The
larger errors at this high stage were
distributed over a wider range of depths but
declined steadily and were less variable at
flow depths greater than about 60 cm.

Shear stress errors were smaller along the margins of flow in the plane bed reach where the channel
morphology has a much simpler cross-sectional shape that approximates a trapezoid with steep sides
(see cross section in Figure 7). A consequence was that changes in flow stage did not involve complex
topography at the edges of the channel of the type seen in Figure 5, and in fact, there was relatively
little increase in flow surface area with rising stage. Thus, bathymetric errors were not likely to cause
more shear stress and velocity errors at the channel margin as it expanded upward and only slightly
outward during higher flows.

4.1.3. Patterns of Bed Mobility Errors
We calculated, for a range of potential
critical shear stresses, the percentage of
flow mesh nodes whose mobility state
would change when a suite of
bathymetric errors were introduced.
For the pool-riffle topography, the result
at near bankfull flow conditions is shown
in Figures 8a and 8b for critical shear
stresses ranging from < 1 to 100 Pa. At
even very low critical shear stresses,
less than 7% and 9% of the mesh had
errors in predicted mobility state when
smaller and larger random errors,
respectively, were introduced (Figures 8a
and 8b). During this high flow, themedian
reach shear stress of 4.9 Pa was equivalent
to the critical stress for coarse sand
material with a grain diameter of about
0.7mm. As noted previously, this is a
gravel bed channel, and the critical
shear stress for the median grain size at
this site was approximately 40Pa. For
this threshold stress and near bankfull

Figure 4. Pattern of near-bed shear stress residuals in pool-riffle reach
with discharge of 1m3 s�1. Residuals calculated as shear stress in
original bathymetric topography minus shear stress in bathymetric
topography with introduced errors. Reach median shear stress in ori-
ginal topography is 1.1 Pa. Data are mapped in 1σ increments. Dashed
circles are areas of large elevation errors discussed in text. Flow is from
lower left to upper right.

Figure 5. Pattern of near-bed shear stress residuals in pool-riffle reach
with discharge of 6m3 s�1. Residuals calculated as shear stress in
original bathymetric topography minus shear stress in bathymetric
topography with introduced errors. Reach median shear stress in
original topography is 4.9 Pa. Data are mapped in 1σ increments. Dashed
circles are areas of large elevation errors discussed in text. Flow is from
lower left to upper right.
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flow conditions, the smaller topographic
errors caused about 0.8% of the nodes
to switch from immobile to mobile and
0.6% became immobile (Figure 8a),
while the larger introduced errors
caused 0.3% and 0.9% to become
mobile and immobile,
respectively (Figure 8b).

In the pool-riffle reach, the spatial
distributions of the mobility errors are
shown in Figure 9. The mobility errors
were concentrated in the same areas of
greatest bathymetric errors (Figure 2)
and highest shear stress residuals
(Figure 5). The direction of mobility errors
also corresponded to that of the original
bathymetry errors. Where the elevation
errors raised the bed, the shear stress
increased, and any mobility errors
tended to be those of increased
mobility. The magnitude of the
experimental errors had little effect on
the spatial patterns (Figures 9a and 9b).

Figure 7. Pattern of near-bed shear stress residuals in plane bed reach: (a)
discharge of 1m3 s�1. Reach median shear stress in original topography
is 3.0 Pa, (b) discharge of 6m3 s�1. Reach median shear stress in original
topography is 11.2 Pa. Residuals calculated as shear stress in original
bathymetric topography minus shear stress in bathymetric topography
with introduced errors. Data are mapped in 1σ increments. Flow is from
bottom to top.

Figure 6. Shear stress residuals by flow depth and discharge: (a and b) Pool-riffle reach. (c and d) Plane bed reach. Lidar
errors were introduced by random sampling of an error population with 1 standard deviation= 15 cm.
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At near bankfull flow in the plane bed study reach, bathymetric errors caused more bed mobility errors
than observed in the pool-riffle reach if critical shear stresses were greater than about 5 Pa (Figures 8c and
8d). This was probably a result of the overall lower water depth and the greater bed slope relative to the
pool-riffle reach. The mean water depth of the plane bed reach is 11 cm less than that of the meandering
reach, and the general slopes of the plane bed and pool-riffle reaches are 0.45% and 0.28%, respectively.
The result is a median shear stress of 9.9 Pa in the plane bed channel versus 4.9 Pa in the pool-riffle case.
These larger original shear stresses also meant that the size of the introduced elevation errors had a
greater effect, especially in the range of critical shear stresses appropriate for smaller gravel sized particles
(10–20 Pa). Still, at the d50 critical shear stress of 40 Pa, only about 0.8% of the mesh nodes changed
from immobile to mobile and 1.5% became immobile when the population of smaller elevation errors was
used (Figure 8c). Larger introduced errors changed these percentages only slightly to 0.5% and 0.8%,
respectively (Figure 8d).

The sites and directions of mobility change shown in Figure 10 again corresponded predictably to changes in
bed elevation and shear stress. At sites where the original shear stresses were near critical, mobility increased
if large experimental errors raised the elevation of the stream bed, causing the near-bed shear stress to
increase, and mobility decreased if elevation errors caused the bed to be lower and stresses to decline. The
spatial patterns of bed mobility errors again varied only slightly between realizations of error populations
(Figures 10a and 10b).

Figure 8. Bed mobility errors as a function of critical shear stress at near bankfull flows (Q=6m3 s�1): (a) pool-riffle with ele-
vation errors having one standard deviation=10 cm; (b) pool-rifflewith elevation errors having one standard deviation=15 cm;
(c) plane bed with elevation errors having one standard deviation = 10 cm; (d) plane bed with elevation errors having one
standard deviation= 15 cm. Local Bear Valley critical stress for the median grain size is 40 Pa. Typical ranges of critical stress
for sand-, gravel-, and cobble-sized particles are indicated below graphs. [Figure 8c is modified from McKean et al., 2009b.]
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We also ran several additional simulations
to test the reproducibility of our results as
well as their sensitivity to the magnitude of
introduced errors. In both the pool-riffle
and plane bed reaches, for discharges of
1 and 6m3 s�1, we conducted two
replications using different populations of
errors with a standard deviation of 10 cm,
and one simulation using errors with a
standard deviation of 13 cm. In both stream
morphologies the smaller elevation errors
caused correspondingly smaller shear stress
residuals and mobility errors. The global
statistics were essentially identical for the
two replications done using errors with a
standard deviation of 10 cm. In the pool-
riffle reach, all the tests produced similar
spatial patterns of shear stress and mobility
errors with the largest errors concentrated
in the areas of shoaling water circled in
Figure 5. In contrast, in the plane bed
reach, each random population of elevation
errors caused a unique spatial pattern of
shear stress and mobility errors, as flow
depths were not well structured by the
bed morphology.

4.2. Ground Survey-To-Lidar Comparisons
4.2.1. Patterns of Elevation Errors
The elevation errors calculated by
subtracting the lidar-generated flow mesh
from the ground-survey-generated-flow
mesh were normally distributed in
magnitude (see histograms in Figure 11).
In the pool-riffle reach there was a 5 cm bias
in the median value toward more positive
errors and in the plane bed reach this bias
increased to 7 cm. The ranges and standard
deviations of elevation errors were 2 to 3
times larger than those in the lidar to lidar-
with-experimental-errors comparison,
although the ground-to-lidar comparison
study reach was only a small subset (~20%)
of the model domain in the lidar to lidar-
with-errors investigation. In the pool-riffle
study site the smallest errors (< ± 21 cm)
occurred throughout the reach while the
largest errors (>± 42 cm) tended to be on
the channel banks along the edges of the
mesh (Figure 11a). In the plane bed reach
the larger errors (>± 27 cm) were again
concentrated along the margins of the flow
mesh, and there was a systematic pattern
of positive errors on the left bank and
negative errors on the right bank (Figure 11b).

Figure 10. Predicted change in bed mobility at near bankfull flows
(6m3 s�1) in plane bed channel due to spatially random bathymetric
errors sampled from a Gaussian distribution with: (a) 10 cm standard
deviation, (b) 15 cm standard deviation. Mobility is assumed to occur
when shear stress exceeds a critical value of 40 Pa. Change in mobility
is defined as conditions at a node in the model flow mesh switching
from mobile to immobile or vice versa when bathymetric errors are
introduced to the model flow boundary. Flow is from bottom to top.
[Figure 10a is modified from McKean et al., 2009b.]

Figure 9. Predicted change in bed mobility at near bankfull flows
(6m3 s�1) in pool-riffle channel due to spatially random bathymetric
errors sampled from a Gaussian distribution with: (a) 10 cm standard
deviation, (b) 15 cm standard deviation. Mobility is assumed to occur
when shear stress exceeds a critical value of 40 Pa. Change in mobility
is defined as conditions at a node in themodel flowmesh switching from
mobile to immobile or vice versa when bathymetric errors are introduced
to the model flow boundary. Flow is from lower left to upper right.
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This was due to an approximately 50 cm
planimetric shift toward the left bank
(looking downstream) of the lidar data in
this reach, with unknown causes, that was
noted by McKean et al. [2009a, 2009b].
4.2.2. Patterns of Near-Bed Shear
Stress Errors
The differences between near-bed shear
stresses modeled with the ground survey
and lidar channel topographies were
normally distributed by magnitude at low
and high flows in both the pool-riffle and
plane bed reaches (see histograms in
Figures 12 and 13). In the pool-riffle channel
the median, maximum, and minimum shear
stress residuals all increased at the higher
discharge, while in the plane bed reach
there was less change with discharge and
the median residual declined at the higher
flow. In both morphologies during both
flow conditions the median stress residuals
were positive, indicating lower predicted
stresses when using the lidar bathymetry.
The spatial patterns of stress residuals were
similar from low to high flows in each study
reach (Figures 12 and 13). In the pool-riffle
morphology the negative near-bed shear
stress residuals occurred at sites where the
lidar surveyed elevations were higher than
those in the ground survey and the channel
cross-sectional area for flow was reduced.
The largest residuals, in the circled area in
Figure 12b, were at the same location of
large errors in the lidar to lidar-with-errors

Figure 11. Patterns of elevation errors calculated as elevation in ground survey flow mesh minus elevation in lidar flow
mesh: (a) Pool-riffle reach. Circle is location of higher shear stress and mobility errors discussed in the text. Flow is left to
right. See Figure 2 for location of this study reach; (b) Plane bed reach. Flow is bottom to top. See Figure 3 for location of this
study reach. Spatial resolution is 1m, and errors are mapped in 1σ categories. Gray dots are groundmeasurement locations
whose cross-stream extent is about 2–4m beyond the channel banks.

Figure 12. Pattern of near-bed shear stress residuals in pool-riffle
reach with discharges of: (a) 1m3 s�1, (b) 6m3 s�1. Residuals
calculated as shear stress in original ground-surveyed topography
minus shear stress in bathymetric lidar topography. Reach median
shear stress in the ground-surveyed topography is 1.7 and 11.2 Pa,
in low-flow and high-flow conditions, respectively. Data are mapped in
1σ increments. Circle is the area of higher errors discussed in the text.
Flow is from left to right.
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comparison (see the downstream-most dashed circle in Figure 5). In the plane bed reach, the 50 cm eastward
shift of the lidar data caused the water depth to increase along the left margin (looking downstream) and
decrease on the right margin of the channel relative to the ground survey. This, in turn, caused the shear
stress residuals to be negative on the left and positive on the right margins of flow, and the pattern was more
pronounced at the high discharge (Figure 13).
4.2.3. Patterns of Bed Mobility Errors
At low flow in the pool-riffle reach, up to about 25% of the mesh changed mobility condition when the
ground survey bathymetry was replaced with the lidar bathymetry (Figure 14a). However, this effect was
predominantly in situations where the critical stresses were below about 10 Pa. During low flow in Bear Valley
Creek, the critical shear stresses in the reach were generally well below those required to move the existing
gravel bed, and using the d50 critical stress for the existing substrate (40 Pa) the change from ground-
surveyed to lidar data had no effect on the predicted very limited mobility. At near bankfull flow, the peak in
mobility errors shifted to between 5 and 25 Pa, reflecting the greater overall shear stress at that discharge, but
the number of errors changed very little (Figure 14b). At the d50 critical stress in this high-flow condition, 2%
of the model mesh shifted to mobile and 2% became immobile when the lidar bathymetry was used rather
than the field surveyed topography.

At near bankfull flow in the meandering reach, all of the mobility errors were concentrated in one location
(Figure 15). This area had a low density of lidar data (see downstream circled area in Figure 2), moderately
high bed elevation differences between the ground and lidar surveys (Figure 11a), and higher shear stress
residuals (Figure 12b). A natural local constriction in the channel also caused shear stresses to approach
critical levels, which allowed the bathymetry differences between the lidar and ground surveys to cause
changes in predicted mobility. The same area had larger shear stress residuals in the comparison of lidar to
lidar-with-errors (see downstream dashed circle in Figure 5).

During low flow in the plane bed reach, mobility changed in up to about 44% of the mesh with the peak
differences near a critical shear stress of 10 Pa (Figure 14c). As in the pool-riffle case, shear stresses were low
throughout the plane bed reach at a discharge of 1m3 s�1, and the existing gravels, with a d50 critical shear
stress of 40 Pa, were unaffected by the choice of model topography. During a discharge of 6m3 s�1, the peak
in mobility errors occurred at approximately 20 Pa and using the d50 shear stress for the existing gravel
substrate, 2.1% of the mesh became more mobile and 0.9% less so when the lidar topography was used in
the model (Figure 14d). The pattern of mobility changes shown in Figure 16b is dominated by increased
mobility in a small area at the downstream end of the model reach.

Figure 13. Pattern of near-bed shear stress residuals in plane bed reach with discharges of: (a) 1m3 s�1, (b) 6m3 s�1.
Residuals calculated as shear stress in original ground-surveyed topography minus shear stress in bathymetric lidar
topography. Reach median shear stress in the ground-surveyed topography is 7.5 and 18.3 Pa, in low-flow and high-flow
conditions, respectively. Data are mapped in 1σ increments. Flow is from bottom to top.

Journal of Geophysical Research: Earth Surface 10.1002/2013JF002897

MCKEAN ET AL. ©2014. American Geophysical Union. All Rights Reserved. 657



5. Discussion

The goal of this study was to test the effects of point elevation errors, made with spatial patterns and
magnitudes typical of those produced by the EAARL, on numerical flow models of streams. Furthermore, we
were most interested in errors in the bed topography of the channels, and their effects on model predictions
of near-bed flow conditions, rather than errors on the stream banks. In our comparison of the original lidar
data to lidar data- with-introduced-errors, we created elevation errors in the lidar point cloud by randomly
sampling from a Gaussian distribution. Therefore, there was no spatial correlation between input errors, i.e.,
the size of one point elevation error did not affect that of a neighboring error. Legleiter et al. [2011b] have
criticized this approach and argued that in studies of this kind, introduced bathymetric errors must have a
spatial correlation because hydrodynamic model output has a spatial structure, as conditions at one node in a
flow mesh inevitably affect model predictions at nearby nodes. They assert that the use of spatially random
input bathymetry errors represents a significant limitation of the work and cannot realistically capture the
effects of topographic uncertainty on 2D flow model predictions.

Topographic errors with any spatial distribution, including random, always cause spatially correlated errors in
a flow mesh, as the elevation raster is produced by interpolations between data in the original point cloud.
The size and spatial scale of these correlated mesh elevation errors, e.g., the areal extent within a flow mesh
affected by just a single input error, depends on the combination of the magnitude of the original point

Figure 14. Lidar-to-ground survey comparison of bed mobility errors as a function of critical shear stress: (a, b) pool riffle at
discharges of 1 and 6m3 s�1; (c, d) plane bed at discharges of 1 and 6m3 s�1. Peaks in the curves reflect the dominant bed
shear stress at each discharge. Local Bear Valley critical stress for the median grain size of the existing substrate is 40 Pa.
Typical ranges of critical stress for sand-, gravel-, and cobble-sized particles indicated below graphs.
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elevation error(s), the local density of data,
the local topographic complexity and the
interpolation technique. This effect is well
illustrated in our data where the random
introduced point elevation errors caused
clusters of elevation errors in the flow
meshes of both the pool-riffle and plane
bed study reaches (Figures 2 and 3). In
areas with low data density, the spatial
influence of single errors extended over
many square meters in the flow mesh
rasters. In contrast, in areas of high data
density, the effects of larger point elevation
errors were considerably reduced in both
magnitude and spatial influence during the
kriging interpolations to construct the
elevation rasters. Furthermore, any pattern
of errors, including random, in the flow
mesh will also cause spatially structured
effects in flow model predictions. Because
all input elevation error patterns, including
random, produce spatially correlated errors
in derived flow mesh rasters and other

ensuing model predictions, we argue that one cannot infer that the existence of such spatial structure in the
modeled output dictates some non-random spatial structure in the original input bathymetric errors.

Nonetheless, for several reasons it is possible for the EAARL, or similar systems, to produce spatially correlated
data errors. First, all data from airborne lidars have an intrinsic spatial structure caused by the scan pattern of
the instrument. The effect of the EAARL cross-track scanner on the pattern of data can be readily seen in
Figures 2 and 3. The data have an asymmetric spatial arrangement with more closely spaced data along the

scan lines and sparser data in the direction
of flight, perpendicular to the scan lines.
This asymmetry is most developed at
positions near nadir and least obvious at
the edges of a scan swath. Any introduced
errors will then occur within, and retain, this
scan-related spatial structure.

Flight conditions and mission characteristics
could also cause spatially correlated
elevation errors. Temporal drift of the
aircraft GPS and inertial navigation
trajectories may lead to long wavelength
error patterns that occur over whole
stream segments and that are difficult to
detect unless of high magnitude. Local air
turbulence and curving stream geometries
that require steeper roll of the aircraft can
also cause direct elevation errors and
planimetric displacements that indirectly
lead to elevation errors [Kinzel et al.,
2013; Figure 4a].

Another possibility is lidar bathymetric
errors that vary in magnitude and spatial

Figure 15. Predicted change in bedmobility in pool-riffle channel due
to bathymetric errors with discharges of: (a) 1m3 s�1 and (b) 6m3 s�1.
Mobility is assumed to occur when shear stress exceeds a critical value
of 40 Pa. Change in mobility is defined as conditions at a node in the
model flow mesh switching from mobile to immobile or vice versa
when lidar topography replaces ground-surveyed topography defining
the model flow boundary. Circle is the area of higher errors discussed in
the text. Flow is from left to right.

Figure 16. Predicted change in bed mobility in plane bed channel
due to bathymetric errors with discharges of: (a) 1m3 s�1 and (b)
6m3 s�1. Mobility is assumed to occur when shear stress exceeds a
critical value of 40 Pa. Change in mobility is defined as conditions at a
node in the model flow mesh switching from mobile to immobile or
vice versa when lidar topography replaces ground-surveyed topogra-
phy defining the model flow boundary. Flow is from bottom to top.
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pattern according to water depth. For example, Bailly et al. [2010] tested the accuracy of the Hawkeye II
bathymetric lidar in the Gardon River, France, and found lidar biases with water depth. At depths less than
about 20 cm, the lidar elevations were too high, and the suggested explanation was that many of these
shallow data were on flowmargins where the relatively wide footprint of the Hawkeye II instrument (2.25m2)
included reflected energy from both the bank and channel bed [Bailly et al., 2010]. Conversely, at depths
greater than about 2m, the lidar elevations were too low relative to ground measurements. It is difficult to
definitely explain this result in deep water, although it is what would be expected if the instrument did not
properly identify the water surface and thus allow the processing algorithm to correctly reduce the laser
velocity over the appropriate portion of the travel path. In the Trinity and Klamath Rivers of northern
California, Kinzel et al. [2013] report difficulty mapping the stream beds in deep pools with the EAARL sensor
due to a combination of in-water reflections from air bubbles and suspended sediment, laser energy
absorption by organic compounds in the water, and poor reflectivity of the bed. However, at their Colorado
River test site, the EAARL errors appear very poorly correlated with water depth [Kinzel et al., 2013; Figure 9].

We tested for errors related to water depth by comparing 74 lidar point elevation measurements made
within 25 cm, planimetrically, of ground survey elevation measurements in water depths that ranged from
0 to 1.2m. A regression of bed elevation errors on water depth had a coefficient of�0.16 with an R2 of only
0.08 and standard error of 0.17m, indicating a very poor correlation, if any, between lidar errors and water
depth. A visual inspection of the data also did not reveal any other spatial patterns of errors on the stream
bed. As noted, there is a concentration of elevation errors along the banks of the plane bed reach,
apparently caused by a systematic and uniform horizontal shift in the lidar data, but we found no spatial
pattern of errors on the stream bed in that reach. Again, our field area has very clear water, with little
suspended sediment, tannins or entrained air bubbles, and a highly reflective substrate. It is possible that in
other fluvial settings, with poorer water quality or bed reflectivity, bed elevation errors would increase with
water depth as a result of in-water reflections or absorption or poor bed reflectivity. It is also important to
note that for hydrodynamic modeling, a non-random spatial pattern achieved by having the elevation
error magnitude proportional to water depth would have a smaller influence on shear stress and velocity
than would random errors. Furthermore, these smaller effects would be focused on pools where the local
shear stress and bed mobility are already low.

The ground-to-lidar survey flowmesh elevation errors were greater than those in the lidar to lidar-with errors
comparison, but the use of ground survey data raises several additional issues relevant to accuracy
assessments [Horritt, 2005]. Each ground measurement is taken at a point, while the lidar records the three-
dimensional location of a circular footprint about 20 cm in diameter, and the lidar-derived elevation
represents some integrated measure of the different elevations in each footprint [Jutzi and Stilla, 2006]. As
mentioned, the respective ground and lidar survey measurements also are never taken at exactly the same
positions, and airborne lidar measurements have decimeter-level uncertainty in their locations, leading to
further elevation discrepancies that cannot be separated from true local elevation measurement errors.
These issues related to measurement technique are at least somewhat mitigated by interpolating each
separate point cloud and then comparing elevation rasters or flow meshes as done in this study.

It is normally assumed that, because their individual point measurements can be made with greater
accuracy, ground surveys are more accurate than those done remotely using airborne methods. Typically, a
total station or differentially corrected GPS survey would have a point vertical accuracy of better than 1 cm,
while the uncertainty of airborne lidar point elevations is an order-of-magnitude worse. However, as
mentioned, the accuracy of an elevation raster, which is the goal in this application, depends in a
complicated manner on the combination of not only the accuracy of the individual point elevations, but
also the spacing and locations of measurements, the three-dimensional spatial scale of topographic
roughness, and the raster interpolation technique. Bathymetric lidars typically record elevations at about
1m planimetric intervals. It is tedious to gather data of this density in wading surveys, and this is seldom
attempted in stream reaches longer than a few hundred meters. Furthermore, even in small streams like
Bear Valley Creek it is common to encounter pools deeper than 1.5m which are un-wadeable, and
therefore even reach-scale field surveys are often incomplete. Thus, in airborne lidar surveys, there is a
trade-off between poorer individual point measurement accuracy but much greater data density and
spatial extent, and it may often be problematic to use field surveys as a standard, against which the
accuracy of lidar data is measured.
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The physical explanation of the effects of lidar elevation errors on shear stress predictions appears to
primarily be simple water mass conservation, with upward elevation errors reducing the area for flow and
causing the local velocity and shear stress to increase. In the pool-rifflemorphology, this effect is accentuated
at sites where the flow is shoaling and converging in a downstream direction, often approaching a riffle or
bar, and depths decline to the ranges of peak error concentrations shown in Figures 6a and 6b. This illustrates
the dominant control of flow conditions, forced by the basic bed morphology in the pool-riffle channel, on
model prediction errors, regardless of the random pattern or magnitude of introduced bathymetric errors. In
this channel type, a similar spatial pattern of predicted shear errors occurred in both low and high discharges
and in the ground-to-lidar survey comparisons, and we expect that it would persist even if non-random
bathymetric errors were introduced. Because of the lack of macro-bedforms in the plane bed reach, the
original water depths are not strongly controlled by bed morphology, and shallow areas occur more
randomly, often at larger than normal clasts on the bed. In addition to affecting the area for flow, we
recognize that elevation errors also change the local bed slope and water divergence, which could further
impact the velocity and shear stress.

At the two test reaches the bathymetric errors had little effect on predicted mobility of the gravel bed.
This is partially because most of the flow domains are at considerably less than critical bed shear stress,
even at bankfull flows. For example, the peaks between about 10 and 20 Pa in Figures 8c and 8d are near
the most frequent shear stress for this plane bed reach and are well below the critical value of 40 Pa for
grains of about the median size. If the critical shear stress had coincided with the reach median stress,
i.e., the whole reach had been on the threshold of mobility of bed material comprised of smaller grain
sizes, fewer than 24% of the mesh nodes at the plane bed reach would have changed mobility state as
a result of the bathymetric errors introduced from a population with one standard deviation equal
to 15 cm (Figure 8d). Consistent with the magnitude of shear stress errors, mobility errors were
concentrated in areas where the original shear stress was within about ±5 Pa of the critical level of 40 Pa.
Again, in the pool-riffle morphology the flow structure focused the mobility errors on shoaling flows
approaching riffles, bars, and islands, and this effect persisted at low and high discharges and in both
the lidar-to-lidar and ground-to-lidar survey analyses. In the plane bed case the error pattern was less
predictable.

We have not explored impacts of lidar bathymetry errors on other typical hydrodynamic model predictions
beyond bed mobility. For example, it is difficult to anticipate the effects of lidar bathymetry errors on
sediment transport predictions. Fluvial sediment transport varies strongly and often nonlinearly with shear
stress, suggesting that the observed stress errors might have been intolerable. But on the other hand, sediment
transport is notoriously uncertain due to other factors, such as flow turbulence, and thus bathymetric errors
may not have been limiting.

We have concentrated on the effects of bathymetric errors on modeled depth and velocity in channelized
flow, and on shear stresses on the bed of a channel. We have not investigated in any detail the impacts of
EAARL inaccuracies on channel banks, although we recognize that bank topography can strongly affect
momentum exchanges between the main channelized flow and floodplain flow, as well as analyses and
predictions of bank erosion. Furthermore, previous research has shown that EAARL elevation errors are likely
to be greater along channel banks, because of the combined effects of the lidar measurement footprint, the
point density, and point horizontal and vertical accuracies in this area of rapidly changing topography
[McKean et al., 2009b].

One-dimensional fluid dynamics models calculate flow from the wetted area of channel cross sections and so
are less sensitive to the details of boundary topography. Previous research in the same small streams in Idaho
has shown that channel widths, depths, and cross-sectional areas of flowmapped in DEMs made from EAARL
data were within 2% of those measured by field surveys [McKean et al., 2009b]. Thus, the remotely measured
channel boundaries appear adequate for 1-D flow models, and the necessary channel cross-sectional
information can be automatically extracted from the EAARL-derived DEMs using software such as the River
Bathymetry Toolkit [McKean et al., 2009b, http://www.fs.fed.us/rm/boise/AWAE/projects/river_bathymetry_toolkit.
shtml]. We have not tested the EAARL data in three-dimensional CFD models, but these are quite sensitive to
the slope of the channel bed at the base of each discrete column in the flow mesh, and it is likely that typical
EAARL point elevation errors will significantly affect model results.
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6. Conclusions

In at least low gradient, clear-water, gravel bed streams, a new generation airborne bathymetric lidar appears
to define the physical boundary of the channels with sufficient accuracy to support multi-dimensional
computational fluid dynamics models of flow, bed shear stress, and bed mobility. This technological advance
is significant as extensive high-resolution airborne lidar surveys offer the potential of metric-scale micro-
habitat resolution over greater than kilometric-scale investigations of fluvial processes. Further research is
required to define the range of poorer stream conditions (water depths/quality and bottom reflectivity) still
acceptable for bathymetric lidar surveys. More experience is also needed with multi-temporal bathymetric
lidar surveys to explore how accurately changes in channel hydrodynamics can be defined.

While our research is specific to the EAARL bathymetric lidar, it does provide information about the general
effects of bathymetric errors on hydrodynamic models. Any mapping techniques that develop point
elevation data with the spatial density and vertical accuracies we report should suitably support 2-D and
quasi 3-D hydrodynamic models of velocity, bed shear stress, and bed mobility in similar riverscapes.

Where the bathymetric lidar method can replace short reach-scale field wading surveys, aquatic biophysical
processes can be studied over a much fuller range of conditions. This is a particular advantage when
investigating mobile species, for example anadromous fish, that use a wide variety of physical habitats over
large stream extents during their various life stages. The problems of field access and selection of
representative field sample reaches are also greatly reduced by using a synoptic airborne survey.
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