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Abstract 

Under the National Forest Management Act of 1979, the USDA Forest Service is       
charged with maintaining viable populations of all existing native vertebrate species on 
lands they administer. Accomplishment of this responsibility requires complete assess-   
ment of all federally authorized, funded, or implemented projects that may jeopardize        
the continued existence of a species. An understanding of the processes of extinction 
and the characteristics of populations that make them more or less likely to persist is 
fundamental to such assessments. We review processes contributing to extinction and 
characterize them as deterministic, stochastic, and genetic. Factors that strongly 
influence risks of local and regional extinction include replication, dispersal and 
connection among populations representing a regional metapopulation. Project plan- 
ning and assessments must address habitat disruption and population responses at     
both the local and regional scale. Maintaining strong populations in the best possible 
habitats throughout the landscape and preserving the ecological processes characteris 
tic of metapopulations are the best hedges against extinction. 
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Introduction 

Assessing the viability of individual fish 
populations is a major problem for many fisheries 
biologists. Unfortunately, there is little  
quantitative support or guidance for such 
assessments. Extinction risks for salmonids are 
influenced by complex and interacting factors that 
are often difficult, if not impossible, to identify  
and measure. Despite this difficulty,   
understanding the nature of the extinction process 
can lead to management prescriptions that, 
minimize risks to local populations. Theoretical 
insights from the developing field of conservation 
biology can provide guidance to population 
managers. In this report, we review factors 
influencing the persistence of populations and 
suggest means for managing resident trout and  
char populations to mitigate extinction risks. 

The Basics of Extinction 

The first step in discussing population extinction 
is to define population. For this discussion a 
population is a group of animals that has a high 
probability of mating among its members relative 
to mating with members of other populations of 
the same species. For example, a trout population 
might consist of a group of fish that spawn and 
rear in a specific tributary but not in the 
mainstem. By virtue of homing or stream 
residency, they are isolated to various degrees 
from fish in other tributaries. A collection of such 
populations that interact through the exchange of 
individuals is termed a metapopulation. 
Metapopulations are associated with large 
watersheds, lakes, or river basins -- depending on 
the level of connection among streams and the 
straying or dispersal rates and distances typical of 
each species. When habitat is lost or streams are 
blocked, metapopulations may become 
fragmented into isolated local populations.  

Commonly, extinction refers to the loss of a 
species. Extinctions also occur at the level of a 
local population and at regional levels represented 
by metapopulations. Because Forest Service policy 
directs the maintenance of a species throughout its 
range, local and regional extinctions are important 

to fisheries biologists. We focus our discussion on 
extinction processes relevant to local populations 
and then consider metapopulation dynamics that 
are important to both local and regional 
persistence. 

Extinction occurs when population losses (defined 
as the per capita death or emigration per, unit   
time) exceed population gains (defined as the per 
capita reproduction or immigration per unit time) 
long enough to extinguish the population. The 
population growth rate (R) is defined as the  
natural log of the birth rate minus the death rate. 
When R is negative, the population declines; if R  
is positive, the population increases. The 
mechanisms leading to extinction can be 
characterized in three general categories: 
deterministic, stochastic, and genetic (Leigh 1981; 
Gilpin and Soulé 1986; Gilpin 1987; Shaffer 1987; 
Shaffer 1991) which can operate in complex 
combinations. In the following, we will discuss 
each of these in turn. 

Characterization of Risks 

Deterministic Processes 

Deterministic extinctions occur with the   
cumulative loss or otherwise permanent change of   
a critical component in the species’ environment 
(Gilpin and Soulé 1986). Such changes result in 
progressive increases in the population death rate, 
decreases in the population birth rate, or both. If   
the environment changes sufficiently, natural 
compensatory mechanisms, which tend to     
increase the birth rate as the death rate increases, 
can be overwhelmed.  This leads to a negative 
expectation of R. Despite occasional increases in  
the population due to stochastic factors (see   
below), the population will move inexorably 
towards extinction.  

For salmonids, a variety of factors might  
contribute to deterministic extinction. Bull trout 
populations might decline, for example, with the 
elimination of pools or woody debris that are 
necessary as overwinter habitat; or with an 
increase-in fine sediments that degrade spawning 
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habitats and lead to increased mortality of 
incubating embryos. Salmon populations have 
declined with increasing mortality at dams in the 
migratory corridor. Alternatively, competition or 
predation might increase with the introduction of 
exotics. Changes that might be tolerated     
separately may lead to extinction in combination. 
Displacement of bull trout by brook trout, for 
example, may occur more commonly in degraded 
habitat. Relatively subtle changes in habitat    
quality may favor one species over another   
(Everest et a1. 1987). Mortality from some causes 
can increase as populations become smaller, even 
with no further change in the environment. Such 
depensatory effects may be particularly relevant   
for sa1monids (Peterman 1977; Peterman and   
Gatto 1978; Rieman and Apperson 1989; Rieman 
and Myers 1991). 

A population's response to environmental change 
depends on somatic growth, mortality, fecundity, 
longevity, and age at maturity. In combination,   
these factors determine the reproductive potential    
of the population, and thus its ability to     
compensate for increased levels of mortality.     
Given similar age structures, sex ratios; mortality, 
and maturation rates, for example, populations     
with higher reproductive potentials should be      
more resistant to disturbance. A fluvial population   
of cutthroat trout that matures at age four and 400 
mm will likely have a higher reproductive      
potential than a resident population of cutthroat   
trout that matures at age four and 200 mm.  

Additional of cumulative stresses will 
progressively decrease the compensatory capacity 
of a population. Simply put, habitat disruption   
that results in lower survival or growth at one  
stage means that less mortality can be sustained at 
another stage if the population is to maintain its 
current numbers. Most populations can absorb 
some increased mortality, hence the ability to 
withstand harvest. Cumulative mortality related to 
habitat loss reduces that reserve. Clearly, all 
populations are not equal in their ability to absorb 
additional stresses -- but we cannot accurately 
estimate the differences. Any habitat change that 
irreversibly reduces survival or growth at any life 
stage increases the risk of deterministic extinction. 

Much, if not most, of the loss of salmonid 
populations probably results from habitat change   
and other actions (e.g., fishing regulations, species 
introductions, pollution) that induce deterministic 
responses. These problems are well known among 
fisheries biologists. Restrictive angling regulations 
and habitat management efforts are often used to 
increase survival and mitigate such risks in  
individual populations. The long term declining 
trends in many populations suggest that such     
efforts are not always successful. 

Stochastic Processes 

Less familiar to fisheries biologists are risks 
associated with stochastic processes, or change 
events. Such processes result in unpredictable 
fluctuations in population numbers. At times   
such fluctuations can portend disaster for 
populations, especially if the populations are very 
small. Stochastic processes generally are grouped 
into two categories, demographic and 
environmental, depending on their origin. For 
example, Nisbet and Gurney (1982) distinguish 
the two as: 

(a) Demographic stochasticity, which is the name 
given to fluctuations that arise because 
populations contain a discrete number of 
members, with population changes being 
caused by a succession of individually 
unpredictable births and deaths; 

(b) Environmental stochasticity, which is the 
name properly applied to a periodic 
environmental variation and often applied 
loosely to the resulting population  
fluctuations. 

Demographic stochasticity arises from small 
magnitude differences among individuals that  
might ordinarily be viewed as similar. In   
population models, demographic stochasticity is 
introduced through a discrete sampling process.   
For example, survival of a group of N fish in a  
given year might be modeled as X successes in N 
trials where X is the number surviving. If P is the 
probability of success in each trial (i.e., probability 
of survival), the expected number surviving would 
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be (N • P). The difference between X and (N • P) is 
demographic stochasticity, often referred to as the 
sampling error. The ratio of the expected sampling 
error to the expected outcome (the coefficient of 
variation) decreases as the sample size increases. 
Thus, this type of variation is most important at     
low population abundances. Demographic 
stochasticity is considered inconsequential unless 
population sizes are very small (i.e., 20 adults)  
(Leigh 1981; Shaffer and Samson 1985; Quinn and 
Hastings 1987; Shaffer 1987). 
 
Environmental stochasticity includes chronic and 
catastrophic fluctuations of higher amplitude  
(Shaffer 1987; Shaffer 1991). Such variations in 
survival and birth rates can be attributed to       
normal variability in such characteristics as 
temperature and stream flow, or low frequency, 
extreme events such as flood, drought, fire storms 
and debris torrents. 

The variance in the population growth rate 
resulting from the combination of demographic  
and environmental stochasticity interacts with 
population size to determine the probability of 
extinction over a given time period (Dennis et al. 
1991; Leigh 1981; Boyce 1992). The expected time 
to extinction decreases as population size  
decreases and as the variation in the-population 
growth rate increases. Small populations tend to 
vary relatively more than large populations   
(Gilpin and Soulé 1986). They are likely to 
experience high temporal variation, lower genetic 
and phenotypic diversity, and have few refuges 
available (Gilpin and Soulé 1986; Shaffer 1987; 
Saunders et al. 1990). 

Population viability analyses, based in both 
simulation and analytic models, provide estimates 
of stochastic risks for a variety of taxa (see for 
example, Shaffer and Samson 1985; Dennis et al. 
1991; Stacey and Taper 1992). Such efforts require 
data that often are not available for many 
populations of salmonids. Results for a variety of 
species, however, suggest that populations isolated 
from other populations face higher risks through 
stochastic effects. For example, our analysis 
(Rieman and McIntyre 1993) of local bull trout 
populations indicates that few have a high 

probability of persisting for 100 years isolation 
from other populations. Such analyses also suggest 
that extinction risks for local, isolated populations 
increase sharply as population sizes drop below 
roughly 1,000-2;000 total individuals (Figure 1).  
 
Historically, stochastic processes may have posed 
little threat to most local and regional salmonid 
populations. However, with the loss of habitat, 
many populations have declined dramatically in 
size and have been restricted to marginal or highly 
variable habitats, thus increasing the risk from 
stochastic factors. Habitat change can influence  
not only the amount of environmental variation, 
but also the sensitivity of a population to that 
variation. Populations in complex habitats should 
be more stable than populations in simple or 
restricted habitats because they have more refuges 
from extreme events and greater capacity to buffer 
the effects of environmental change (Schlosser 
1982; Saunders et al. 1990; Sedell et al; 1990; 
Schlosser 1991; Pearson et al. 1992). Even without 
any further habitat loss, we anticipate further loss 
of already restricted populations. 

Genetic Risks 

Conservation of a species depends on protection  
of its genetic diversity. The consequence of losing 
diversity is loss of genetic combinations, some of 
which may be crucial to survival in highly variable 
environments. Although adaptations to local 
conditions are difficult to identify, their presence  
is generally supported by data (for example, Hynes 
et al. 1981; MacLean and Evans 1981). At   
present, available data do not provide a basis for 
specifying the minimum amount of genetic 
diversity that must be maintained to ensure 
persistence of salmonid populations. 

The literature is replete with arguments that one 
cannot define general guidelines for the minimum 
number of organisms needed in a population to 
mitigate the effects of genetic loss. Soulé (1987) 
argues, however, that the public deserves guidance 
from the scientific community so that    
conservation programs can proceed. He proposes 
the "50/500" rule: in a completely closed 
population, an effective population size of 50 is 
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Figure1. Estimated probability that a hypothetical population will persist above a minimum threshold of 20 adults  
for 100 years given an initial population size and the variance ( ) in the annual population growth rate. 
Populations were assumed to be fluctuating around some equilibrium. Estimates of variances are not 
available for most salmonid populations but existing data suggest that many may range from 0.05 to 0.50 
or higher. These results indicate that risks of dropping below the threshold increase sharply with initial 
population sizes less than I,000 to 2,000 total individuals. Thresholds do not represent true extinction     
but a point where risks through demographic stochasticity, lost genetic variation and inbreeding, or 
depensatory mortality may make recovery unlikely without support from other populations. The   
estimates follow the method of Dennis et al. (1991) as outlined in Rieman and Mclntyre (1993). 

needed to prevent excessive rates of inbreeding,  
but 500 is needed to maintain the genetic   
variation necessary for long term adaptation. 
Effective population size refers to the level of 
genetic variability represented in the breeding 
individuals and not to the total population size;   
the effective number may equal three-quarters or 
less of the actual number (Salwasser and Marcot 
1986; Falconer 1989). Nelson and Soulé (1987) 
suggested that genetic variation can be lost with 
fewer than 5,000 total individuals. 

Historically, much of the thinking in species 
conservation focused on genetic issues associated 
with small population size and isolation (Franklin 
1980; Shaffer 1991). More recent work suggests 
that many populations are at higher risks from 
environmental stochasticity or catastrophic events 
than through inbreeding or the loss of genetic 
variation (Lande 1988; Shaffer 1991; Stacey and 

Taper 1992). It seems likely that management 
prescriptions taken to minimize stochastic and 
deterministic effects will at the same time 
minimize genetic risks. 

Although we have classified the risks of extinction in 
three general areas, it is important to recognize that 
the processes of extinction do not operate 
independently. Genetic restriction, for example, may 
reduce fitness and increase sensitivity to 
environmental variation. Cumulative habitat   
changes that eliminate or isolate segments of 
populations may increase both demographic and 
environmental stochasticity because of lower 
numbers and lower diversity in population structure 
or distribution. Those same habitat changes might 
increase mortality directly by restricting the 
population to less productive habitat, also leading to 
increased deterministic risk. 
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Metapopulation Dynamics 
 
If the odds seem stacked against the local 
population, how then does one explain the  
apparent persistence in nature of large numbers of 
relatively small populations in highly variable 
environments? One possible. mechanism 
contributing to population persistence involves 
organization of populations at a higher level. An 
expanding literature in conservation and  
population biology suggests that large-scale spatial 
structure and dispersal mechanisms are critical to 
the persistence of populations of many taxa  
(Gilpin 1987; Shaffer 1987; Hanski 1991; Hanski 
and Gilpin 1991; Sjogren 1991; Boyce 1992). 
Many species exist in spatially heterogeneous 
environments with local groups of animals 
associated with patches of suitable habitat. These 
local groups are more likely to interact and 
interbreed among themselves than with other 
groups, but exchange of individuals occurs  
through a range of dispersal mechanisms. 
Populations within populations in this context are 
again defined as metapopulations in the emerging 
jargon of conservation biology (Shaffer 1987; 
Hanski and Gilpin 1991). 

Theoretically, the diversity of local populations in 
variable environments conveys stability to the 
larger metapopulation. Local extinctions are a 
natural if not common part of the regional 
population dynamics for many species (Hanski 
1991; Hanski and Gilpin 1991; Sjogren 1991). 
Multiple component populations in complex 
habitats spread the risk of synchronous extinctions 
(Morrison and Barbosa 1987; Quinn and Hastings 
1987). Stronger populations provide sources for 
recolonization (Brown and Kodric-Brown 1977; 
Sjogren 1991), or support of other weaker 
populations through dispersal of surplus animals 
(Hanski 1985; Pulliam 1988) (Figure 2). 

Metapopulation dynamics may be particularly 
important to the persistence and recovery of 
population's following catastrophic events (Yount 
and Niemi 1990), but probably play a role in 
normally variable environments as well. The 
probabilities of persistence and relative stability of 
the metapopulation are strongly influenced by the 

sizes, spatial distribution, temporal variation and 
synchrony, and dispersal among the component 
populations (Fahrig 1990; Hanski 1991; Sjogren 
1991; Doak et al. 1992). 

Populations of salmonids have features characteristic 
of metapopulations. Spawning and early rearing  
often occur in streams tributary to larger river or   
lake systems. Homing and fidelity to nursery areas 
creates some isolation among populations within 
streams and represent the basis of the stock concept 
(Ricker 1972). Local adaptations provide further 
evidence of isolation in a heterogeneous 
environment. Dispersal among groups may be 
maintained through the straying of migrating adults 
(Simon 1972; Labell 1992; Reisenbichler et al.  
1992), density-dependent displacement of  
individuals (McMahon and Tash 1988; Northcote 
1992), or maintenance of pioneering or colonizing 
phenotypes (Northcote 1992). 

Implications for 
Fisheries Management 

Metapopulation dynamics are important 
considerations in conservation planning and   
species maintenance and recovery efforts (Murphy 
and Noon 1992; Noon and McKelvey 1992),    
There has been some application of these ideas to 
aquatic environments and fish populations (for 
example, Sheldon 1988; Moyle and Sato 1991; 
Reeves and Sedell 1992). There is a general 
consensus that preserving phenotypic and genetic 
diversity requires maintaining populations        
through a wide geographic range in a variety of 
habitats (Allendorf and Leary 1998; Leary et al. 
1991; Moyle-and Sato 1991; Reeves and Sedell 
1992). Diversity in life-history characteristics may 
be critical to the persistence of and dispersal of 
populations in changing or variable environments 
(Gross et al. 1991; Northcote 1992; Titus and 
Mosegaard 1992). 

For the most part, however, management and 
research of interior salmonid populations have 
continued to focus on the intra-population     
processes of recruitment mortality and growth,  
and production or yield. Management and 
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Figure 2. Schematic representation of a metapopulation. Size of the circle represents the relative size of a 
population and the potential for emigration of individuals. Arrows represent the pathways of exchange 
among populations. The broken circle represents a population that has a high probability of local 
extinction, and is likely to persist only through support from other populations. 

research have typically focused on characteristics    
of individual habitat units or stream reaches, and    
the links between distribution, abundance, and 
survival of fish at that scale (see Fausch 1988). 
Growing attention has been placed on     
consideration of fish habitat relations from a larger 
scale (Frissell 1993; Frissell et al. 1993); but little     
is known about the links between spatial diversity    
in habitat characteristics among streams and the 
corresponding spatial diversity in the     
characteristics and dynamics of populations. 
Similarly, little is known about how populations 
interact via migration and dispersal. Concern for,  
and the relative importance of, individual  
populations is likely to be based more on the   
relative size or potential yield of a population than  
on its contribution to stability or diversity of the 
whole (though the two may be related). For   
example, marginal environments and discrete life 
history forms are often overlooked in management 
decisions focused on the dominant or most 
productive stocks (Northcote 1992; Wright 1993). 
 
 
Land-use management and development influence 
metapopulation processes. Migration, dispersal,     
and the connection among populations are 

influenced by changes in hydrologic and 
temperature patterns, water diversions and dams, 
channel conditions or barriers, and the distance 
among remaining populations and suitable    
habitats. In heavily disturbed environments, 
populations are isolated or clustered in    
undisturbed headwater areas (for example, Mullan  
et al. 1992) (Figure 3). Invasion by exotics may     
be hastened by habitat disruption (Hobbs and 
Huenneke 1992; Markle 1992; Mullan et al. 1992) 
and may produce further isolation or local  
extinction through competitive displacement   
(Leary et al. 1991; Mullan et al. 1992). 
 
 
Conventional forest management can compromise 
the metapopulation structure by changing the  
natural mosaic of condition's in which it evolved. 
Under conventional management, habitat   
disruption is often spread widely throughout a   
basin to minimize impacts in any single stream.   
The use of habitat thresholds or levels of   
acceptable disturbance is likely to create more 
homogeneous conditions among streams that  
cluster about or below the threshold than a more 
natural range of habitat conditions. Under the  
former condition, the diversity, resilience, and 
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resistance to disturbance of all populations may be 
compromised, while the synchrony in response to 
disturbance is increased. When habitat disruption is 
spread among all populations, all populations are 
more likely to decline during unfavorable periods in 
the regional environment (for example, drought). 
Severe or prolonged conditions increase the   
potential for regional extinction. 
 
 
Since forest management influences salmonid 
population persistence at both local and regional 
scales, planning and project assessments must 
address both. Tables 1 and 2 outline the relative   
risks of extinction associated with characteristics of 
both local and regional populations. A low risk of 
extinction means that a population has a high 
probability (for example, > 95%) of persisting 
through the period relevant to forest management 
(100 to 200 years), given existing or improving 
conditions. We judge a population at high risk of 
extinction as one with less than a 50% chance of 
persisting through the same period. 

Our attempt to represent the risks for any    
population characteristic assumes that all other 
characteristics would represent a low risk. Though 
there is no exact way to combine the risks presented 
here, the additive model provides a suitable first 
approximation. For example, a population at 
moderate risk through several processes is likely to 
be at high risk overall. 
 
 
We believe maintaining strong populations in the  
best possible habitats throughout the landscape and 
preserving metapopulation structure and function   
are the best hedges against extinction. Conservation 
goals that include maintaining spatially dispersed, 
high quality habitats will be more effective than  
goals based solely on estimates of minimum viable 
population sizes (see Boyce 1992), or goals that 
allow disruption of all streams. While more work is 
necessary to describe the appropriate scale for 
sustaining different species and in different 
environments, the creation or maintenance of a     
more natural mosaic of habitat conditions should 
commence wherever possible. 

Figure 3. Hypothetical representation of the distribution of salmonid populations within undisturbed (A) and disturbed 
(B) basins. The darkest shading represents the best habitats supporting the strongest populations with 
potential for dispersal to and support of other surrounding populations. The lighter shading represents 
intermediate or disrupted habitats that support fish either because of support from other populations or 
because habitat is still suitable over the short term. The unshaded areas represent disrupted habitats that 
support no fish. The arrows represent dispersal among populations. Metapopulation theory suggests that 
persistence throughout the region may be strongly influenced by the distribution of strong populations. 
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