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Abstract

This paper investigates optimization approaches to simultaneously modelling habitat fragmentation and spatial
correlation between patch populations. The problem is formulated with habitat connectivity affecting population
means and variances, with spatial correlations accounted for in covariance calculations. Population with a pre-speci-
fied confidence level is then maximized in nonlinear programs that define habitat patches as circles (fixed shape) or
rectangles (variable shape). The ideas and model formulations are demonstrated in a case example with a maximum
of four habitat patches. Spatial layout of habitat is strongly sensitive to species dispersal characteristics and the
spatial correlation structure resulting from different environmental disturbance agents.

Keywords: Landscape structure; Nonlinear programming; Patchy environments; Spatial patterns

1. Introduction fragmented habitats than in well-connected habi-
tats resulting in more susceptibility to extinction
(Diamond, 1976; Fahrig and Merriam, 1985;
Burkey, 1989; Tilman et al., 1994). In addition to
this demographic extinction pressure (sensu Shaf-
fer, 1981), there is concern that wildlife popula-
tions are vulnerable to environmental stresses
(c.g., fire, extreme weather events, and disease)
that have varying magnitudes of spatial covari-
ance (Simberloff and Abele, 1976; den Boer, 1981;
Goodman, 1987; Quinn and Hastings, 1987). By
spreading the risk of environmental stress among
subdivided populations, persistence time may ac-
tually be longer in fragmented landscapes (Fahrig
and Paloheimo, 1988).

The need for connectivity to minimize demo-

* Corresponding author. Fax: (+ 1-970) 498-1660. graphic extinction pressures suggests that a desir-

Increasing human populations are resulting in
greater resource development pressures and land
use intensification. One outcome is a reduction
and insularization of natural habitats — a pattern
often discussed under the rubric of landscape
fragmentation. Animal species associated with
natural habitats will thus exhibit a patchy distri-
bution over a mosaic of suitable and unsuitable
habitat (Gilpin, 1987) with population dynamics
over the landscape being affected by the spatial
pattern of fragmentation (Hanski, 1991).

It is commonly predicted that wildlife popula-
tion establishment and persistence is lower in
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able spatial layout of habitat fragments would
involve highly “clumped” patches, whereas the
possibility of spatially-correlated ruinous events
suggests that some degree of habitat spreading
may be advantageous. This paper provides a sta-
tistically-based formulation for mathematically
capturing both of these considerations, and ex-
plores some mathematical (nonlinear) program-
ming approaches for finding an optimal balance
in this ecological trade-off.

2. Theory

Because resource managers are confronted
with competing uses for a finite land base, we
assume that only a fraction of that finite land
base will be retained as habitat. We then assume
that the problem is to arrange the remaining
habitat in a spatially optimal manner that meets
specified population objectives for a certain
wildlife species. We also assume that habitat
placement is semipermanent, so there is no
scheduling element to consider.

2.1. Connectivity

The ecological literature (for review see, Wil-
son and Willis, 1975; Diamond, 1975; Simberloff,
1988) has recommended that a single large area is
better than several smaller areas, and if subdivi-
sion cannot be avoided, habitats clustered to min-
imize distances between patches are preferred to
those arranged linearly. Likewise, a circle of rem-
nant habitat is better than an oblong shape
(Game, 1980). These recommendations are based
on a notion that wildlife disperse in a direction-
less or random fashion. There would thus be
some probability that a given habitat area around
any other habitat area would be “connected”,
and this probability would diminish as the dis-
tance increases between the two habitat areas.
With many habitat areas, the probability of a
given area being connected would be a function
of the number of other habitat areas nearby and
the distances to them. We assume that the proba-
bility of each area being connected to a group of
areas is the joint probability that the area is

connected to any (not all) of the areas in the
group. We also assume independence between
the individual connectivity probabilities. Thus, the
joint probability (PR,) of each patch i being
connected would be:

M
PR,:I—[]—I(l—prU)] Vi (1)
j=1

where pr;; is the probability that patch i is con-
nected to patch j (pr,; assumed to be 0). Presum-
ably, pr;; would be smaller, the farther patch j is
from patch i. Eq. 1 simply calculates the joint
probability that patch i is not connected to any of
the j=1,---,M (j #i) patches, and then calcu-
lates PR, as the converse of that joint probability.
At some distance, the probability of two habitat
areas being connected would be effectively zero.
Thus, when an area is retained as habitat, it has a
certain probability of being connected, which is
determined by the number and location of other
habitat areas, and it also contributes to the prob-
ability of other areas being connected in an
equivalent manner. We discuss specific functional
relationships between pr;; and inter-patch dis-
tance in the case example.

If we assume that habitat is only used to the
degree that it is connected, it would be reason-
able to define the expected population in the ith
patch, E(P,), as:

E( Px) = PRiai‘Si

and the expected value of the total population
E(P) as:

M
E(P) = E PRial'Sl' (2)
i=1
where: a, = the expected density of individuals in
perfectly-connected habitat in the ith patch; §, =
the size of the ith patch.

Eq. 2 calculates E(P,) for each patch as the
expected population of a perfectly-connected
patch (a,S,) times the probability that it is con-
nected (PR,), and then sums across patches to
obtain E(P). We will initially assume that the a;
are fixed constants, but will also investigate alter-
native formulations that will account for the in-
fluence of patch size and shape.



J. Hof, C.H. Flather / Ecological Modelling 88 (1996) 143-155 145

2.2. Spatial correlation

A number of investigators have noted that
populations across different patches of habitat
are spatially correlated (Gilpin, 1987; Fahrig and
Merriam, 1994). Varying degrees of synchrony in
population dynamics occur because distance of-
ten determines the commonality of random influ-
ences (e.g., weather, fire) on populations, includ-
ing influences that are directly affected by popu-
lation connectivity (e.g., disease, genetic varia-
tion). Applying the standard definition of covari-
ance to any two patch populations implies:

2 _
035 = P;;j0;0;

where: a',v_‘-:' = the covariance between the popula-
tion in patch i and the population in patch j.
p;; = the correlation between the population in
patch i and the population in patch j. ;, 0; = the
standard deviations of the populations in patches
[ and j, respectively.

Then, the total population variance, V(P), will
be:

M M

NPy = E Z P;j0;0; (3)

i=1j=1

If the p;; are negatively related to the distance
between patch i and patch j, then spreading of
the patches could be desirable because it reduces
the pairwise correlations. This reduces the vari-
ance of the total population, thus reducing the
probability of a catastrophically-low population,
all other things (especially E(P)) being equal.

There is also typically some relationship be-
tween each ¢; and E(P,). For convenience (only)
we will assume a fixed coefficient of variation for
the population of each patch implying:

o, =VE(P) Vi

where ¢ is a fixed constant. Thus, by Eq. 2, Eq. 3
can be written as:

M M
Y(P)= Z ):Pu(fffPRf“ssf)(kaRjaij) (4)
i=1j=1

Specific relationships between the p;; and inter-
patch distance are discussed in the case example.

2.3. Chance maximization

Both connectivity and spatially correlated envi-
ronmental disturbances can be captured with a
mathematical statement of a given confidence
level for total population:

B=E(P) +sV(P)"? (5)

where & = the “z-value” or standard deviate for
the given confidence level; B =the population
associated with the given confidence level.

Thus, for example, we can calculate the popu-
lation that we are 80% (8 = —0.84) confident in
as (using Egs. 2 and 4):

M M M
B= ) PRa5 ~084 Y ¥ pii(WPR,a,S;)

i=1 i=1 =1
1/2
X(tf!PRjajS}-)l (6)

It is clear that the size and location of the habitat
patches affect B through both the mean and the
variance of P in Eq. 5. We assert that it would be
desirable to maximize B with a selected & subject
to resource limitations (it would also be reason-
able to fix B and minimize §). The remainder of
this paper will investigate mathematical program-
ming approaches to this problem, which tie the
PR; and p,; variables to specific patch layouts
and then optimize those layouts to maximize B.
This mathematical programming problem should
be distinguished from those typically addressed
with simulation modelling which can analyze pop-
ulation impacts of a given spatial layout (see
Kareiva, 1990) but does not find an optimal lay-
out, per se.

3. Optimization

We will link the p and PR variables to habitat
patch layouts using geometric shapes: first circles
and then rectangles. Problems with circular
patches have a simpler formulation, but the rect-
angular patches afford more flexibility in terms of
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patch shape (square vs. long and narrow, etc.).
Choice variables will be established to define
location and size (and shape in the case of the
rectangles) of habitat patches from which dis-
tances can be calculated in the mathematical
programs. It is necessary to pre-specify the maxi-
mum number of habitat patches (M).

3.1. Circles

We located the circular habitat patches with
their centroids in a system of east/west—
north /south (x-y) coordinates. The size of each
circle was then characterized by the radius, and
the distance between any two circles was simply
the distance between their centroids less the sum
of their radii. A mathematical (nonlinear) pro-
gram to maximize B with circular patches can
thus be formulated as follows:

Maximize:

B=E(P)+8V(P)"?

Subject to:

M
E(P)= Y PR,aS,

i=1

M
V(P)= Z Pif(‘x[‘PR;afSi)z

i=1

M
ot E ZZpi}-(&PR;-a,S;-)((,bPRJ-aij)

i=1j>i
M

PR;l—{l‘[(l—pr”)] Vi (7)
j=1

pr;‘_jzf(Dij) Vi, j>i (8)

pi;=8(Dy) Vi, j>i (9)

M —

0 I 5 (10)

i=1

x;=rn Vi (11)

y;=r Vi (12)

x;+r,<X Vi (13)

yi+r<Y Vi (14)

S;=wr} Vi (15)

Dy =[x+ (=3} = (ri4 1)

Vij>i (16)
D;=0 Vi, j>i (17)
r,>R Vi (18)

where: f and g = generic functions — possible
specific functions will be discussed below; D;; =
the distance between circle i and circle j; L = the
amount of habitat area that can be retained;
X =the east-west dimension of the problem
space; Y =the north-south dimension of the
problem space; x; = the x-coordinate of the cen-
ter of the ith circular habitat patch; y,= the
y-coordinate of the center of the ith circular
habitat patch; r; = the radius of the ith circular
habitat patch; and all other variables are as previ-
ously defined.

The optimization process will thus choose lev-
els of x;, v, and r, that size and locate the
habitat circles so as to maximize B. Eq. 7 merely
repeats Eq. 1 and calculates the joint probability
of connectivity for each patch i. Eq. 8 calculates
the pairwise probability of connectivity for each i
and j pair as a function of distance. Similarly,
Eq. 9 calculates the correlation for each i and j
pair as a function of distance. Eq. 10 limits the
total amount of retained habitat to L. Egs. 11-14
keep the circles of habitat within the problem
space, which is assumed to be rectangular with
dimensions Y by X. Eq. 15 calculates the area of
each circle, and Eq. 16 calculates the distance
between each pair of circles. Eq. 17 prevents the
circles from overlapping. Eq. 18 sets the mini-
mum radius for each habitat circle. If it is desired
to allow radii (and thus circle areas) to go to zero,
the contribution to population variance will auto-
matically be removed in Eq. 6 (see also Eq. 3).
D,; would have to be multiplied by §,S,/(S;S; + €)
in Eq. 8, where € is an arbitrarily small constant,
in order to remove any contribution of a zero-area
circle to connectivity. This would allow selection
of the number of habitat patches, within the
maximum allowed number, M. If the number of
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patches is to be pre-specified (again, as M), then
R should be set at the minimum size that func-
tions as a patch in the model in terms of carrying
capacity, connectivity, and covariance.

In the formulations up to this point, we have
treated the a, as a fixed constant. For many
species, the density of population is not a simple
linear function of habitat area. Often, edge habi-
tats — habitats near the boundary of the patch -
have either unsuitable microclimates or harbor
predators and competitors that can reduce the
population. Consequently, as the proportion of
edge habitat increases relative to patch area, the
expected value of the population should decline.
To account for this phenomenon, we defined a
buffer distance b from the habitat patch edge,
inside of which edge-associated population deci-
mation factors fail to affect population density.
We could then penalize a; as follows (to define
@,):

a;=a(S;~8,) O0O<y<l

where S is total patch area, S, is the area of the
buffer, and y reflects the degree to which species
can survive and reproduce in the edge habitats. If
the edge habitats are totally unsuitable, then y = 1
and the effective habitat area (SS;) could be
calculated as:

SS,=m(r,—b)" Vi

and SS,; would replace §; in Eq. 6, but not Eq. 10
which constrains the total habitat area and Eq. 15
which defines the S;. The a; would thus still be
fixed, because the nonlinearity is accounted for in
calculating SS,;. Because the shape of the circles
is invariant, this only penalizes small size patches
in terms of habitability. We next turn to a formu-
lation that utilizes rectangles, so that shape of the
patches is more variable.

3.2. Rectangles

Our approach with rectangles of habitat is
similar, but Egs. 11-18 need to be replaced to
account for the different geometry. For conve-
nience, we located the ith rectangle by the x—y
coordinates (x{ and y!) of its southwest (lower-
left-hand) corner. The size and shape of each

habitat rectangle was then determined by two
choice variables (x;” and y,”) specifying its x
dimension and its y dimension.

Calculating the distance between rectangles is
more complicated than with circles, because of
the variable shape. Let us define the x and y
vectors between the closest points of two rectan-
gles (i and j) as Ax and Ay. Then note that the
distance between i and j is always:

il N2 2
DU-—UAx + Ay

which is Ax if Ay=0, Ay if Ax=0, and the
hypotenuse of the triangle formed by Ax and Ay
if Ax>0, Ay>0.

Now, looking first at the x vector, there are
three cases to consider:

(a) rectangle i is completely to the left of

rectangle j, so Ax =x) — (x] +x.),

(b) rectangle i is completely to the right of

rectangle j, so Ax=x)—(x] +x;), and

(c) rectangles i and j are at least partially

above /below each other, so Ax = 0.
Note that in case (a) x{ —(x +x,) is negative
and that in case (b) x} — (x{ +x,") is negative.

Similarly, looking at the y vector, there are
three cases to consider:

(d) rectangle i is completely below rectangle j,

so Ay =y = (y) +y/),

(e) rectangle i is completely above rectangle j,

so Ay =y —(y+y;), and

(f) rectangles i and j are at least partially

left /right of each other, so Ay =0.

Note that in case (d) y! — (y +y;") is negative
and that in case (e) y; — (y; +y,") is negative.

It will be useful to define the following instru-
mental variables:

DXj; = 0.5y (x] —x —x; )2 +0.5(x) —xP—x;)
DX} = 0.5,/@'—;[}' —;)_2 +0.5(x —x0—x;")

DY =05/ (0 30—y ) +0.5(30—y2~v")

— )
DY} = 051/(?? ==y ) +05(y -y -y})
For example, DX}, is zero if x]—x?—x is
negative, but is x —x{ —x;° otherwise. Case (a)
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implies DX, > 0 and DX}, = 0; case (b) implies
DX}, =0 and DX%)O; and, case (c) implies
DX/, =0 and DX, = 0. With these instrumental
variables, it is then possible to calculate the dis-

tance between rectangle ¢ and rectangle j as:
— 132 232 1}2 02| *
D;=|(DX};) + (DX}) +(DY}}) +(DYU.)]
(20)
with the restriction that:

DX/ + DX} + DY} + DYz

5

where p is an arbitrarily small (but nonzero)
positive constant, to prevent the two rectangles
from overlapping. The constant w must be se-
lected to exceed the precision of the instrumental
variable calculations, as it works by forcing at
least one instrumental variable to be > 0. Eq. 20
is simply a re-statement of Eq. 19, using the
instrumental variables to “zero-out” the incorrect
calculations of Ax and Ay so that Eq. 20 is
general to all combinations of cases (a)-(b)-(c)
with cases (d)-(e)-(f).

A mathematical (nonlinear) program to maxi-
mize B with rectangular patches can thus be
formulated by replacing Egs. 11-18 in the circle
formulation with:

x>0 Vi (21)
>0 Vi (22)
wWaepr 2 X Vi (23)
y+y <Y Vi (24)
S;=x-y* Vi (25)

D, =|(Dx}) +(DX3) + (DY)’

s (Dst)z] - Vi, j>i (26)

DX}, + DX} +DY,,+ DY 2u Vi, j>i
(27)
x>0 Vi (28)
y, =20 Vi (29)

Egs. 21-24 keep the rectangles of habitat within
the problem space, as previously defined. Eq. 25

calculates the area of each habitat rectangle. Eq.
26 calculates the distances between rectangles,
and Eq. 27 prevents overlaps, as just described. Q
is the minimum size of each dimension of each
rectangle of habitat. The same adjustment to Eq.
8 (as in the circle formulation) would be neces-
sary if it is desired to set Q = 0. All other vari-
ables are as previously defined.

In order to account for unusable buffer areas
near edges, as discussed for the circle formula-
tion (and again assuming that the buffer areas are
completely unsuitable as habitat), we could de-
fine:

SS,=(X,” —b)(Y"=b) Vi

and replace §; with SS; in Eq. 6. This penalizes
long, narrow shapes as well as small sizes of
rectangular habitat patches. It should be noted
that if only shape is to be penalized, this would
be possible by replacing a; with «; defined in a
manner such as:

41;'5_1 8
a.=a| ——
A 2e 2y

(see Austin, 1984) which would penalize the g,
for shapes as they deviate from squares, at a rate
determined by A (0 <A < 1).

4. Case example

4.1. Problem definition

In order to construct a case example, we scaled
the spatial optimization problem to the ecology of
a hypothetical species that defends a 1-ha terri-
tory and each territory represents a single breed-
ing pair. These life history attributes are not
entirely arbitrary but are characteristic of an
avian, habitat-interior specialist (see Temple and
Cary, 1988). We defined patch connectivity as the
probability of individuals successfully immigrating
from patch i to patch j. Patch connectivity is thus
a function of distance between patches (mea-
sured as the minimum edge-to-edge distance), the
dispersal capability of the species, and the harsh-
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ness of the inter-patch environment. A continu-
ous function for pr;; that declines monotonically
with distance and approaches zero asymptotically
is given by:

pr;=pr’ — pr®(1 — 624)” (30)

where B reflects species dispersal capability and
sets a threshold distance beyond which the proba-
bility of successfully colonizing a patch declines
relatively rapidly, and @ reflects the harshness of
the inter-patch environment which affects the
rate of decline. The parameter pr° indicates the
probability of connectivity when D;; = 0.

The formulations also require a function that
relates patch correlation p;; to distance (D;)).
Clearly, the correlation between patch popula-
tions increases as the distance between patches
declines. However, the correlation among patches
is also affected by the type of environmental
disturbance agents that affect long-term popula-
tion persistence. For example, population dynam-
ics in fragmented habitats would have an inher-
ently different p;; structure if the disturbance
agent is a disease transmitted by contact among
individuals as opposed to a disturbance agent
unaffected by patch population interactions (e.g.,
severe drought). We represent p;; as a function
of distance between patches as:

piy=p" = p"(1— ")

where 7 reflects a threshold distance beyond
which the correlation between patches declines
relatively rapidly, and o reflects the rate at which
the spatial covariance among patches decreases
with distance. Both 7 and w are disturbance-
specific. The parameter p° indicates the correla-
tion when D;; = 0.

A square problem space of 10000 ha was then
defined, and the unit distance within the problem
space was set to 100 m, which is the linear mea-
sure of one side of a square territory 1 ha in size
(so the problem space is 100 X 100 units and one
area unit (1 ha) is one animal territory). We set a
confidence level for Eq. 6 of 80%, and assumed
that patch populations had a coefficient of varia-
tion = 0.5. We assumed that only 2000 ha of
habitat could feasibly be retained among four

habitat patches. And, for simplicity, it was as-
sumed that all patches are large enough to sup-
port at least one breeding pair, and all function
as patches in terms of connectivity and covari-
ance. Thus, in terms of the formulations previ-
ously presented, the following parameters were
set:
M=4

a,=2

5= —-084
¥ =05

L = 2000
X =100

Y =100

R =0.56419
0=1

And, we set p"=pr’=0.9 so that adjacent
patches of habitat are highly connected and highly
correlated, but still distinguished as separate
patches. For demonstration purposes, both 8 and
7 were set at 50, and 8 and + were varied
between values of 0.75, 0.85, and 0.95.

4.2. Results and discussion

All of the solutions presented were obtained
on a 486 microcomputer using a version of the
“generalized reduced gradient algorithm” for
solving nonlinear programs (originally developed
by Abadie, 1978) called GRG2 in GINO (Lieb-
man et al., 1986). Tolerances were set such that
feasibility is assured within 1x 107°% Multiple
starts were employed in an effort to ensure global
optimality, and all solutions presented appear to
be global optima, but only local optima can be
absolutely assured (Luenberger, 1973).

We initially solved the circular patch model
with no size penalty (y =0, b=0). Fig. 1la pre-
sents the solution with parameters set to reflect a
species whose dispersal is not strongly inhibited
by the inter-patch environment (i.e., 6= 0095,
therefore pr;; decays slowly with inter-patch dis-
tance) and where the disturbance agents tend to
be rather local (i.e., w = (.75, resulting in spatial
correlations that decrease rapidly with distance).
Two patches of habitat are clustered together,
with the other two spread out about as far as
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possible. Note in Table 1 that the pairwise and
joint probabilities of connectivity are still quite
high — throughout the analysis, the solutions do
not disperse habitat to the point that connectivity

a.
100 e 2
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80} b =20
60}
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is severely sacrificed. At the same time, when an
animal is capable of migrating across nontrivial
distances, there is clearly an advantage in dispers-
ing the habitat to some degree to reduce total
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Fig. 1. Solutions of the circular patch formulation with varying levels of # and w. (a)-(e) have no size penalty whereas (f)
implements an edge buffer of unsuitable habitat that penalizes patch size.
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population variance. And, given the particular
formulations developed, there are often ways to
disperse the habitat and reduce total population
variance without serious adverse effects on over-
all connectivity. The correlations between all
patches except one and four are quite low (Table
1).

If w is increased to (.85, implying that spatial
correlations do not decrease quite as rapidly with
distance, then patches cluster into two pairs (Fig.
1b), which increases the connectivity relative to
Fig. 1a, but still disperses the pairs widely. In
Table 1, comparing the first with the second
solution, @ = 0.85 causes the solution population
to decrease and the population standard devia-
tion to increase.

In Fig. 1c, w is returned to (.75, and the 8 is
decreased to 0.85, indicating an inter-patch ma-
trix that is more resistant to successful dispersal.
This results in the patches being arranged in an
equilateral triangle, with a “stepping stone™ patch
in the middle. In this type of solution, the as-
sumption that any patch with r;, > R is fully func-
tional in terms of connectivity (and correlation) is
critical. In Table 1, this solution has some pair-

wise connectivity probabilities that are much
lower than in previous solutions, but the joint
connectivity probabilities are still quite high be-
cause of the location of patch four. For this
connectivity, the solution endures much higher
correlations between patch four and the other
patches. It is still possible to keep the covariance
relatively small, however, because the w =0.75
(Table 1).

In Fig. 1d, the 6 is decreased to 0.75 and the @
increased (again) to 0.85. These parameters re-
flect a very harsh inter-patch environment and
disturbance factors that affect a large enough
area to cause spatial correlations to decline only
moderately with distance. The solution spreads
patches two and four rather widely, but places
patches one and three in between for connectiv-
ity. The solution endures high correlations be-
tween all patch pairs except two and four, result-
ing in a relatively high population standard devia-
tion (Table 1). Looking across solutions in Table
1, it is clear that population levels with 80%
confidence generally decrease with lower migra-
tion capabilities (caused by a harsh inter-patch
matrix) and large disturbance factors.

Table 1
Connectivity probabilities, correlations, and objective function components for Fig. la-f

Fig. la Fig. 1b Fig. lc Fig. 1d Fig. le Fig. 1f
Pria 0.8996 0.9000 0.6170 0.859% 0.9000 0.9000
pris 0.8876 (.8752 0.6172 0.9000 0.8288 0.9000
Pris 0.9000 0.8222 0.8946 0.8596 0.9000 0.9000
Pray 0.8983 0.8729 0.6171 0.8596 0.9000 0.9000
Pray 0.8875 0.8752 0.8946 0.0052 (.8287 0.9000
Prag 0.8996 0.9000 (.8946 0.8596 0.9000 0.9000
PR, 0.9989 0.9978 0.9845 0.9980 0.9983 0.9990
PR, 0.9988 0.9984 0.9845 0.9804 0.9983 0.9990
PR; 0.9988 0.9984 0.9845 0.9980 0.9983 0.9990
PR, 0.9989 0.9978 0.9988 0.9804 0.9983 0.9990
P12 0.00083 0.9000 0.0544 0.9000 0.9000 0.9000
P13 0.00004 0.009s 0.0545 0.9000 0.9000 0.9000
Pia 0.90000 0.0029 0.5016 0.9000 0.9000 0.9000
P 0.00027 0.0088 0.0545 0.9000 0.9000 0.9000
Paa 0.00004 0.0095 0.5012 0.2334 0.9000 0.9000
P 0.00082 0.9000 0.5012 0.9000 0.9000 0.9000
objective function:
B 3034.6 2831.8 2931.7 2557.7 2380.1 2115.7
E(P) 3995.4 3992.3 3938.3 39314 3993.1 36473
V(P)"3 1143.8 1381.5 1198.4 16354 1920.2 18233
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In Fig. le, the 0 is kept at 0.75 and the w is
increased to 0.95. These parameters again reflect
an animal that is less capable of crossing nonhab-
itat area, but now with disturbance factors that
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are large enough to cause spatial correlations to
decrease slowly with increasing distance. This im-
plies that retaining connectivity will require close
distances, and that dispersing habitat patches
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Fig. 2. Solutions of the rectangular patch formulation with varying levels of # and w. (a), (c), and (e) have no size or shape penalty,
whereas (b), (d), and (f) implement an edge buffer of unsuitable habitat that penalizes patch size and shape.
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gains relatively little in reducing population vari-
ances. The resulting solution is not surprising —
four equal-sized patches are grouped as close
together as possible. We did confirm that it is still
optimal to retain these four patches as opposed
to one large patch, because some variance reduc-
tion is still obtained (because p®=0.9) and the
joint connectivity probabilities are all very near
100% (Table 1).

This is not the case if a buffer 100 m wide
(y=1, b=1) is removed from the calculated
usable habitat in each patch in Eq. 6 (Fig. 1f).
Note that R was increased to 1.56419 to retain a
minimum usable habitat for one species pair in
each patch. Here, 6 and w are left at 0.75 and
0.95, respectively, but eliminating the buffer from
usable habitat sufficiently penalizes small patches
to result in one large patch and three minimum-
sized patches placed adjacent to the large one.
The buffer is about 15% of the habitat area in
Fig. le, but is about 10% in Fig. 1f, which is
enough to alter the optimal layout as observed.
This demonstrates the difference that one might
expect between edge-neutral species (Fig. 1e) and
habitat-interior specialists (Fig. 1f) that cannot

survive close to the edge (see Margules et al.,
1994). Because circles are invariant with regard to
shape, this buffer effect only penalizes size. Fig.
2a—f and Table 2 demonstrate the rectangular-
patch formulation, which allows some variation in
shape.

Fig. 2a presents the solution to the rectangu-
lar-patch formulation with 8 = 0.85 and w = 0.75
(as in Fig. 1¢c) and without the edge buffer penalty.
The results are very similar to those in Fig. 1c,
but with patch shapes that are somewhat more
elongated. The equivalent solution with the buffer
(y =1, b=1) removed from usable habitat in Eq.
6 results in equalizing the three larger patch
areas, increasing the interior patch size to meet
the new constraint, and re-shaping the larger
patches into squares (Fig. 2b). Note that Q was
increased to 3.0 to retain a minimum usable
habitat for one species pair in each patch. In
Table 2, the effect of removing the edge buffer is
to scale back the objective function (B) and its
components E(P) and V(P)®3, but to leave the
connectivity probabilities and correlations almost
unchanged.

The solution to the rectangular-patch formula-

Table 2
Connectivity probabilities, correlations, and objective function components for Fig. 2a—f

Fig. 2a Fig. 2b Fig. 2¢ Fig. 2d Fig. 2e Fig. 2
pry» 0.6117 0.6045 0.8985 0.8821 0.9000 0.9000
Prys 0.8980 0.8995 (.8985 0.8821 0.9000 0.9000
Prig 0.6117 0.6045 0.000015 0.0007 0.9000 0.8997
Pra; (.8982 (.8996 0.00002 0.0066 0.9000 0.9000
Prag 0.6046 0.6028 0.8985 0.8821 0.9000 0.9000
Prag 0.8982 0.8996 0.8985 0.8821 0.9000 0.9000
PR, 0.9846 0.9843 0.9897 0.9861 0.9990 0.9990
PR, 0.9844 (1.9842 0.9897 0.9862 0.9990 0.9990
PR, 0.9989 0.9990 0.9897 0.9862 0.9990 0.9990
PR, 0.9844 0.9842 0.9897 0.9861 0.9990 0.9990
P2 0.0530 0.0510 0.9000 0.9000 0.9000 0.9000
P13 0.5995 0.7097 0.9000 0.9000 0.9000 0.9000
P4 0.0530 0.0510 0.0098 0.0825 01.9000 (1.9000
P2 0.6104 0.7176 0.0116 0.2613 0.9000 0.9000
Paq 0.0510 0.0506 0.9000 0.9000 0.9000 0.9000
P4 0.6104 0.7176 0.9000 0.9000 0.9000 0.9000
objective function:
B 29339 2486.7 27447 2270.7 2381.8 2088.9
E(P) 39379 3336.3 3958.8 3307.2 3996.0 3601.0
V(P)S 1195.1 1011.5 1445.3 1233.9 1921.6 1800.2
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tion with 8 =0.75 and @ = 0.85 (as in Fig. 1d)
and no buffer penalty makes considerable use of
the shape flexibility in the rectangular-patch
model, increasing the objective function by about
7% (Fig. 2c, Table 2). Two long, narrow patches
are used to “connect” two larger patches while at
the same time keeping the distance between the
larger patches quite large (and correlation quite
small, see Table 2). The assumption on Q is
again critical, because the model implicitly as-
sumes that patches two and three are wide enough
to serve as corridors connecting patches one and
four. Incidentally, patches two and three are also
connected by patches one and four, and patches
one and four are apparently elongated to reduce
the correlation between two and three. An equiv-
alent solution with the adjustments to remove the
buffer from usable habitat squares-up patches
one and four and widens patches two and three
to meet the new Q level (Fig. 2d). Because of the
problem space limits and the geometry of patches
one and four, this also implies shortening patches
two and three, and shortening the distances be-
tween most of the patches. The solution values
are quite different for the parameterizations de-
picted in Fig. 2¢ and d (Table 2).

The solution to the rectangular-patch formula-
tion with 8 = 0.75, @ = 0.95 and no buffer penalty
is similar to the circular-patch formulation. In
fact, the advantages of compaction cause the op-
timal solution to create near-square shapes even
without the buffer penalty (cf. Fig. 2e and Fig.
le). When the buffer is removed from the usable
habitat (Fig. 2f), however, a solution much like
Fig. 1f is obtained.

Whether a species will persist in a fragmented
environment is a question that has typically been
addressed through simulation of metapopulations
(Kareiva, 1990). Under this spatial metapopula-
tion approach, patch layout is essentially fixed
and the impacts of that layout on the temporal
dynamics of a species’ population are docu-
mented (sec for example Bowers and Harris,
1994). Metapopulation modelling offers an analy-
sis approach that captures complex population
dynamics when there is little opportunity for land
managers to alter the configuration of remaining
habitat patches. If the configuration of remaining

habitat has not be specified, then spatial opti-
mization offers an alternative analysis that per-
mits prescribing a patch layout that “best” meets
the requirements for long-term population sur-
vival. Although the circumstances of the conser-
vation problem will likely dictate whether simula-
tion or optimization is most appropriate, there is
no inherent reason for these approaches to be
mutually exclusive. Using spatial optimization to
hypothesize a spatial layout which, in turn, is
tested through simulation of metapopulation dy-
namics, would undoubtedly provide shared in-
sights into the analysis of populations in spatially
structured environments.

5. Conclusion

The case example is not intended as a realistic
application of the model formulations. Any real-
world situation would have many more con-
straints, and would probably involve many species
and any number of other complicating factors.
Rather, the purpose of the case example is to
demonstrate the sorts of solutions that the mod-
els generate in a relatively simple, interpretable
setting. Our objective was to mathematically cap-
ture the mutually inconsistent ecological concerns
of habitat fragmentation and spatial correlation
into a single model and show that the optimal
balance between these concerns can, in principle,
be determined through optimization procedures.
The case example solutions do suggest an ecolog-
ical principle that the best spatial arrangement
for habitat will often include a “mixed strategy”
that manages to connect the habitat but still
spread it out at the same time (such as in Fig. 1d
and Fig. 2c and d). Also, it is clear that simple
“ecological principles” will be difficult to de-
velop, because species with different life history
attributes (represented here by dispersal capabil-
ity) and environmental disturbance agents with
different spatial magnitudes both imply radically
different optimal layouts.

This paper is obviously an initial, developmen-
tal effort in a relatively new research area. Strong
simplifying assumption were necessary, and much
work clearly remains to be done. We hope, how-
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ever, that this first attempt encourages optimiza-
tion thinking and modelling efforts aimed at eco-
logical problems involving trade-offs between
competitive considerations.
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