Introduction

Pines grown in southern nurseries include sand pine (*Pinus clausa* [Chapm. Ex Engelm.] Sarg.), shortleaf pine (*P. echinata* Mill.), slash pine (*P. elliottii* Engelm.), longleaf pine (*P. palustris* Mill.), loblolly pine (*P. taeda* L.) and Virginia pine (*P. virginiana* Mill.). The range of these species is generally below 38 °N latitude (sand pine is below 31°N) and, therefore, they receive less chilling in the nursery than pines from more northern regions. A lack of chilling will delay the formation of flower buds on trees and, therefore, chilling is economically important to fruit and nut industries.

Inadequate chilling can explain slow germination of pine seed in nursery beds and it occasionally explains low outplanting survival after a hard freeze. This paper is a critical review of over four decades of research on chilling with southern pine seedlings. The discussion regarding seed stratification is brief and more detail will be placed on bud-break and freeze tolerance. A critique will be made on the often assumed relationship between bud-dormancy status and cool-storage potential of pine seedlings.
Endodormancy and Ecodormancy

Use of the word “dormancy” can be confusing since there are many definitions for this term. When asked to explain the relationship between seedling quality and “dormancy”, “few are able to articulate a clear view of what dormancy is, how it works, or how it affects quality” (Landis and others 2010). In theory, the word “dormancy” refers only to the ability of seeds to germinate or the ability of buds to elongate. However, in general practice, dormancy is used to describe a variety of conditions such as tolerance of seedlings to: desiccation, freezing temperatures, storage diseases, rough handling, high temperatures, or certain herbicides. Some believe seedlings are dormant just after shoot growth stops in the fall and they remain dormant until growth resumes in the spring. For this reason, the word dormancy will not be used in this paper (except in quotations). Instead, the words endodormancy (a.k.a rest) and ecodormancy (a.k.a. quiescence) will be used to describe the status of terminal buds (Boyer and South 1989).

The transition date when endodormancy ends and ecodormancy begins is not easy to determine. For a species like longleaf pine, it is almost impossible to determine due to the lack of bud elongation during the first year. For the purpose of this paper, the transition date occurs when the speed of bud-break is quickest (after being placed in a warm environment with, perhaps, a 15-hr photoperiod). For example if it takes 45 days before 50% of the seedlings have signs of “broken buds” in a greenhouse, then the seedlings are still in an endodormant state. In contrast, seedlings have achieved ecodormancy if it takes ≤15 days to achieve 50% bud-break.

Types of Chilling

I classify above-freezing chilling into four types. Natural-light chilling occurs under a natural photoperiod. The amount of natural-light chilling obtained on a given date depends on latitude, altitude and weather. For example, seedlings grown at Delano, Tennessee would receive more natural-light chilling by 1 January than seedlings grown at Chiefland, Florida. Artificial-light chilling is used by researchers who are investigating the effect of photoperiod on seedling physiology in storage. Artificial-light chilling occurs in growth chambers, lighted greenhouses, or lighted coolers where light-bulbs are used. Typically, natural-light chilling hour studies have confounded factors while well designed artificial-light-chilling studies are relatively free of confounding factors.

Natural-dark chilling and artificial-dark have a 24-h dark cycle (i.e. no photoperiod). Natural-dark chilling may occur when seedlings are heavily mulched or when seedlings are stored in an underground cellar (Dierauf and Marler 1971). Artificial-dark chilling is used by nursery managers to stratify seed and to store seedlings. Seed are chilled in a dark cooler at 2 °C (36 °F) (a.k.a. cool storage). Seedlings stored in a cooler may also be in the dark when packaged in bags or boxes. The response of seedlings to natural-light and artificial-dark chilling differs (see below).

Below-freezing temperatures can be grouped into two types. Freeze chilling occurs in the range of 0 to -2 °C (32 to 28 °F) and has a minimal effect on endodormancy status (Landis and others 2010). Hypo-chilling temperatures are below -2 °C (28°F) and most agree these temperatures do not affect the endodormany status of seedlings.

Chilling Hours

There is no universally accepted temperature range to define a “chilling hour” and reference temperatures can vary with species and nursery (Landis 2010). Several researchers in the South count hours within a range of 0 to 8 °C (32 to 46 °F; i.e. the range used in this paper). Some managers might not record chilling if it occurs before October 15 (Lantz 1989), but in some years this could reduce the number counted by 100 hours or more (DeWald and Ferer 1987). Most researchers do not count temperatures below zero since freeze-chilling affects endodormancy only to a limited extent and hypo-chilling likely has no effect. However, some researchers do include freeze-chilling and hypo-chilling when summing chilling hours (Table 1). For example, Ritchie (1989) adds time in freezer-storage to the chilling hour sum even though -2°C (28 °F) is not as effective in releasing endodormancy as 2 °C (36 °F). In contrast, a few do not even count temperatures when they are less than 1.5 °C (34.7 °F; Cesaraccio and others 2004). The temperature range selected is very important to a nursery manager since, for a given date (e.g. January 31), the number might be less than 250 hours or more than 800 hours. Using a narrow temperature range might mean that a chilling hour target (developed for a wider range) is never met at some southern nurseries (Table 1).

Table 1. Temperature ranges for 13 definitions for “chilling hours” and the respective accumulation by 31 January 2012 at Claxton, Georgia.

<table>
<thead>
<tr>
<th>Maximum temperature</th>
<th>Minimum temperature</th>
<th>Hours by 31 Jan</th>
<th>Date for 400 chilling hr</th>
<th>Date for 600 chilling hr</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 °C (50 °F)</td>
<td>None</td>
<td>825</td>
<td>14 Dec</td>
<td>5 Jan</td>
<td>Jenkinson and others (1993)</td>
</tr>
<tr>
<td>8 °C (46 °F)</td>
<td>None</td>
<td>779</td>
<td>16 Dec</td>
<td>10 Jan</td>
<td>Landis and others (2010)</td>
</tr>
<tr>
<td>7.2 °C (45 °F)</td>
<td>None</td>
<td>681</td>
<td>30 Dec</td>
<td>19 Jan</td>
<td>Weinberger (1956)</td>
</tr>
<tr>
<td>8 °C (46 °F)</td>
<td>0 °C (32 °F)</td>
<td>657</td>
<td>28 Dec</td>
<td>10 Feb</td>
<td>Garber (1983)</td>
</tr>
<tr>
<td>7.2 °C (45 °F)</td>
<td>0 °C (32 °F)</td>
<td>559</td>
<td>5 Jan</td>
<td>12 Feb</td>
<td>Voth (1989)</td>
</tr>
<tr>
<td>7 °C (45 °F)</td>
<td>None</td>
<td>547</td>
<td>7 Jan</td>
<td>12 Feb</td>
<td>Olsson and Nienstaedt (1957)</td>
</tr>
<tr>
<td>6.7 °C (44 °F)</td>
<td>None</td>
<td>547</td>
<td>7 Jan</td>
<td>Did not achieve</td>
<td>Kainer and others (1991)</td>
</tr>
<tr>
<td>6 °C (43 °F)</td>
<td>None</td>
<td>456</td>
<td>19 Jan</td>
<td>Did not achieve</td>
<td>Ritchie (1989)</td>
</tr>
<tr>
<td>5.6 °C (42 °F)</td>
<td>None</td>
<td>455</td>
<td>19 Jan</td>
<td>Did not achieve</td>
<td>Ritchie (2004)</td>
</tr>
<tr>
<td>5 °C (41 °F)</td>
<td>None</td>
<td>363</td>
<td>12 Feb</td>
<td>Did not achieve</td>
<td>Omni and others (1994)</td>
</tr>
<tr>
<td>4.4 °C (40 °F)</td>
<td>None</td>
<td>362</td>
<td>12 Feb</td>
<td>Did not achieve</td>
<td>van den Driessche (1977)</td>
</tr>
<tr>
<td>5 °C (41 °F)</td>
<td>0 °C (32 °F)</td>
<td>334</td>
<td>26 Feb</td>
<td>Did not achieve</td>
<td>Bailey and Harrington (2006)</td>
</tr>
<tr>
<td>4.5 °C (40 °F)</td>
<td>0.5 °C (33 °F)</td>
<td>241</td>
<td>Did not achieve</td>
<td>Did not achieve</td>
<td>Ezell (2011)</td>
</tr>
</tbody>
</table>
Fact: Natural-light and Artificial-dark Chilling Increase Seed Germination

For more than two decades, researchers at Yale University conducted germination tests with pines without stratification (Touney and Stevens 1928). At that time, the importance of pre-treating pine seed with chilling was not well known. However, some managers realized that sowing seed in January produced more pine seedlings than waiting to sow dry seed in April (Wakeley 1935). Sowing in January allowed the seed to be chilled naturally. Other managers would soak seed in cool water for a few days prior to sowing (Schenck 1907). The importance of chilling southern pine seeds was not fully realized until Lela Barton (1928) demonstrated that artificial-dark chilling would greatly increase the speed of germination. Nursery managers now use artificial-dark chilling to increase the speed of germination of several pine species.

Fact: Natural-light and Artificial-dark Chilling Increase Bud Break

It is generally believed that natural-light chilling is primarily responsible for shifting terminal buds from a state of endodormancy to a state of ecodormancy. However, a long photoperiod can also substitute for a lack of natural-light chilling (Garber 1983).

Artificial-dark chilling can be as effective as natural-light chilling in releasing endodormancy (Carlson 1985; Ritchie 2004). Similar results were observed with hardwood seedlings (Webb 1977). However, temperatures below freezing can retard the release of endodormancy of Douglas-fir (Pseudotsuga menziesii [Franco]; Ritchie 1984a). Although freeze-chilling had some effects on endodormancy, these findings illustrate why some researchers do not count hours below freezing toward a chilling hour accumulation.

Some Bud-break Myths

For the southern pines, it has been said that “Most sources reach maximum dormancy after 400 chilling hours” (Lantz 1987). This myth was started by those who say all genotypes of any given pine respond to chilling in a like manner. For example, Ritchie (1984b) said the relationship between the release of endodormancy for Douglas-fir and chilling sum “does not vary appreciably among seed lots and nurseries from year to year. Therefore, once the relationship has been empirically established for a given species in a given region, dormancy status during winter can be accurately predicted from monitoring chilling sums.”

In contrast to Ritchie’s claim, the beginning of ecodormancy of loblolly pine varies by genotype (Garber 1983; Carlson 1985; Boyer and South 1989). For some genotypes, it may be less than 415 chilling hours (Garber 1983) or over 1000 chilling hours (Carlson 1985). In fact, the same seed source may enter ecodormancy at different chilling-hour times, since the number of hours apparently varies with year and likely also with nursery management (DeWald and Feret 1988). Although a lack of chilling apparently delays the onset of ecodormancy, it is wrong to assume that 400 chilling hours are sufficient to overcome endodormancy for all southern pine genotypes, in every year, and in every nursery.

Another myth is that natural-light chilling is required for pine seedlings to enter a state of endodormancy. Although natural-light chilling typically occurs while buds are entering a state of endodormancy, chilling is not required. Natural-light chilling does not cause terminal buds of pines to become endodormant. Garber (1983) showed that endodormancy can exist in late October.

Landis and others (2010) say that “reefer-chilled storage has the effect of slowing the release of dormancy.” For the southern pines, this is a myth because rarely do seedlings below 36 °N latitude receive 24 natural-light chilling hours/day. In contrast, each day of cooler-storage (2 °C [36 °F]) equals 24 artificial-dark chilling hours. For example, 28 days of cooler-storage will result in 672 chilling hours while 44 days of winter at Claxton, GA (28 December to 10 February) might provide only 200 chilling hours (Table 1). Obviously, at this location the release of endodormancy of loblolly pine would be quicker for artificial-dark chilling than for natural-light chilling. Regardless, the original claim about “slowing the release of dormancy” was made in regards to freeze-chilling, not artificial-dark chilling (Ritchie 1989).

Chilling Injury Myth

Cool temperatures during the fall will affect the physiology of a number of plants. Some tropical plants may experience “chilling injury” after exposure to nonfreezing temperatures below 10 °C (50 °F; Lyons 1973). In southern pine nurseries, exposure to nonfreezing temperatures below 8 °C (46 °F) can alter needle color (Grossnickle 2012). Loblolly pine seedlings from a northern seed source may turn purple (due to an increase in the production of anthocyanin combined with a decline in production of chlorophyll) while a southern source in adjacent plots may remain green. However, it is a myth to consider the purple color to be “chilling injury.” In fact, this color change is considered to be beneficial since it indicates seedlings have acquired some freeze tolerance (Grossnickle 2012).

Fact: Natural-light Chilling Increases Freeze Tolerance

Much has been written about the development of freeze tolerance in conifers (Bigras and Colombo 2001). Most agree that chilling is required for tissues to become freeze tolerant. In general, seedlings of loblolly, slash, and shortleaf pine that are planted deep and have not received chilling may tolerate a -2 °C (28 °F) freeze. However, natural-light chilling is likely required for loblolly pine seedlings to develop a tolerance to a -6 °C (21 °F) freeze (Mexal and others 1979; South 2007). Seedlings kept in a heated greenhouse do not acclimate to that level of tolerance by December or January.

Some Freeze Tolerance Myths

The myth that placing bareroot loblolly pine seedlings in a cooler will increase freeze tolerance might be traced back to research conducted with eastern white pine (P. strobus L.) and red pine (P. resinosa Ait.) in Ontario (Racey 1988). Racey found that tolerance to long-term freezer storage (-3 °C [27 °F]) was increased when 3+0 stock was conditioned first by 4 weeks of storage in a cooler (1 °C [34 °F]), primarily for a 11 October lifting date. However, container-grown loblolly pine clones did not acquire tolerance to a -3 °C (27 °F) freeze after 5 weeks of artificial-dark chilling (Grossnickle 2012). Apparently, longleaf pine seedlings also do not acclimate with artificial-dark chilling. For example, survival of longleaf pine seedlings can be reduced when the cool-stored seedlings are outplanted just prior to a hard freeze (South and Loewenstein 1994; Pickens 2012).

Some have claimed that a well-formed terminal bud is required before a pine seedling can become tolerant to a -10 °C (14°F) freeze. This myth can easily be proven false by observing seedlings after a hard-freeze in a nursery (South and others 1993) or
greenhouse (Duncan and others 1996). In fact, proper top-pruning of pine seedlings can increase tolerance of the stem to a freeze (South and others 1993). Apparently, the idea that setting a terminal bud was a necessary step may have come from those who claimed that endodormancy and freeze tolerance was a “cause and effect” relationship.

Lifting by Chilling Hours or by the Calendar?

Prior to 1980, nursery managers typically started lifting bareroot southern pine seedlings at about the same time each year. For example, during the late 1950s lifting at the Coosa Nursery in Alabama was near the end of November (range 17 November to 2 December). A similar period (16 November to 2 December) occurred at the Ashe Nursery in Mississippi during the late 1960s and early 1970s.

Early on, some realized that lifting stock in October or November and storing them for five months or more would kill bareroot loblolly pine seedlings (Kahler and Gilmore 1961). In contrast, seedlings lifted in late December (or early January) could be safely stored for 12 weeks in a cooler. Perhaps due to their recommendation that loblolly pine “probably should not be lifted during normal years before the middle of December for placing in cold storage,” some managers changed their target lifting date. For example, the initiation date for lifting at the Ashe Nursery during the early 1980s was mid-December. To date, researchers have not demonstrated that delaying lifting for storage till mid-January (due to a lack of chilling), is statistically better than starting to lift in late December.

It is not known why bareroot pine seedlings generally do not store well when lifted in October or early November. Several theories have emerged to explain this phenomenon. One school of thought believes that the physiological status of the terminal bud determines how long seedlings can be stored. They say terminal buds must achieve ecodormancy before they can tolerate 4 weeks or more of cooler storage. Others claim ecodormancy likely has nothing to do with the seedling storage since (1) bareroot seedlings without terminal buds can tolerate long-term storage, (2) container-grown seedlings can be stored in the fall, and (3) occasionally bareroot seedlings can be stored for 4 weeks or more when lifted in late October (Stumpff and South 1991) or early November (van den Driessche 1977). Some believe that bareroot seedlings are more vulnerable to deterioration in storage because there is greater likelihood of damage to roots during lifting in the fall (Mohammed and others 2001).

Some chilling hour myths are relatively benign (e.g. the myth that chilling is required to achieve endodormancy) since they do not impact nursery economics or regeneration success. However, when chilling hour myths delay lifting and planting windows, this can have serious economic consequences. Extending the planting season into March is not desirable for southern pines (South and Mexal 1984). An exception might occur in locations with winters that have extended periods of frozen ground. Planting in February or March would then be preferred to planting in December in the Piedmont and Mountains of Virginia (Marler 1963; Garner 1972).

Hot-Planting Myths

“Hot-planting” is a tree-planting term to describe the practice of planting seedlings within a few days of lifting (Landis and Jacobs 2008; Landis and others 2010). The term “hot” can be misleading since planting within three days of lifting can occur in any month and these seedlings may be transported in a refrigerated van. A less ambiguous term would be “<72 hour-planting” which emphasizes the time limit between lifting and planting. The “<72 hour-planting” method can occur when temperature is below freezing (in late October), and it can occur when the air temperature is above 25 °C (77°F; in January). In a perfect world, there only would be “<72 hour-planting” of southern pine seedlings (from October to February) since cooler-storage of pine seedlings is “a necessary evil” (South and Mexal 1984).

Some believe the myth that southern pine seedlings need 200 chilling hours before they are ready for no more than 3 days of storage (Lantz 1989; Ezell 2011). However, there are numerous examples where both container-grown and bareroot seedlings have been successfully “hot-planted” without any chilling. Planting during rainy months in the summer has been successful in the USA (McGregor 1965; Jordan 1966; Goodwin 1976; Woods and others 1979; Landis and others 2010) and South Africa (Donald 1976; Rolando and Little 2005). Keys to successful “hot-planting” of loblolly pine seedlings during summer months include; machine-plant seedlings when soil moisture is adequate, plant large-diameter seedlings deep (so that the root-collar is about 15 cm below the surface and roots are closer to lower, moister soil profiles), make sure the soil is not too wet (Jordan 1966) and use lignified, container-stock when hand-planting is required. In the south, perhaps 10% of container-grown seedlings are planted prior to any chilling (Dumroese and Barnett 2004).

In some regions in North America, “hot-planting” in October or November is preferable to planting in summer. In Florida, initial survival was greater than 95% when sand pine seedlings were hot-planted in mid-November (Hebb 1982). In Oklahoma, initial survival was greater than 80% when fungicide-treated shortleaf pine seedlings were hot-planted with only 48 chilling hours (Hallgren and Ferris 1995). In one study with loblolly pine, survival was 90% when seedlings were hot-planted on October 27 (Stumpff and South 1991). Although planting failures can occur during any month for many reasons, 200 chilling hours are not required in order to achieve good survival of hot-planted seedlings, regardless of stock type.

A new myth recently emerged with the claim that shortleaf pine should be hot-planted “if they have less than 600 chilling hours.” At some nurseries, adherence to this myth would mean that nursery managers could not store shortleaf pine for most or all of the lifting season (Table 1). This myth apparently originated from assumptions based only on RGP data from one nursery and one genotype. However, conclusions regarding the need for chilling should be based on survival data obtained for “hot-planting” more than a single genotype from more than one nursery. In fact, authors of the RGP study clearly stated that “no attempt is made to define optimum lifting windows or storage length” (Brissette and others 1988). Their warning apparently had no effect, and another myth was born.

Cooler Storage Myths

Operational constraints “often necessitate prolonged storage (or holding) of seedlings” (Garber and Mexal 1980). For storage of bareroot southern pine seedlings, the “prime” lifting season is from late-December to early-February (Garber and Mexal 1980).

Kahler and Gilmore (1961) said that “loblolly pine seedlings cannot survive cold storage unless they are hardened off and dormant before being placed in cold storage.” A decade later, Lavender and Wareing (1972) said that “a period of chilling, following short-day
pretreatment, greatly increases the seedlings’ resistance to the adverse effects of root damage and dark storage.” Later, Weyerhaeuser researchers began to examine when loblolly pine seedlings could withstand cooler storage and they determined that one seed source could be lifted in mid-December and stored for 9 weeks (Garber and Mexal 1980). About the same time, Garber (1978) demonstrated that for another seed source, terminal buds also achieved ecodormancy by mid-December. Taken together, these independent studies were used to assume the start of ecodormancy coincided with tolerance to cooler storage. As a result, Garber and Mexal (1980) suggested that guidelines relating the stages of bud break to storage potential could be developed with a minimum amount of research. Weyerhaeuser researchers developed guidelines and nursery managers started to store seedlings based on the accumulation of chilling hours.

Instead of conducting an experiment with a testable null hypothesis, some (including me) incorrectly assumed that tolerance to storage was regulated from within the terminal bud or apical meristem. For example, Barden and Feret (1986) stated that “loblolly pine seedlings do not store well until they are fully quiescent.” Instead of questioning the theory, I looked for data to support the dogma that the amount of chilling determined storage potential. Eventually, the data convinced me that the ability to survive cool storage was not related to the satisfaction of the chilling requirement for terminal buds (van den Driessche 1977; Boyer and South 1985; Stumpff and South 1991).

A common myth is that southern pine seedlings, regardless of stock type or latitude, require 400 chilling hours before they can tolerate 4 weeks of cool storage. Based on declines in RGP, DeWald and Feret (1988) said that between 400 and 500 hours of natural-light chilling are necessary for satisfactory cool storage of loblolly pine seedlings in Virginia. Based on outplanting survival for a single year, Williams and South (1995) reported that container-grown seedlings exposed to 406 chilling hours could tolerate 10 weeks of cool storage (in plastic bags) when lifted on 6 January. The magic “400” number has been mentioned in several tree planting guides (e.g. Lantz 1989), but in order to be true, the 400 number must be repeatable. However, there are no studies that show the 400 number is repeatable from different latitudes, years, or genotypes. In fact, several studies have demonstrated that container-grown seedlings have been stored for a month without any chilling (Table 2). Likewise, Boyer and South (1985) reported that bareroot seedlings could tolerate 11 weeks of cooler storage when lifted on 6 December with just 223 chilling hours. Donald and South (2002) reported good storage (4 weeks) with only 113 chilling hours and concluded that “Although chilling is beneficial to pines, since it increases the resistance to freeze injury, successful cool storage of loblolly pine seedlings may not be directly related to chilling as once believed.”

Another myth says artificial-dark chilling will increase seedling tolerance to cool storage. This myth assumes that placing bareroot pine seedlings in a cooler (4 °C [39 °F]) for 17 days would harden the seedlings enough so they will then tolerate an additional 40 days of cooler-storage. This myth originates from those who claim the theory (that stress resistance increases as endodormancy weakens) applies not only to natural-light chilling, but also to freeze-chilling and artificial-dark chilling (Landis and others 2010). Some believe the theory that stress resistance of Douglas-fir seedlings (exposed to 500 natural-light chilling hours) will increase by placing the seedlings in freezer-storage for 12 weeks (Ritchie 1989). Storage data to verify this theory have not been “repeatable from year to year with different crop types (bareroot and container) and species (Douglas-fir, pines, spruces, some hardwoods) and across nurseries.” In fact, when compared to seedlings left in the nursery, artificial-dark chilling can prevent an increase in seedling quality (i.e. achievement of freeze tolerance). Therefore, instead of increasing seedling quality, outplanting survival could be decreased (due to a killing hard freeze) when seedlings were lifted early and cool-stored (without receiving an adequate amount of natural-light chilling).

<table>
<thead>
<tr>
<th>Species</th>
<th>Lift date</th>
<th>Storage length (weeks)</th>
<th>% survival</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>loblolly pine</td>
<td>20-Sep-2007</td>
<td>7</td>
<td>100%</td>
<td>South unpublished</td>
</tr>
<tr>
<td>loblolly pine</td>
<td>Oct-2007</td>
<td>4</td>
<td>100%</td>
<td>Grossnickle 2012</td>
</tr>
<tr>
<td>longleaf pine</td>
<td>3-Oct-2001</td>
<td>6</td>
<td>95%</td>
<td>Pickens 2012</td>
</tr>
<tr>
<td>longleaf pine</td>
<td>3-Nov-2008</td>
<td>4</td>
<td>97%</td>
<td>Jackson and others 2012b</td>
</tr>
<tr>
<td>shortleaf pine</td>
<td>3-Nov-2008</td>
<td>4</td>
<td>85%</td>
<td>Jackson and others 2012b</td>
</tr>
<tr>
<td>slash pine</td>
<td>3-Nov-2008</td>
<td>4</td>
<td>99%</td>
<td>Jackson and others 2012b</td>
</tr>
<tr>
<td>loblolly pine</td>
<td>3-Nov-2008</td>
<td>4</td>
<td>99%</td>
<td>Jackson and others 2012b</td>
</tr>
<tr>
<td>longleaf pine</td>
<td>6-Nov-2000</td>
<td>4 to 10</td>
<td>88%</td>
<td>South and others 2005</td>
</tr>
<tr>
<td>longleaf pine</td>
<td>6-Nov-2000</td>
<td>4 to 10</td>
<td>84%</td>
<td>South and others 2005</td>
</tr>
<tr>
<td>longleaf pine</td>
<td>6-Nov-2000</td>
<td>4 to 10</td>
<td>71%</td>
<td>South and others 2005</td>
</tr>
<tr>
<td>longleaf pine</td>
<td>6-Nov-2000</td>
<td>4 to 10</td>
<td>69%</td>
<td>South and others 2005</td>
</tr>
<tr>
<td>shortleaf pine</td>
<td>18-Dec-2007</td>
<td>4</td>
<td>84%</td>
<td>Jackson and others 2012c</td>
</tr>
<tr>
<td>slash pine</td>
<td>18-Dec-2007</td>
<td>4</td>
<td>83%</td>
<td>Jackson and others 2012c</td>
</tr>
<tr>
<td>loblolly pine</td>
<td>18-Dec-2007</td>
<td>4</td>
<td>88%</td>
<td>Jackson and others 2012c</td>
</tr>
</tbody>
</table>
A New Root Growth Potential-Disease Theory

A new school-of-thought regarding seedling storage has formulated a theory that may eventually replace the ecodormancy=storage theory. Researchers from this school (Jackson and others 2012a) have attempted to determine why RGP often declines rapidly when seedlings are placed in storage. Occasionally bareroot seedlings lifted in October and stored for 4 weeks have similar RGP to non-stored seedlings. At other times, a 55% decline in RGP might occur when seedlings are stored for only one week. Understanding what factors are responsible for such diverse responses could go a long way in unraveling the reasons why results from 4 weeks of storage of October lifted bareroot seedlings have been so variable.

Some suggested that disease organisms play a major role in determining why bareroot seedlings do not perform well after storage in the fall while container-grown seedlings can be packaged and cool-stored with acceptable survival (Table 2). Fungi (e.g. Pythium) might explain why the RGP can drop quickly when October lifted seedlings are placed in a cool and moist storage environment. It is known that adding too much water before storage can reduce the RGP of loblolly pine (Barden and Feret 1986). Also, when roots of Douglas-fir are kept warm (15 °C [59 °F]) in dark, cool storage (2 °C [36 °F]), seedling survival increased from 55% (cool) to 90% (warm) (Lavender and Wareing 1972). Most Pythium species grow well in cool, moist environments and perhaps warm roots are not conducive to their growth. Also, treating roots with certain fungicides can, under some situations, improve the storability of southern pines (Barnett and others 1988; Hallgren and Ferris 1995; Brissette and others 1996). Sometimes the correct amount of a fungicide will suppress disease and increase RGP (Hallgren and Ferris 1995). Finally, recent research indicates that RGP can be reduced in the fall when seedlings have been inoculated with certain Pythium species (Jackson and others 2012a). Taken together, these findings suggest the primary factor that controls storage potential of pine seedlings resides in the roots (instead of within the terminal bud).

Conclusions

Although natural-light chilling is beneficial to pines (since it increases freeze tolerance), successful cooler-storage of loblolly pine seedlings (either container or bareroot) is not directly related to the level of endodormancy. Most conclusions about natural-light chilling and cooler-storage were made from date-of-lifting studies that confounded lifting date with factors like freeze tolerance and seedling age. The conclusions were not based on studies that were designed to test a hypothesis. We need researchers who are willing to question dogmas and who are willing to expose seedling quality myths. Otherwise, we may continue to see individuals make claims about chilling that are not true.

Acknowledgements

The author wishes to thank Dr. John Mexal for his input and special thanks go to Dr. Steve Grossnickle for his comments and insights on how to successfully cooler-store container-grown loblolly pines (for four weeks) without prior exposure to natural-light chilling.

References


Toumey JW, Stevens CL. 1928. The testing of coniferous tree seeds at the School of Forestry, Yale University 1906-1926. Yale University, New Haven (CT). 46 p.


