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ABSTRACT: The goal of Phase 3 Detection Monitoring as implemented by the Forest 
Inventory and Analysis Program is to identify forest ecosystems where conditions might 
be deteriorating in subtle ways over large areas. At the relatively sparse sampling 
intensity of the Phase 3 plot network, a rough measure of success for the forest health 
indicators developed for this purpose is the ability to detect meaningful change when 
indicator data are pooled across two or three States. The statistical power of a test is the 
probability of detecting a difference of a certain magnitude when it indeed exists, and is 
defined as 1 minus the type II error (i.e., 1-beta). This study applies statistical power 
analysis to Phase 3 Crown-Indicator variables (crown density, foliage transparency, and 
crown dieback) to determine how many plots are necessary to detect various degrees of 
change at various levels of statistical power.  
 
KEYWORDS: Statistical power analysis, forest health indicators, tree crown 
condition, tree crown health, tree health indicators, tree crown measurement 
 
 

Introduction 
 
 

The conceptual approach to forest health monitoring in the U.S. includes a 
component to detect long-term regional changes (Detection Monitoring), a 
component for assessing the practical importance and impact of observed changes 
(Evaluation Monitoring), and a component for conducting process-level research 
of cases that remain unresolved (Intensive Site Monitoring). The goal of 
Detection Monitoring is to identify forest ecosystems where conditions might be 
deteriorating in subtle ways over large areas (Riitters and Tkacz 2004). The Forest 
Inventory and Analysis (FIA) Phase 3 sampling frame (Bechtold and Patterson 
2005) contributes to this goal by systematically sampling a set of forest health 
indicators over space and time. Core tables used in FIA reports (e.g., Turner and 
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others 2008) document the status and trends associated with these indicators, and 
analysts look for signals that suggest potential problems. 

 
Most of the indicators currently implemented on FIA Phase 3 plots were 

developed by the Forest Health Monitoring (FHM) Program in collaboration with 
the U.S. Environmental Protection Agency (Alexander and Palmer 1999). One of 
the original goals for indicator development was to provide statistically unbiased 
estimates of status, trends, and relationships with quantifiable confidence limits 
over regional and national scales (Hunsaker and Carpenter 1990). The national 
strategic plan of the FHM program4 states that Detection Monitoring is designed 
to identify forest health changes at multiple spatial scales to adequately describe 
disturbance events that vary in magnitude. Riitters and Tkacz (2004) say that 
“Detection Monitoring accepts a high rate of false positives (i.e., a high Type I 
error rate) as the price of not overlooking change (i.e., a low Type II error rate).” 
 

Statistical power analysis (Castelloe 2000) is one practical tool that can be used 
to evaluate statistical rigor, identify the spatial scale at which an indicator is 
functional, and address Type I and Type II error rates. This technique clarifies 
uncertainties about the ability of an indicator to detect a significant effect by 
examining interactions among the factors contributing to statistical power. Of 
particular interest to FIA, power analysis can identify areas or situations where 
sampling intensity is insufficient. Where grid intensification is an option, it can 
help to establish the appropriate level of intensification. When migrating Phase 3 
indicators to the Phase 2 grid is under consideration, it can quantify the benefits to 
be gained.  

 
Although the application of power analysis to forest health indicators has been 

under-utilized, it has not been ignored completely. Smith and others (1996) used it 
to evaluate the benefits of adding an annual overlap to panel rotation schedules 
when the FHM Program was collecting indicator data. Conkling and others (2002) 
conducted a power analysis to evaluate the use of FHM mensuration and soils 
data to detect changes in forest carbon budgets.  

 
The objective of this paper is to evaluate the statistical power of FIA’s Crown-

Condition Indicator variables (Schomaker and others 2007) and relate the results 
to the Phase 3 sampling grid. 
 
 

Methods 
 
Power Analysis 
 
 

Environmental monitoring often involves hypothesis testing, which is a 
statistical procedure designed to test the premise that a population displays some 

 
4 Available at http://fhm.fs.fed.us/annc/strategic_plan03.pdf [Date accessed: July 28, 2008]. 
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effect (H1), against the null hypothesis that there is no effect (H0). In Detection 
Monitoring, a typical alternative hypothesis is that there is some difference in 
indicator values between groups of observations drawn from a population at 
different points in time. Or the groups may be from the same time period but 
represent different regions, different species, or stands that have experienced 
different disturbances.  
 

There are two types of error associated with hypothesis testing. Type I error is 
a false positive, where the null hypothesis is rejected and the test incorrectly 
concludes there is some significant effect. The probability of a Type I error is 
designated as alpha )(α . The value of α  is selected by the analyst, who decides 
what the risk of Type I error should be. Alpha commonly is set at 0.05, which 
restricts the chance of a false positive to 5 percent or less. Type II error is a false 
negative, where the test misses a true problem by failing to reject a false null 
hypothesis. The probability of a Type II error is designated as beta )(β . The 
statistical power of a test is the probability of detecting a difference of a certain 
magnitude when it indeed exists, and is defined as ( β−1 ). 
 

Most statistical tests are designed to minimizeα , whileβ  is often overlooked. 
Although the consequences of a false positive may be costly in terms of initiating 
unnecessary Evaluation Monitoring studies, the failure to recognize a significant 
forest health problem could be disastrous. In Detection Monitoring, it is important 
to know if the statistical power of an indicator is adequate to support acceptable 
α  and β  probability levels. 

 
We used the SAS POWER procedure (SAS Institute 2004) to examine the 

relationships among Type I and II error, sample size, data variability, and effect 
size. We chose the SAS TWOSAMPLEMEANS option to determine the number 
of plots necessary to detect a difference in mean crown indicator values between 
two independent samples. Independent samples would come into play when 
checking for differences among regions during the same time period, or when 
checking for differences among independent panels5 at different times. We 
selected the SAS PAIREDMEANS option to determine the number of plots 
necessary to detect a difference in mean values between paired observations. The 
paired approach would be of interest when checking for differences involving 
survivor trees from remeasured plots. 
 

A variety of input specifications, outputs, and options are available for both the 
independent and paired procedures. The output of interest for this analysis is the 
number of plots. The inputs are theα probability level, the power level ( β−1 ), 
the effect size (mean difference between groups), the underlying data distribution 
(normal vs. log normal), the standard deviation of the observations; and, for the 
paired analysis, the correlation coefficient. Any of these input values can be 
manipulated to determine the subsequent effect on the number of plots required to 
attain the input specifications. The desired α  probability value, power level, and 
                                                 
5 Details about the FIA panelized inventory system are available in Bechtold and Patterson (2005). 
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effect size are simply specified by the analyst. The underlying data distributions, 
standard deviations, and correlation coefficients can be estimated from data 
already on hand, or from a pilot study. 
 
 
Crown-Condition Data 
 
 

This analysis focuses on the three main indicators of tree crown health 
recorded on FIA Phase 3 plots—crown density, foliage transparency, and crown 
dieback. Crown density is the amount of crown biomass (crown stem, branches, 
twigs, shoots, buds, foliage, and seeds) that blocks light penetration through the 
crown. Foliage transparency is the amount of skylight visible through small holes 
in the live portion of the crown where foliage occurs. Crown dieback is recent 
mortality of branches with fine twigs that begins at the terminal portion of a 
branch and proceeds inward toward the trunk. These three indicators are analyzed 
as continuous variables, although they are actually recorded in 5-percent classes, 
ranging from 0 to 99 percent. More details about the indicators are available in 
Schomaker and others (2007); additional details about related FIA sampling 
protocols are available in the Phase 3 field guide (U.S. Department of Agriculture 
Forest Service 2007). 
 

The data distributions, standard deviations, and correlation coefficients used in 
this analysis were obtained from FHM plots measured between 1992 and 1999. 
FHM data were used because more remeasured plots were available from which 
to obtain correlation coefficients for paired plots. Although the FHM plot network 
was integrated into the FIA sampling grid in 2000, some regions still have limited 
numbers of remeasured panels. For the purpose of power analysis, only 
approximations of the data attributes are needed, and the measurement protocols 
for the crown indicators measured by FIA remain unchanged from those used by 
FHM.  
 

By 1999, the FHM Program was measuring plots in 24 eastern and 8 western 
States. For the East, the latest measurements of each plot sampled between 1994 
and 1999 were used to calculate standard deviations from independent 
observations. To obtain correlation coefficients from paired observations, the 
latest measurement of each plot sampled during this period was paired with its 
previous observation, which was usually 4 years earlier. However, due to 
differences in the way States and panels were implemented, the remeasurement 
period was shorter than 4 years in some States. For the West, the latest 
measurements of each plot sampled between the years 1992 and 1999 were used 
for the independent observations. Again, the latest observation of each plot 
measured during this period was paired with its previous observation, which 
ranged from 1 to 4 years depending on the State. This plot selection method was 
designed to maximize the numbers of observations available to estimate standard 
deviations and correlation coefficients of crown indicators by species group; the 
result was not constrained to represent the actual distribution of species groups in 
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the populations of eastern and western forests. Correlations were slightly higher 
between plot pairs measured less than 4 years apart, but judged insufficient to 
preclude the use of the additional data for the purpose of power analysis.    
 

Power analyses are most commonly applied to experimental designs, but 
extension of the technique to survey designs is appropriate when the intention is 
to use survey data for hypothesis testing. Some adaptation was necessary to 
accommodate FIA’s complex design. The ratio-of-mean estimators used by FIA 
produce variance estimates that accommodate the unbalanced clustering of trees 
on plots, as well as the use of partial plots in the estimation process (Bechtold and 
Patterson 2005). However, calculations of standard deviations and correlation 
coefficients from this design are not as straight-forward. We approximated these 
statistics by first calculating the mean crown condition for each plot, and then 
computing the standard deviations and correlation coefficients from the plot-level 
means. We compared the variance estimates from both methods and obtained 
similar results, so the simplified approach should have a negligible affect on 
prospective hypothesis tests and the power analyses associated with them. 
 
 

Results 
 
 
Crown Density 
 
 

Crown density in the East averages 47 percent with a standard deviation of 7.5 
(table 1). By species group, the means range from 42 to 53 percent, with most 
standard deviations clustered around 10 or 11. Crown density statistics are similar 
in the West, except the standard deviations are slightly higher (table 2). 
Correlation coefficients between paired plots, where mean crown density was 
computed from survivor trees, are also similar between the two regions—equaling 
0.42 in the East and 0.48 in the West. Histograms of data distributions and 
skewness statistics indicated that crown density was approximately normally 
distributed. 
 

Table 3 shows the numbers of plots required to detect differences in crown 
density for various combinations of power-test specifications that conform to the 
ranges of statistics presented in tables 1 and 2. The effect size (mean difference) 
was set to detect changes in crown density values from 10 to 15, with standard 
deviations also fluctuating between 10 and 15. The α  specification alternates 
from 0.01 to 0.05, and the power level ( β−1 ) from 0.8 to 0.9. Given these 
parameters, the number of plots necessary to detect a change in crown density 
from independent observations ranges from 18 to 138, depending on the 
stringency of the specifications. When paired observations are analyzed, the 
number of plot pairs needed to detect the specified effects ranges from 8 to 54 
when the correlation coefficient is 0.25, and from 6 to 37 when the correlation 
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coefficient is set to 0.5. The SAS code used to produce table 3 is provided in 
Appendix A. 
 
 
Foliage Transparency 
 
 

Foliage transparency in the East averages 18 percent with a standard deviation 
of 6 (table 1). By species group, the means range from 13 to 21 percent, with most 
standard deviations between 5 and 10. The correlation between paired 
observations was less pronounced than the results for crown density, with a 
correlation coefficient of 0.19 for all species combined. The correlation 
coefficients for many species groups were not significant at the 0.05 level. Foliage 
transparency statistics for the West (table 2) were very similar to the East. 
 

Histograms of the foliage transparency data revealed some skewness caused by 
outliers in the right tail, and it was not clear whether this variable was normally 
distributed. Skewness tests indicated that the distribution was not normal, but with 
large numbers of observations, statistical tests often find deviations from 
normality that are statistically significant but practically unimportant. Choosing 
the alternative that yields conservative results is usually the most prudent course 
of action in borderline cases. We chose the normal classification because more 
observations were required to attain the specified power than the non-normal 
alternative. Randolph (2006) also noted that the distribution of this variable was 
uncertain, but justified a normal classification on the basis that statistical tests are 
robust against skewness and outliers. 
 

The same α  and power ( β−1 ) specifications used for crown density were 
also used for transparency, but the standard deviations were reduced to 5 and 10 
(table 3). The effect size was also reduced to detect changes that fluctuate from 5 
to 10 because mean transparency was much smaller than mean crown density 
(approximately half). Ideally, effect size should be tied to biological thresholds, 
but none are currently available for many forest health indicators (including the 
crown variables), so expert judgment must be substituted. Given these 
specifications, the number of plots necessary to detect a change in foliage 
transparency from independent observations ranges from 12 to 242. For paired 
observations, the number of plot pairs needed to detect the specified effects 
ranges from 6 to 93, when the correlation coefficient is 0.25, and from 5 to 63 
when the correlation coefficient is 0.5.  
 
 
Crown Dieback 
 
 

Crown dieback differs from density and transparency in that most trees have 
little or no dieback, so the data have a severely skewed log normal distribution. 
Histograms and skewness statistics corroborate this. The SAS POWER procedure 
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requires different input variables when the underlying data distribution is log 
normal (see Appendix A). For the specification of effect size, the ratio of the two 
group means is substituted for the mean difference, and the coefficient of 
variation (CV) is substituted for the standard deviation. 
 

Dieback in the East averages 4.0 percent with a CV of 1.3 (table 1). By species 
group, mean dieback varies from 1.6 to 5.9 percent, with CVs ranging from 1.0 to 
3.5. Crown dieback means and coefficients of variation are similar in the West 
(table 2). At 3.3 percent, mean crown dieback is slightly lower in the West 
because there is a lower proportion of hardwood species there, and dieback tends 
to be more prevalent in hardwoods.  
 

The same α  and power ( β−1 ) specifications used previously are used here 
again, but a relatively large mean ratio is required to detect a meaningful effect 
when the means are close to 0. The mean ratios were thus set to 2 and 2.5 
(specifying changes of 200 and 250 percent), while the CVs varied from 1.5 to 2. 
Given this input, the number of plots necessary to detect a change in crown 
dieback from independent observations spans from 48 to 204 (table 3). When 
paired observations are analyzed, the number of plot pairs needed to detect the 
specified effects range from 16 to 61 when the correlation coefficient is 0.25, and 
from 11 to 36 when the correlation coefficient is set to 0.5. 
 
 
Relating Results to the FIA Plot Network 
 
 

Once the number of plots needed to detect a significant difference is known, 
relating this information to the FIA plot network is simplified by the systematic 
nature of the grid, where the base sampling intensity is 1 plot per 6,000 acres for 
Phase 2 and 1 plot per 96,000 acres for Phase 3. 
  

The following formula can use this information to determine how much area 
must be impacted by a forest health problem before the FIA plot network is able 
to detect it: 
 

n

t

P
P

EnIA )(=  (1) 

  
where 
 
IA =  the minimum size of an impact area detectable by the FIA plot grid in the 

area of interest,  
 n =  the number of plots or plot pairs (i.e., grid points) needed to detect an impact 

(from the power analysis). For independent observations, n is the number of 
plots; for paired observations n is the number of plot pairs. 

E =  the plot expansion factor in the area of interest (e.g., 6,000 for Phase 2 or 
96,000 for Phase 3),    
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tP =  the total number of panels per measurement cycle in the area of interest, and 

nP =  the number of available panels in the area of interest.  
 

When the detectable impact area is known, basic FIA area statistics can be 
used to evaluate whether the grid intensity is sufficient to recognize the problem. 
For example, suppose that we want to know if the sampling grid is adequate to 
detect a change in crown dieback from remeasured plots. Because mean crown 
dieback is low, usually less than 5 percent, the analyst decides that a doubling of 
mean crown dieback should not be overlooked. This could mean that a lot more 
trees have a little dieback, or some subset of trees developed a lot of dieback. 
Scrutinizing the data from tables 1 and 2, we see that the coefficient of variation 
for dieback averages about 1.8, and the correlation coefficient between paired 
observations is usually around 0.3. Plugging these numbers into a power analysis 
where α  is fixed at .05 and the power ( β−1 ) is set to 0.9, we determine that it 
will take at least 36 plot pairs to flag the specified change as statistically 
significant. This number can then be used for n in equation 1. The crown indicator 
is measured on the Phase 3 plot network, so 000,96=E . FIA has 5 panels in most 
Eastern States, so , and we want the results to apply to a full set of 
remeasured panels, so . Entering these values into equation 1 shows there is 
sufficient power to detect an impact affecting 3.5 million acres of forest (table 4).  

5=tP
5=nP

 
The first two columns in table 4 list the current distributions of total land and 

forest land by region and State from the 2007 RPA statistics6. If we divide the 
detectable impact area for crown dieback (3.5 million acres) by the forest area in 
column 2, we can see what percentage of the plot grid in a given State or region 
must be impacted in order to detect a statistically significant difference. Wherever 
this number is more than 100 percent, the plot grid in the area of interest is not 
sufficient to detect the specified impact. The sampling intensity for crown dieback 
is sufficient in most States, but there are several States in the Northeast and in the 
Great Plains where the grid is obviously insufficient. The sampling intensity of 
Rhode Island would have to be increased by a factor of 10 to be able to detect the 
specified change. 
 

 Table 4 includes similar analyses for crown density and foliage transparency, 
where the data in tables 1 and 2 were scrutinized closely to select one set of 
power-analysis input values that represent a plausible scenario for each crown 
variable. The input specifications for plausible scenarios for these two variables 
revealed that 21 plot pairs were needed to detect an unusual change in density, 
and 31 were needed for transparency. These two variables required fewer plots 
than crown dieback, but still the grid intensity was not adequate in a few States 
with relatively little forest. 
 
  

                                                 
6 Available at http://fia.fs.fed.us/program-features/rpa/default.asp [Date accessed: July 28, 2008]. 
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Discussion 
 
   
Adequacy of the Phase 3 Plot Network 

 
 

When the crown indicators were being developed during the 1990s it was 
speculated that the sampling intensity was probably adequate for regions or 
groups of States, but not sufficient to analyze individual States. Results from 
tables 3 and 4 indicate that about 100 forested plots would be adequate to identify 
a problem in a majority of prospective change scenarios when independent 
observations are used. About 50 plots are adequate when using plots with paired 
observations from two points in time. On the Phase 3 plot network, 50 plots 
translate into 4.8 million acres. There are 15 States that have less than 4.8 million 
acres of forest, so each of these States would have to be combined with other 
States to yield a minimally adequate sample. Considering that crown indicators 
are often analyzed by species group, and that any given species occurs only on a 
subset of the total forest plots, then the original conjecture is confirmed that the 
sampling intensity is not adequate for analysis of many individual States. Power 
analysis verifies that the FIA plot grid yields an adequate sample at the regional 
level, with the possible exception of the Great Plains, where 60 percent of the 
forest would have to be affected. In other regions, less than 4 percent of the 
forests would need to be impacted in order to detect a problem (table 4).  

 
Equation 1 can be incorporated directly into an Excel spread sheet set up like 

table 4 to quickly check the adequacy of the sampling grid for a wide variety of 
scenarios. As presented, table 4 shows how much intensification, if any, is needed 
in each State to support analyses at the State level. This information can be used 
to guide State-level intensifications. Moving some of the forest health indicators 
to the Phase 2 sampling grid has lately been of interest. Changing the expansion 
factor (E) in equation 1 from 96,000 to 6,000 yields a measure of the additional 
power to be gained from this modification. 

 
The detectable impact areas in table 4 are based on a full complement of 

panels. At current rates of implementation it takes 5 to 10 years (depending on the 
State and region) to obtain a complete measurement cycle, and twice as long to 
obtain paired observations. So there is a period of vulnerability where sample size 
may be inadequate during the 10 to 20 years needed to ramp up to a full 
complement of remeasured panels. Equation 1 can be used to investigate the issue 
by reducing the number of panels available for analysis. 

 
The grid adequacy examples discussed so far are all related to the overall grid, 

where plots are contiguous over States and regions. The power analysis can be 
refined to more specific, non-contiguous plots by applying equation 1 to almost 
any FIA area table, such as area by forest type. This approach informs the analyst 
if there is enough power to analyze a specific forest type (or any other area-related 
attribute such as elevation or disturbance history). 

 9

USDA Forest Service Proceedings – RMRS-P-56 28.



                                                                                                
 

  
The detectable impact areas discussed thus far are based on forest area. The 

detectable impact area can be converted to total land area by dividing the 
detectable forest area by the percentage of forest in the area of interest. For 
example, 3.5 million acres of forest must be impacted by the crown dieback 
example in table 4. This means that a problem which is not confined to forests 
(e.g., climate change) must be impacting a larger area than just the forest. In the 
Northeast, where the forests constitute 67 percent of the total land area, about 5.2 
million acres of total land area must be affected to recognize the problem. This 
information could be used in simulation models, where the FIA grid might be 
checked for adequacy to recognize problems dispersed across the total landscape.       
 
 
Independence 
 
 

FIA plots can contribute observations to more than one group, so it is 
important to consider whether the groups being compared consist of independent, 
paired, or mixed observations. Independence is guaranteed only when the groups 
are drawn from mutually exclusive sets of plots, which is usually the case when 
comparing different regions or different panels. Purely paired analyses are 
achieved only when each plot is required to contribute an observation to both 
groups, which is commonly the case when the groups are based on survivor trees 
from plots measured at two points in time. In other situations, the groups will be a 
mixture of independent and paired observations. For example, a plot can 
experience multiple disturbances. For an analysis designed to compare two 
disturbances, a single plot has the potential to contribute an observation to one or 
both disturbance groups, resulting in a mixture. 

 
The SAS TWOSAMPLEMEANS option is most appropriate for independent 

observations, but setting the correlation coefficient to 0 in the PAIREDMEANS 
option yields approximately the same result. So PAIREDMEANS can be  
modified to accommodate mixtures of independent and paired observations by 
adjusting the correlation coefficient. For example, if 40 percent of the 
observations in a prospective analysis are expected to be paired, the correlation 
coefficient could be reduced to 40 percent of the value that would be used if all 
plots were paired. Keep in mind when interpreting results that PAIREDMEANS 
presents output in terms of plot pairs (npairs). When mixtures of independent and 
paired plots are analyzed with PAIREDMEANS, the total number of grid points 
(i.e., independent plots plus plot pairs) necessary to support the analysis can be 
calculated by adjusting npairs for the proportion of paired plots: 

 
))(()1)((2 propnpairspropnpairsn +−=  (2) 

 
where 
 
npairs = the number of paired plots output from PAIREDMEANS, and 
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prop =  the expected proportion of paired plots in a prospective analysis.  
 

All of the results presented here assume that numbers of observations are 
balanced between groups. Statistical power decreases as designs become 
unbalanced. This is not an issue with paired observations, but FIA’s survey design 
can become unbalanced when analyses are based on independent or mixed 
observations. For independent observations, the TWOSAMPLEMEANS 
procedure has a weighting feature to accommodate unbalanced designs. This 
feature is not available with PAIREDMEANS, so the effects of an unbalanced 
design are not readily obtainable when mixtures of independent and paired 
observations are processed with PAIREDMEANS. Sensitivity to imbalance can 
be approximated with TWOSAMPLEMEANS, and estimated power reductions 
could then be extrapolated to results from PAIREDMEANS. For example, the 
number of plots required for independent observations in table 3 increases by an 
average of 11 percent when the sample size in each group is unbalanced by a ratio 
of 2:1. The number of plots resulting from a similar analysis of mixed 
observations with PAIREDMEANS would then be increased by this percent. 
 
 
Strategies to Increase Statistical Power 
 
 

Increasing sample size is one obvious way to gain statistical power. Grid 
intensification is the preferred approach if economically feasible. Sample size can 
also be increased by combining areas, but this must be done carefully. Adding 
adjacent States will increase power if those areas have the same problem as the 
original location.  If not, the analysis could be compromised because adding 
unaffected areas will dilute any effect that may have been present at the original 
location. Sometimes adding more territory is not an option. For example, Hawaii 
is so isolated that it would not be practical to combine Hawaii with any other 
State. Given this, it is noteworthy that the base Phase 3 sampling intensity in 
Hawaii would not support an analysis of crown indicators (table 4). 

 
Power can also be gained by tailoring analyses to more specific subsets of the 

data through stratification. Forest health impacts that have “clumped” 
distributions display a higher variance than impacts that are evenly dispersed. 
Statistical power is adversely affected by increased variance. Stratification can 
help by reducing variation within strata. If a clumped distribution is suspected, 
post-stratify the data to isolate the clumps if possible. 

 
Power might be gained by taking advantage of the “double sampling for 

stratification” technique that FIA uses for standard inventory estimates (Bechtold 
and Patterson 2005). This technique reduces the variance of many FIA inventory 
estimates, and variance reduction always increases statistical power. However, the 
Phase 3 indicators have not yet been incorporated into FIA’s processing engine, 
so the degree to which this procedure might reduce the variance of crown 
indicators is uncertain.    
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Species groups are another important aspect of stratification. Grouping species 

together has the potential to increase power by increasing the number of plots 
available for analysis, but a forest health problem that impacts only a few species 
in a group may go undetected. If a particular species is known to be sensitive to a 
prospective threat, that species should be isolated. Care must always be taken to 
avoid different species mixes between the two groups of observations being 
tested, because effect size could be an artifact of the difference in species mix.  

 
The results presented here are based on two-tailed tests, where the alternate 

hypothesis (H1) is that the mean of Group 1 differs from the mean of Group 2, so 
the analyst can determine whether an indicator is improving or deteriorating. 
Additional power can be attained by using one-tailed tests, where H1 is modified 
to specify that the mean of Group 2 has either increased or decreased. On average, 
when one-tailed tests are used, the number of plots is reduced to 83 percent of the 
required observations listed in table 3. Note that the alternative hypotheses (H1) 
should be specified prior to any testing. It is not valid to look at the data and then 
decide if the variable of interest should be increasing or decreasing. 
 
 

Conclusions 
 
 

Comprehensive power analyses of FIA’s Phase 3 indicators are possible with 
only three pieces of information derived from actual data—the indicator’s 
frequency distribution (normal vs. log normal), its standard deviation, and a 
correlation coefficient for paired observations. The analyst can then solve for 
detectable effect size, α  level, statistical power ( β−1 ), or numbers of 
observations required. Supplied with the number of plots required to detect a 
significant effect, the adequacy of the FIA grid to support prospective analyses 
can be readily evaluated.  

 
For most plausible scenarios involving the crown indicator, about 100 plots (or 

50 paired plots) would be adequate. Paired plots resulting from repeated 
observations over time reduces the number of grid points to less than half the 
observations that would be required from independent observations. These results 
are consistent with previously unverified assumptions that the crown indicators as 
implemented on the Phase 3 grid could reliably support analyses at the regional 
level, but probably not for many individual States. 

 
We recommend that power analyses be conducted for all indicators where 

statistical hypothesis testing is an option. The information needed to accomplish 
this is readily available from existing datasets for indicators that have already 
been implemented. As new indicators are proposed, power analysis should 
become a formal part of the indicator development process. 
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Appendix A. SAS Power Analysis Program 
 
 
/* 
This SAS program performed the Power Analysis resulting in Table 3.   
 
This program produces numbers of observations (ntotal or npairs) as the 
dependent variable. The analysis can be revised to make any of the associated 
variables (power, alpha, stddev, cv, meandiff, meanratio, or corr) into the 
dependent variable by specifying the number of observations available and setting 
the dependent variable of interest to null. 
*/ 
 
title1 'Crown Density - independent observations'; 
      proc power; twosamplemeans 
      outputorder  = syntax 
     test          = diff 
 dist          = normal 
      power          = .80 .90 
      alpha         = .01 .05 
      stddev        = 10 15 
      meandiff      = 10 15 
      ntotal        = . 
      ; 
title1 'Foliage Transparency - independent observations'; 
      proc power; twosamplemeans 
      outputorder = syntax 
     test          = diff 
 dist          = normal 
      power         = .80 .90 
      alpha         = .01 .05 
      stddev        = 5 10 
      meandiff      = 5 10 
      ntotal        = . 
      ; 
title1 'Crown Dieback - independent observations'; 
      proc power; twosamplemeans 
      outputorder = syntax 
     test          = ratio 
      dist          = lognormal 
      power         = .80 .90 
      alpha         = .01 .05 
      cv            = 1.5 2 
      meanratio     = 2 2.5 
      ntotal        = . 
      ; 
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title1 'Crown Density - paired observations'; 
      proc power; pairedmeans 
      outputorder = syntax 
     test          = diff 
      dist          = normal 
      corr          = .25 .5 
      power         = .80 .90 
      alpha         = .01 .05 
      stddev        = 10 15 
      meandiff      = 10 15 
      npairs        = . 
      ; 
 
title1 'Foliage Transparency - paired observations'; 
      proc power; pairedmeans 
     outputorder = syntax 
     test          = diff 
      dist          = normal 
      corr          = .25 .5 
      power         = .80 .90 
      alpha         = .01 .05 
      stddev        = 5 10 
      meandiff      = 5 10 
      npairs        = . 
      ; 
title1 'Crown Dieback - paired observations'; 
 proc power; pairedmeans 
     outputorder = syntax 
     test          = ratio 
      dist          = lognormal 
      corr          = .25 .5 
      power         = .80 .90 
      alpha         = .01 .05 
      cv            = 1.5 2 
      meanratio     = 2 2.5 
      npairs        = . 
      ; run;  
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Species Group n    
trees 

n    
plots

n    
trees 

n    
plots

m s re m s re m cv re

Softwoods:
  South. yellow pine 6,648 441 2,729 219 42.1 8.6 0.37 * 18.8 7.1 0.41 * 2.1 1.9 0.46 *
  East. white pine 1,157 180 604 99 48.6 10.6 0.51 * 20.4 5.8 0.29 * 2.7 1.5 0.72 *
  Red pine 521 37 347 27 50.3 10.5 0.31 18.4 4.0 0.24 1.6 1.5 0.08
  Spruce/fir 2,459 258 1,720 193 51.6 10.3 0.61 * 16.7 4.6 0.21 * 4.4 1.5 0.18 *
  Hemlock 776 130 408 69 53.1 10.8 0.64 * 17.7 5.7 0.35 * 3.0 1.3 0.67 *
  Other Softwoods 1,867 241 1,462 142 48.5 13.7 0.36 * 19.4 7.1 0.27 * 5.0 1.6 0.38 *

Hardwoods:
  Oak 6,088 855 2,532 410 47.0 8.4 0.32 * 17.0 6.2 0.15 * 4.2 1.3 0.24 *
  Elm 576 228 229 99 44.1 11.1 0.30 * 20.2 7.8 0.30 * 5.9 1.9 0.35 *
  Hickory 1,196 391 401 137 51.5 10.4 0.48 * 14.8 6.3 -0.06  2.5 2.3 0.14  
  Birch 1,724 416 1,043 263 50.6 9.9 0.40 * 18.0 5.4 0.15 * 4.5 1.1 0.28 *
  Maple 6,481 916 3,428 502 48.4 9.1 0.46 * 16.8 5.5 0.15 * 3.9 1.5 0.55 *
  Beech 730 201 320 95 51.1 11.6 0.58 * 15.3 4.5 0.17  3.7 1.5 0.30 *
  Sweetgum 1,032 262 440 126 48.2 10.9 0.41 * 13.4 5.7 0.24 * 3.0 2.5 -0.01  
  Tupelo-blackgum 690 237 341 102 47.1 11.8 0.62 * 16.1 9.5 0.03  3.5 2.9 0.81 *
  Ash 1,303 340 680 168 46.7 11.6 0.50 * 19.0 8.4 0.67 * 5.0 2.1 0.82 *
  Quaking Aspen 1,113 192 801 136 47.2 10.3 0.45 * 21.4 5.7 0.07  4.9 1.0 0.51 *
  Basswood 388 98 277 63 48.3 10.7 0.44 * 18.4 6.1 -0.10  4.1 2.2 0.24  
  Yellow Poplar 1,022 282 498 141 51.7 10.2 0.16 15.3 7.7 0.08 2.1 3.5 0.20 *
  Walnut 114 65 44 27 44.4 12.9 0.51 * 19.3 11.6 0.57 * 5.3 3.1 0.00  
  Other Hardwoods 2,900 770 1,310 367 45.5 10.6 0.36 * 18.9 8.1 0.12 * 4.5 1.9 0.18 *

All softwoods 13,428 957 7,270 549 46.9 10.8 0.58 * 18.6 6.4 0.37 * 3.0 1.6 0.46 *
All hardwoods 25,357 1,515 12,344 813 47.7 7.8 0.43 * 17.4 6.3 0.35 * 4.5 1.5 0.47 *
All species 38,785 1,625 19,614 890 47.2 7.5 0.42 * 17.7 5.6 0.19 * 4.0 1.3 0.36 *

  numbers of pairs.

Table 1. Means (m), standard deviations (s), coefficients of variation (cv), and correlation coefficients (r) of 

1994-1999.
crown data collected by the Forest Health Monitoring Program in 24 eastern Statesa, by species group,

a States included: AL, CT, DE, GA, IL, IN, ME, MD, MA, MI, MN, MO, NH, NJ, NY, NC, PA, RI, SC, TN, VT, VA,

Crown 
dieback

Independentb 

observations
Pairedc,d    

observations

e Asterisks indicate significant correlation coefficients, where p-values are < .05. 

Crown density Foliage 
transparency

  coefficients (r). The number of remeasured panels available varies by State. 

  were used to calculate means (m), standard deviations (s), and coefficients of variation (cv).

  WV, and WI.
b Independent observations from the latest set of 4 panels sampled between 1994 and 1999 in each State

c Paired observations from the latest set of remeasured panels sampled between 1994 and 1999 in each
  State. Plot means from survivor trees were paired with their previous values to calculate correlation 

d The numbers of observations represent pairs. The total numbers of observations are twice the listed
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Species Group n    
trees

n    
plots

n    
trees

n     
plots

m s re m s re m cv re

Softwood timberland:
  Douglas fir 3,932 380 2,003 219 50.8 11.4 0.43 * 14.5 4.0 0.10 1.8 1.8 0.23 *
  Ponderosa pine 1,467 192 985 134 46.4 11.4 0.42 * 17.3 6.1 0.24 * 2.1 2.9 0.08
  True fir 3,084 315 1,915 204 51.6 12.4 0.43 * 13.5 4.6 0.11 2.6 1.7 0.48 *
  Western hemlock 962 85 455 45 51.5 10.7 0.38 * 13.9 3.4 0.12 1.7 1.8 0.52 *
  Sugar pine 102 27 76 22 47.8 9.6 0.25 18.1 6.9 0.03 1.1 2.0 -0.21
  Western white pine 82 30 46 17 48.8 12.2 0.69 * 18.4 5.3 0.58 * 3.8 1.4 0.65 *
  Spruce 1,255 138 870 90 50.7 10.5 0.42 * 12.3 4.2 -0.02 2.1 1.3 0.29 *
  Western larch 173 38 77 22 50.1 14.3 0.36 20.0 5.9 -0.06 2.2 1.5 0.40
  Incense cedar 209 41 179 33 47.3 13.4 0.47 * 15.8 4.7 0.17 1.5 2.5 0.05
  Lodgepole pine 2,818 166 2,011 108 43.6 10.0 0.51 * 16.3 4.1 0.17 3.0 1.3 0.51 *
  Western red cedar 431 54 237 29 48.6 12.8 0.49 * 18.1 5.8 0.26 1.7 1.9 0.37 *
  Other softwoods 702 126 396 82 43.5 12.9 0.63 * 16.3 7.2 0.46 * 3.0 1.9 0.20
Softwood woodland 3,321 270 961 100 51.8 13.7 0.64 * 12.3 4.2 0.40 * 4.3 1.4 0.14

Hardwood timberland:
  Quaking aspen 1,246 83 852 51 36.0 9.0 0.06 21.3 6.2 -0.05 5.2 1.6 0.31 *
  Cottonwood/poplar 69 11 64 9 47.9 11.1 0.56 17.6 6.9 0.54 2.4 1.0 0.04
  Red alder 363 42 203 18 48.5 14.4 0.19 23.3 13.1 -0.10 5.2 2.8 0.32
  Timberland oak 1,068 106 874 91 38.0 10.3 0.52 * 18.8 8.5 -0.07 5.8 1.7 0.41 *
  Other hardwoods 921 100 628 63 43.3 12.1 0.18 19.1 8.1 -0.05 4.4 2.1 -0.04
Hardwood woodland 3,321 86 125 29 43.2 14.5 0.58 * 18.2 7.4 -0.10 7.8 1.5 0.66 *

All softwoods 18,538 927 10,211 526 49.5 11.0 0.49 * 14.4 4.8 0.28 * 2.8 1.4 0.20 *
All hardwoods 4,310 361 2,746 219 41.0 11.8 0.30 * 19.5 7.6 0.01 5.6 1.6 0.46 *
All species 22,848 1,000 12,957 581 47.2 11.1 0.48 * 15.0 5.1 0.18 * 3.3 1.3 0.35 *

  numbers of pairs. 

Table 2. Means, standard deviations (s), coefficients of variation (cv), and correlation coefficients (r) of crown data 
collected by the Forest Health Monitoring Program in 8 western Statesa, by species group, 1992-1999.

Crown 
dieback

Independentb 

observations
Pairedc,d    

observations

e Asterisks indicate significant correlation coefficients, where p-values are < .05. 

  Plot means from survivor trees were paired with their previous values to calculate correlation coefficients(r). 

Crown density Foliage 
transparency

  used to calculate means (m), standard deviations (s), and coefficients of variation (cv).

a States included: CA, CO, ID, NV, OR, UT, WA, and WY.

d The numbers of observations represent pairs. The total numbers of observations are twice the listed

b Independent observations from the latest set of 4 panels sampled between 1992 and 1999 in each State were

c Paired observations from the latest set of remeasured panels sampled between 1992 and 1999 in each State.

  The number of remeasured panels available varies by State.
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Variable Independent
Data 

Distribution
Power level  

(1-B )
Alpha 

level (a )
Data 

variabilitya
n plots        n plots 

(r=.25)
n plots 
(r=.50)

Crown density Normal 0.8 0.01 10 10 52 21 16
0.8 0.01 10 15 26 12 9
0.8 0.01 15 10 110 43 30
0.8 0.01 15 15 52 21 16
0.8 0.05 10 10 34 14 10
0.8 0.05 10 15 18 8 6
0.8 0.05 15 10 74 29 20
0.8 0.05 15 15 34 14 10
0.9 0.01 10 10 64 26 19
0.9 0.01 10 15 30 14 11
0.9 0.01 15 10 138 54 37
0.9 0.01 15 15 64 26 19
0.9 0.05 10 10 46 18 13
0.9 0.05 10 15 22 10 7
0.9 0.05 15 10 98 38 26
0.9 0.05 15 15 46 18 13

Foliage transparency Normal 0.8 0.01 5 5 52 21 16
0.8 0.01 5 10 16 8 7
0.8 0.01 10 5 192 74 51
0.8 0.01 10 10 52 21 16
0.8 0.05 5 5 34 14 10
0.8 0.05 5 10 12 6 5
0.8 0.05 10 5 128 50 34
0.8 0.05 10 10 34 14 10
0.9 0.01 5 5 64 26 19
0.9 0.01 5 10 20 10 8
0.9 0.01 10 5 242 93 63
0.9 0.01 10 10 64 26 19
0.9 0.05 5 5 46 18 13
0.9 0.05 5 10 14 7 5
0.9 0.05 10 5 172 65 44
0.9 0.05 10 10 46 18 13

Crown dieback Log normal 0.8 0.01 1.5 2 118 39 25
0.8 0.01 1.5 2.5 70 24 16
0.8 0.01 2.0 2 160 48 29
0.8 0.01 2.0 2.5 94 29 18
0.8 0.05 1.5 2 80 26 16
0.8 0.05 1.5 2.5 48 16 11
0.8 0.05 2.0 2 108 32 19
0.8 0.05 2.0 2.5 64 20 12
0.9 0.01 1.5 2 150 49 30
0.9 0.01 1.5 2.5 88 30 19
0.9 0.01 2.0 2 204 61 36
0.9 0.01 2.0 2.5 118 36 22
0.9 0.05 1.5 2 106 35 21
0.9 0.05 1.5 2.5 62 21 13
0.9 0.05 2.0 2 144 43 25
0.9 0.05 2.0 2.5 84 25 15

dieback).
the listed combinations of input specifications for 3 crown variables (crown density, foliage transparency, and crown 
Table 3. Numbers of independent and paired observations required to detect a statistically significant signal, given

a For variables with a normal distribution the measure of data variability is the standard deviation. For variables with a

Pairedc,d

Effect 
sizeb

Power analysis input specifications Plots required

  of observations required when the correlation coefficient is set to 0.25 and 0.50.
d The numbers of plots listed represent pairs. Each pair represents 1 plot (i.e., grid point) with two observations.

  log normal distribution the measure of data variability is the coefficient of variation.
b For variables with a normal distribution the effect size is specified as the difference between two means. For variables
  with a log normal distribution the effect size is specified as the ratio between two means.
c Paired observations require the additional specification of a correlation coefficient (r). These results show the numbers
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Region / State Total Forest Forest Percent Forest Percent Forest Percent
land land Areaf Forestg Areaf Forestg Areaf Forestg

M acres Percent M acres Percent M acres Percent
  Northeast:
    Connecticut     3,101 1,794 2,016 112 2,976 166 3,456 193
    Delaware        1,251 383 2,016 527 2,976 777 3,456 903
    Maine           19,752 17,673 2,016 11 2,976 17 3,456 20
    Maryland      6,256 2,566 2,016 79 2,976 116 3,456 135
    Massachusetts   5,018 3,171 2,016 64 2,976 94 3,456 109
    New Hampshire   5,740 4,850 2,016 42 2,976 61 3,456 71
    New Jersey      4,748 2,132 2,016 95 2,976 140 3,456 162
    New York        30,217 18,669 2,016 11 2,976 16 3,456 19
    Pennsylvania    28,683 16,577 2,016 12 2,976 18 3,456 21
    Rhode Island    669 356 2,016 567 2,976 836 3,456 971
    Vermont         5,920 4,618 2,016 44 2,976 64 3,456 75
    West Virginia   15,415 12,007 2,016 17 2,976 25 3,456 29
  Total       126,767 84,796 2,016 2 2,976 4 3,456 4
                    
  North Central:     
    Illinois        35,608 4,525 2,016 45 2,976 66 3,456 76
    Indiana         22,980 4,656 2,016 43 2,976 64 3,456 74
    Iowa            35,842 2,879 2,016 70 2,976 103 3,456 120
    Michigan        36,275 19,545 2,016 10 2,976 15 3,456 18
    Minnesota       51,024 16,391 2,016 12 2,976 18 3,456 21
    Missouri        44,093 15,078 2,016 13 2,976 20 3,456 23
    Ohio            26,207 7,894 2,016 26 2,976 38 3,456 44
    Wisconsin       34,791 16,275 2,016 12 2,976 18 3,456 21
  Total        286,819 87,243 2,016 2 2,976 3 3,456 4

South:
  Southeast:
    Florida         35,026 16,147 2,016 12 2,976 18 3,456 21
    Georgia         37,114 24,784 2,016 8 2,976 12 3,456 14
    North Carolina  31,128 18,447 2,016 11 2,976 16 3,456 19
    South Carolina  19,207 12,746 2,016 16 2,976 23 3,456 27
    Virginia        25,626 15,766 2,016 13 2,976 19 3,456 22
  Total        148,102 87,889 2,016 2 2,976 3 3,456 4

  South Central:
    Alabama         32,435 22,693 2,016 9 2,976 13 3,456 15
    Arkansas        33,324 18,830 2,016 11 2,976 16 3,456 18
    Kentucky        25,426 11,970 2,016 17 2,976 25 3,456 29
    Louisiana       27,880 14,222 2,016 14 2,976 21 3,456 24
    Mississippi     30,026 19,622 2,016 10 2,976 15 3,456 18
    Oklahoma        43,954 7,665 2,016 26 2,976 39 3,456 45
    Tennessee       26,390 14,480 2,016 14 2,976 21 3,456 24
    Texas           167,693 17,273 2,016 12 2,976 17 3,456 20
  Total        387,127 126,756 2,016 2 2,976 2 3,456 3

  Great Plains:
    Kansas          52,488 2,106 2,016 96 2,976 141 3,456 164
    Nebraska        49,206 1,245 2,016 162 2,976 239 3,456 278
    North Dakota    44,337 724 2,016 278 2,976 411 3,456 477
    South Dakota    48,434 1,682 2,016 120 2,976 177 3,456 205
  Total        194,465 5,757 2,016 35 2,976 52 3,456 60
Continued…

-------- M acres --------

Table 4. Total land area, forest land area, and detectable impact area for three crown-indicator scenarios
involving remeasured (paired) plots, by region and State.

RPA areaa Detectable impact areab 

Crown densityc     

(21 paired plots)

Foliage 
transparencyd        

(31 paired plots) 
Crown diebacke      

(36 paired plots)
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Region / State Total Forest Forest Percent Forest Percent Forest Percent
land land Areaf Forestg Areaf Forestg Areaf Forestg

M acres Percent M acres Percent M acres Percent
  Intermountain:
    Arizona         72,764 18,671 2,016 11 2,976 16 3,456 19
    Colorado        66,390 22,612 2,016 9 2,976 13 3,456 15
    Idaho           52,909 21,430 2,016 9 2,976 14 3,456 16
    Montana         93,306 25,014 2,016 8 2,976 12 3,456 14
    Nevada          70,446 11,089 2,016 18 2,976 27 3,456 31
    New Mexico      77,674 16,682 2,016 12 2,976 18 3,456 21
    Utah            52,497 17,962 2,016 11 2,976 17 3,456 19
    Wyoming         62,062 11,445 2,016 18 2,976 26 3,456 30
  Total        548,047 144,905 2,016 1 2,976 2 3,456 2

  Pacific Northwest:
    Oregon          61,181 30,169 2,016 7 2,976 10 3,456 11
    Washington      42,609 22,279 2,016 9 2,976 13 3,456 16
    California      99,599 32,817 2,016 6 2,976 9 3,456 11
    Hawaii          4,111 1,748 2,016 115 2,976 170 3,456 198
    Alaska          365,042 126,869 2,016 2 2,976 2 3,456 3
  Total        572,542 213,883 2,016 1 2,976 1 3,456 2

e 36 paired plots are necessary to detect a significant change given: a log normal data distribution;
  power level (1-B)=0.9; a=0.05; coefficient of variation=1.8; correlation coefficient=0.3; ratio of mean difference=2.

  change. Values greater than 100 indicate that the sampling intensity is insufficient.

a Source: 2007 RPA statistics (http://fia.fs.fed.us/program-features/rpa/default.asp).

-------- M acres --------

  area in the listed State or region that must be impacted by a disturbance in order to detect a significant 

b The forest area that must be impacted in order to detect a forest health problem, given a specified number
  of plots.
c 21 paired plots are necessary to detect a significant change given: a normal data distribution;  
  power level (1-B)=0.9; a=0.05; standard deviation=12; correlation coefficient=0.4; mean difference=10.

f Impact area=n(E)*(Pn/Pt) where n = the specified number of plots; E=plot expansion factor=96,000;
  Pn=available panels=5; Pt=total panels=5.

d 31 paired plots are necessary to detect a significant change given: a normal data distribution;

g Percent forest impact area = detectable forest impact area / forest area * 100. This is the percentage of forest

Table 4 continued. Total land area, forest land area, and detectable impact area for three crown-indicator

  power level (1-B)=0.9; a=0.05; standard deviation=6.5; correlation coefficient=0.2; mean difference=5.

scenarios involving remeasured (paired) plots, by region and State.
RPA areaa Detectable impact areab 

Crown densityc     

(21 paired plots)

Foliage 
transparencyd        

(31 paired plots) 
Crown diebacke      

(36 paired plots)
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